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Abstract. This paper advances non-invasive blood pressure (BP) monitoring
by leveraging photoplethysmography signals, enhanced through the integration
of symbolic regression (SR) and traditional machine learning techniques. Our
novel methodology combines traditional SR-based and feature extraction meth-
ods, utilizing recursive feature elimination with cross-validation (RFECV) for
optimal feature selection. Comparative analysis across extensive datasets shows
that integrating SR with RFECV enhances model transparency and predictive
accuracy, providing clinically interpretable mathematical expressions that im-
prove our understanding of BP estimation dynamics, which is crucial for health-
care diagnostics.
Keywords: Non-invasive blood pressure monitoring, Machine learning tech-
niques, Photoplethysmography (PPG), Symbolic regression (SR).

1. Introduction

The strong association between hypertension and significant health risks such as stroke
and renal dysfunction underscores the essential need for a precise and continuous mon-
itoring of blood pressure (BP). Often called the ”silent killer,” hypertension is an ma-
jor contributor to mortality because it generally lacks symptoms, leading to underdiag-
nosed and untreated conditions, as highlighted in analyses by [Kearney et al. 2005] and
[Bittner 2020]. This critical context accentuates the urgency for advancements in BP
monitoring technologies.

Traditional BP monitoring methods, particularly invasive techniques, have been
critically reviewed due to their complexity and risk of complications. Non-invasive meth-
ods, such as sphygmomanometers, although widely used, do not support continuous mon-
itoring due to the impracticality of constant manual operation [Liang et al. 2018]. Recent
advances in photoplethysmography (PPG) for BP monitoring have focused on improving
accuracy and reliability through machine learning (ML) and deep learning (DL) tech-
niques. In particular, the U-Net architecture predicts arterial BP waveforms from fin-
gertip PPG signals with high precision [Athaya and Choi 2021]. By analyzing contin-
uous waveform data from both PPG and arterial blood pressure (ABP) measurements,
these approaches enhance the precision of BP estimates without frequent recalibration
[Kachuee et al. 2015].



Recent advances in signal processing and algorithmic interpretation have en-
hanced the analysis of PPG data, leading to better clinical outcomes in the management
of hypertension. Studies support the integration of non-invasive continuous monitoring
technologies like PPG into routine clinical practice, suggesting that these methods could
improve the early detection and management of hypertension, thus reducing associated
diseases [Liang et al. 2018]. ML models leverage rich PPG data to predict BP, extracting
features such as pulse arrival time, waveform morphology, and frequency domain char-
acteristics. Techniques such as support vector machines (SVM), random forests (RF) and
neural networks have been utilized [Wong et al. 2023].

ML approaches for BP estimation from a single PPG waveform have gained sig-
nificant attention. Despite numerous ML-based techniques, an optimal methodology re-
mains unclear. A benchmark was established using four open datasets, standardized pre-
processing, robust validation, and consistent evaluation metrics. The refined mean abso-
lute scaled error (MASE) improved interpretability, facilitating a comparative analysis of
11 ML-based BP estimation methods [González et al. 2023].

In this context, symbolic regression (SR) emerges as a key methodology. SR is
an evolving subfield within ML that focuses on the derivation of symbolic mathemat-
ical expressions from the data [Schmidt and Lipson 2009], emphasizing interpretability
alongside accuracy [Schmidt and Lipson 2009, Rudin 2019]. Rooted in genetic program-
ming, SR has gained renewed interest in DL advancements, making it powerful in various
disciplines [Makke and Chawla 2024].

SR simplifies expressions using the rational transformation-interaction
approach, balancing simplicity and approximation capabilities, especially in
small datasets [de França 2023]. Benchmarks evaluating different explana-
tions have shown that SR is a viable alternative to traditional ML models
[Seidyo Imai Aldeia and Olivetti de Franca 2024].

Addressing the lack of standardized benchmarking, an open-source platform was
introduced to evaluate 14 SR and 7 ML methods across 252 regression problems, demon-
strating the effectiveness of genetic algorithms combined with parameter estimation or
semantic search drivers in real-world scenarios [Cava et al. 2021]. The Operon frame-
work, utilizing local search optimizations, balances accuracy, and simplicity, achieving
high performance in synthetic track experiments [Burlacu et al. 2020, Burlacu 2023].

In healthcare, the feature engineering automation tool (FEAT) uses SR to create
precise and interpretable clinical prediction models from electronic health records (EHR),
enhancing clinical decision support and trust in ML applications [La Cava et al. 2023].

1.1. Contributions

This paper significantly advances non-invasive BP monitoring by improving clinical in-
terpretability and predictive accuracy through a novel hybrid approach that combines SR
with traditional ML techniques. The specific contributions of our research are detailed as
follows:

• Novel methodology: The integration of SR and recursive feature elimination with
cross-validation (RFECV) optimizes feature selection, improving BP predictions
from PPG signals.



• Improvement of clinical interpretability: By generating explicit mathematical ex-
pressions, SR bridges the gap between model accuracy and clinical interpretabil-
ity, improving model transparency and aiding informed clinical decision-making.

• Comparative analysis: We evaluated several machine learning models, includ-
ing support vector regression (SVR), adaptive boosting (AdaBoost), and SR-
PyOperon. This evaluation helps identify the most effective algorithms for in-
tegration with advanced feature extraction techniques, guiding the selection of
optimal models for specific clinical applications, and balancing accuracy with
computational efficiency.

• Advancement of non-invasive monitoring technologies: The work highlights the
potential of PPG-based BP monitoring enhanced by ML and SR techniques, offer-
ing a non-invasive solution that meets stringent medical standards, thus improving
patient comfort and safety.

• Healthcare diagnostics: The methodology provides insights into BP estimation
dynamics, which are crucial for reliable healthcare diagnostics, aiding in early
detection and management of hypertension.

• Benchmarking and standardization: The paper addresses the need for standard-
ized benchmarking by evaluating the proposed method against established datasets
with robust validation strategies to ensure reliable results.

2. Methodology

This work evaluates various ML and DL models for non-invasive BP monitoring using
PPG signals. The evaluation is based on a benchmark developed by Gonzalez et al.
[González et al. 2023], using their data sets. These data sets include diverse data from
the subject, BP distributions, and recording characteristics. Standardized preprocessing
and a validation strategy were applied to maintain data integrity across training, valida-
tion, and test sets. Specifically, we used the sensor dataset, which is divided into five folds
for a comprehensive analysis.

2.1. Feature-to-Label Methodology

Feature-to-Label (Feat2Lab) is a method proposed by Gonzalez et al.
[González et al. 2023] to extract features from PPG signal. It identifies the most
effective and widely utilized PPG features, classified into three main groups:

1. Points-of-Interest and Time-Based Features: Focus on specific points in the
PPG cardiac cycle and its derivatives (VPG and APG), such as the systolic peak
and various points from the first and second derivatives. Features include ampli-
tudes, elapsed times, and areas under the PPG curve.

2. Frequency-Based Features: Derived from fast Fourier transform (FFT) analysis
of the PPG waveform, these features include the dominant frequency, its magni-
tude, and the average magnitude of the surrounding frequencies.

3. Operational and Statistical Features: Provide a comprehensive characteriza-
tion of the PPG cardiac cycle, including histogram features, slope deviation curve
(SDC) features, skewness and kurtosis, and indices such as the aging index.



2.2. PyOperon: Leveraging Symbolic Regression for Blood Pressure Estimation

PyOperon is a cutting-edge symbolic regression library that employs evolutionary algo-
rithms to generate interpretable mathematical models from complex datasets. It is based
on the C++ Operon framework for symbolic regression that uses genetic programming
to explore a hypothesis space of possible mathematical expressions. Unlike traditional
regression techniques, symbolic regression does not assume a predefined model structure.
Instead, it explores the space of mathematical expressions to find equations that best fit
the data. This approach is particularly powerful in medical applications like BP estima-
tion, where understanding the underlying relationships between physiological signals and
outcomes is crucial.

2.2.1. Functionality and Implementation

In our work, PyOperon was used to derive symbolic equations that model the relationship
between PPG signal features and blood pressure (SBP and DBP). The process begins
with a population of randomly generated mathematical expressions, which are iteratively
refined through operations such as crossover, mutation, and selection. These operations
mimic the principles of natural evolution, allowing the algorithm to explore a wide range
of potential solutions. To optimize feature selection for predicting SBP and DBP, we
applied RFECV [Guyon and Elisseeff 2003]. This is a technique that iteratively removes
less significant features and builds a model using the remaining ones. This process was
crucial in identifying the key PPG features that contribute to accurate BP predictions.

SR predictions were generated using the PyOperon library, with feature signif-
icance determined by configurable hyperparameters. These hyperparameters—such as
mutation probability, population size, and the number of generations—were meticulously
optimized using the Optuna library to enhance model performance. The optimization
process, managed through Optuna, was performed using internal cross-validation on the
training set, ensuring robustness and generalizability. Key hyperparameters include:

• Mutation Probability: Controls the likelihood of random alterations in the math-
ematical expressions, enabling the discovery of novel and potentially better-
performing models.

• Population Size: Determines the number of candidate solutions in each genera-
tion, balancing the exploration of the solution space with computational efficiency.

• Generations: Specifies the number of evolutionary iterations, allowing the model
to progressively improve its fit to the data.

2.2.2. Application in BP Estimation

The application of PyOperon in this study involved several critical steps:

• Feature Selection: Initially, features were selected from the PPG signal data using
RFECV, ensuring that only the most relevant features were used in the symbolic
regression process. This step enhanced the interpretability and accuracy of the
final model. Feature selection was conducted on five data folds from the sensor
dataset, with average performance metrics calculated for both traditional models



and the SR model from PyOperon. This process is referred to as SR fold in the
analysis.

• Symbolic Regression: Using the selected features, PyOperon generated symbolic
equations that map the PPG features to BP values. The flexibility of symbolic re-
gression allowed the model to capture complex, nonlinear relationships that might
be overlooked by more conventional methods.

• Model Optimization: The hyperparameters of PyOperon were optimized us-
ing Optuna, a robust framework that systematically tunes the model’s settings
to achieve higher accuracy and lower error. This optimization, performed with
cross-validation, ensured that the model generalized well to unseen data.

• Model Evaluation: The symbolic regression models were evaluated using various
metrics like MAE, MSE, and the coefficient of determination (R2). These metrics
provided a comprehensive assessment of the model’s predictive accuracy and its
potential utility in clinical settings.

• Interpretability: A significant advantage of PyOperon is the interpretability of
the models it generates. Unlike black-box machine learning models, the symbolic
equations produced by PyOperon can be directly examined and understood by
clinicians, making them more likely to be adopted in practice.

2.3. Evaluation metrics
Following best practices in BP research, several metrics were used to evaluate model
performance:

• Mean Absolute Error (MAE): Quantifies the average magnitude of the errors in
predictions, disregarding their direction: MAE = 1

n

∑n
i=1 |yi − ŷi|

• Mean Squared Error (MSE): Used to assess the performance of regression mod-
els by averaging the squares of prediction errors: MSE = 1

n

∑n
i=1(yi − ŷi)

2

• Naive Mean Absolute Error (Naive MAE): A baseline metric used for com-
parison, calculated by taking the mean absolute difference between the actual BP
values and a naive prediction model, which typically uses a simple heuristic or
historical mean as the predictor.

• Mean Absolute Scaled Error (MASE): Facilitates comparison between different
datasets by normalizing the MAE against the Naive MAE, derived from the mean
output of the data set:

MASE =
MAE

Naive MAE
This metric is particularly useful for evaluating and comparing algorithms under
consistent standards, especially in time-series forecasting of BP measurements.

• Coefficient of determination (R2): Measures the proportion of variance in the
dependent variable that is predictable from the independent variables:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where ȳ is the mean of the actual values.
• Modified Mean Squared Error (MMSE): Facilitates comparison between dif-

ferent datasets by normalizing the MSE against the Naive MAE, derived from the
mean output of the data set:

MMSE =
MSE

Naive MAE



3. Evaluating Machine Learning Techniques in Blood Pressure Estimation:
Results and Discussion

In this work, we systematically evaluate various ML models, categorizing them into spe-
cific groups to assess their effectiveness in estimating BP using PPG signals. Our com-
parative analysis, based on the data presented in Table 2, provides a comprehensive eval-
uation of the performance of different algorithms across various metrics. The proficiency
of each model is highlighted in bold, indicating superior performance among the different
ML models. These models were rigorously tested and trained using a five-fold cross-
validation process. The set of hyperparameter values employed during the grid search in
PyOperon is detailed in Table 1.

Table 1. Hyperparameter values used during Symbolic Regression

Parameter Value
Offspring Generator brood
Initialization Method btc
Comparison Factor 0.1
crossover probability 0.9
Epsilon 1× 10−5

Female Selector tournament
Objectives r2
Mutation Probability [0.3, 0.8, 0.9]
Reinserter keep-best
Max Evaluations 1× 106

Tournament Size 3
Pool Size 500
Population Size [500, 1000]
Generations [400, 800, 1000]
Time Limit 90
crossover internal probability 0.3
Max Depth 5
Max Length [5, 10,20, 50, 100, 150]
initialization max length [100, 150]

3.1. Analysis and Discussion of SBP and DBP for Sensor-dataset
Table 2 shows the performance of various machine learning algorithms in predicting SBP
and DBP using PPG signals. The models assessed include AdaBoost, Naive, RF, SVR,
and SR. The RF model consistently outperforms other models across all evaluated met-
rics (MSE, MAE, Score, MMSE, and MASE) for both SBP and DBP predictions. This
demonstrates its effectiveness in leveraging PPG signals for accurate blood pressure es-
timation. The AdaBoost model performs moderately well but does not surpass the RF
model in any metric. The Naive model, serving as a baseline, shows the highest errors,
highlighting the complexity of accurately predicting blood pressure using PPG signals
without advanced machine learning techniques. Symbolic Regression models are exam-
ined for their potential to derive interpretable mathematical models from sensor data, al-
though they may encounter challenges with large or complex datasets compared to more



robust algorithms. Among the metrics considered, MASE is particularly valuable due
to its scale-independent nature and its ability to provide a normalized measure of error
relative to simple naive predictions. The low MASE in the RF model signifies not only
its performance against basic benchmarks but also its ability to manage the variability of
the SBP and DBP data.This assessment aids in selecting appropriate machine learning
tools to enhance SBP and DBP monitoring and management in healthcare applications,
ensuring alignment with specific clinical needs and dataset characteristics.

Table 2. Performance of the ML algorithms grouped on Sensor dataset for SBP
and DBP

Models Targets Metrics
MSE MAE Score MMSE MASE%

Naive SBP 468.1 17.52 -0.0023 1.0023 100.30
DBP 110.25 8.23 0.0015 1.0015 100.21

AdaBoost SBP 332.75 14.49 0.2827 0.7173 83.25
DBP 87.72 7.66 0.1949 0.8051 93.60

RF SBP 320.27 13.78 0.3059 0.6941 79.34
DBP 62.63 5.93 0.4220 0.5780 72.62

SVR SBP 467.87 17.44 -0.0024 1.0024 99.89
DBP 90.14 7.07 0.1684 0.8316 86.43

SR SBP 403.43 16.09 0.1437 0.8562 91.92
DBP 98.13 7.70 0.1084 0.8915 93.64

Figure 1 displays MASE percentages for SBP and DBP across various ML mod-
els. The models are ordered from the lowest to highest MASE values, which allows for
easy comparison of their performance.
SBP MASE Analysis: RF has the lowest MASE percentage (79.34%), indicating the

highest accuracy among the models for predicting SBP. AdaBoost follows with
a slightly higher MASE percentage (83.25%). SR fold, SVR, and Naive mod-
els have progressively higher MASE percentages, with Naive having the highest
MASE (100.3%).

DBP MASE Analysis: RF again shows the best performance with the lowest MASE per-
centage (72.62%). SVR and AdaBoost have similar performance, with MASE
percentages around 86.43 and 93.6%, respectively. SR fold and Naive have the
highest MASE percentages, with Naive reaching 100.21%.

The RF model consistently outperforms the other models in both SBP and DBP predic-
tions, demonstrating the lowest MASE percentages. This suggests that RF is the most
reliable model for blood pressure estimation in this dataset. The Naive model, on the
other hand, shows the highest MASE percentages, indicating poorer performance com-
pared to the other models.

RF consistently demonstrates the best performance for both SBP and DBP predic-
tions, with the lowest MMSE values in both cases. AdaBoost is also a strong performer,
showing competitive results close to RF. Symbolic Regression and SVR show moderate
performance, with higher MMSE values than RF and AdaBoost. Naive model exhibits
the highest MMSE values for both SBP and DBP, indicating that it is the least effective
model among those tested.



3.2. Symbolic Regression

This section delves into the derivation and implications of an equation formulated to es-
timate SBP and DBP based on various features extracted from the sensor dataset. The
following equation represents the best expressions obtained through combining folds for
the DBP target obtained in

YDBP = 52.730 + 5.877 ·
(

0.776

−0.357 · DiaRise

)
·(

tanh

(
3

√
sin
(

3
√
−0.029 · ppg fft peaks neighbor avgs 0

)))
We analyze the components of the equation:

1. Constant Term (52.730): This is the baseline value in the equation, indicating
the initial DBP without the influence of other variables.

2. Coefficient (5.877): This multiplier affects the overall contribution of the non-
linear transformation to the final DBP value.

3. Hyperbolic Tangent Function (tanh): This function maps the input values to a
range between -1 and 1, introducing non-linearity and controlling extreme values.

4. Cube Root of Sine Function ( 3
√

sin( 3
√
·)): The nested sine and cube root func-

tions apply a non-linear transformation to the ‘ppg fft peaks neighbor avgs 0‘
feature, making the equation sensitive to this feature’s variations.

5. Fractional Component (
0.776

−0.357 · DiaRise
): This part introduces another layer

of complexity, incorporating the ‘DiaRise‘ feature inversely. The negative coef-
ficient suggests an inverse relationship between ‘DiaRise‘ and the contribution to
DBP.

The feature ppg fft peaks neighbor avgs 0 likely represents a frequency-domain charac-
teristic of the PPG signal, indicating the average peak values of neighboring points in the
FFT spectrum. Its transformation through non-linear functions suggests that it plays a
critical role in capturing subtle variations in the signal that correlate with DBP. The fea-
ture DiaRise appears to be a characteristic in the time domain, probably related to the rate

Figure 1. Performance Comparison of MASE% for SBP and DBP



of change or slope of the diastolic rise phase in the sensor signal. The inverse relationship
implies that higher values of DiaRise are associated with lower DBP predictions. The
equation incorporates several non-linear transformations essential for modeling complex
physiological processes that linear relationships cannot adequately capture. The interac-
tion between ppg fft peaks neighbor avgs 0 and ‘DiaRise through the non-linear func-
tions and fraction indicates that the model considers combined effects rather than treating
each feature independently. The equation derived for DBP reflects an advanced approach
to physiological signal processing, utilizing sophisticated mathematical transformations
to improve prediction accuracy. It underscores the importance of non-linear modeling in
capturing the intricate dynamics of cardiovascular signals.

The best equation for SBP takes into account various physiological parameters,
such as pulse pressure (ppg min 0), normalized cardiac time (T c norm), and ultrasound-
derived diameter change (usdc 3). The equation provided:

YSBP = 81.645 +

(
−0.598× (−1.952× (exp(1.187× ppg min 0))2)

(1.419× T c norm)− (0.368× usdc 3)

)
aims to predict SBP based on specific physiological inputs.

To analyze this equation, we need to examine each component and its influence
on the overall prediction of SBP:

1. Baseline Constant: The equation begins with a baseline constant of 81.645, serv-
ing as a reference point for systolic blood pressure (SBP). This ensures that the
model starts with a realistic SBP value.

2. Modifier Coefficient (-0.598): The negative coefficient (-0.598) indicates an in-
verse relationship between the ratio of the parameters and SBP.

3. Numerator: The numerator features an exponential function influenced by
ppg min 0 (minimum pulse pressure). The term (−1.952 × (exp(1.187 ×
ppg min 0))2) highlights the significance of pulse pressure in predicting SBP.
This exponential component amplifies the effect of ppg min 0, meaning that small
changes in pulse pressure lead to substantial variations in SBP due to the squared
exponential function.

4. Denominator: The denominator incorporates normalized cardiac time
(T c norm) and ultrasound-derived diameter change (usdc 3). The term (1.419×
T c norm)−(0.368×usdc 3) shows how these two parameters balance each other
in influencing SBP. The positive coefficient (1.419) suggests that longer normal-
ized cardiac times increase SBP, while the smaller coefficient (0.368) indicates
that greater diameter changes, which are subtracted, lead to lower SBP predic-
tions.

This equation provides a robust framework for predicting SBP by integrating key
physiological metrics. The exponential amplification of the pulse pressure, combined
with the balanced contributions of cardiac time and diameter change, ensures a nuanced
approach to the estimation of SBP. Future work should focus on validating this model
with empirical data to enhance its predictive accuracy and reliability.



3.2.1. Comparative Analysis of Symbolic Regression

An analysis of the aspects of SR highlighting its distinct advantages and challenges un-
derscores the unique position of SR within the broader spectrum of machine learning
techniques. This analysis emphasizes the potential for SR for applications where trans-
parency and simplicity are as important as predictive capability.

• Interpretability: SR’s primary advantage lies in its ability to produce understand-
able mathematical models from complex data sets. This feature is particularly
valuable in domains where stakeholders require clarity on how decisions are de-
rived from the model.

• Accuracy Challenges: Although SR excels in interpretability, it may not always
achieve the highest accuracy, especially when compared to more complex machine
learning models. This aspect often presents a trade-off between understanding the
model’s outputs and achieving the lowest possible prediction errors.

• Verification: The clarity and transparency of SR models foster trust and allow for
easy verification of results, which is essential in sensitive fields such as healthcare.
Medical professionals can understand and justify automated decisions made based
on SR, which is crucial for clinical acceptance.

• Integration into Clinical Practice: The ability of SR to integrate into clinical
practice enhances its utility. Decisions based on SR models can be transparent and
justifiable, aligning with the regulatory and ethical standards required in health-
care environments.

• Model Complexity and Implementation: One of the benefits of SR is its relative
simplicity in terms of model structure. SR can often distill complex phenomena
into simpler, more comprehensible mathematical expressions. Despite its con-
ceptual simplicity, implementing SR effectively can be challenging, especially in
handling noisy or incomplete data. This may require sophisticated preprocessing
steps or enhancements to the basic SR algorithm.

• Scalability and Performance: SR models are generally less resource-intensive,
making them more scalable to larger datasets compared to deep learning mod-
els. This scalability is advantageous in settings where computational resources
are limited. SR’s performance can vary significantly depending on the nature of
the data and the specific configurations of the SR algorithm. Fine-tuning SR to
maintain robustness across different scenarios remains a critical area for ongoing
research.

4. Conclusions and Future Work
This work presents a thorough evaluation of various ML algorithms for non-invasive BP
estimation using PPG signals. Among the models evaluated, the RF model consistently
demonstrated superior accuracy and reliability in multiple metrics, including MSE, MAE,
Score, MMSE, and MASE. The robust performance of the RF model highlights its effec-
tiveness in leveraging PPG signals for precise BP estimation, establishing it as a valu-
able tool for clinical applications. SR models, while not achieving the highest accuracy,
offered significant advantages in interpretability. This feature is particularly crucial in
healthcare settings, where understanding and verifying the decision-making process is
essential. The transparency and simplicity of SR models foster trust and facilitate inte-
gration into clinical practice, aligning with regulatory and ethical standards. Despite the



moderate performance of other models, such as AdaBoost and SVR, the evaluation un-
derscores the importance of selecting models based on the specific requirements of the
application, balancing trade-offs between accuracy, interpretability, and computational
resources.

The findings of this work open several avenues for future research. Key areas of
focus should include:

• Enhancement of Symbolic Regression Models: While SR models excel in in-
terpretability, their accuracy can be further improved. Future research should ex-
plore advanced preprocessing techniques and algorithmic enhancements to handle
noisy or incomplete data effectively. Furthermore, developing hybrid models that
combine the strengths of SR with other ML techniques could provide a balanced
approach to accuracy and interpretability.

• Comprehensive Benchmarking: Extending the benchmarking process to include
a broader range of datasets and real-world scenarios will ensure the robustness and
generalizability of the evaluated models. This effort should also incorporate stan-
dardized protocols to facilitate consistent and reliable comparisons across studies.

• Clinical Validation and Implementation: To bridge the gap between research
and practical application, extensive clinical validation of the proposed models is
necessary. Collaborations with healthcare institutions will be crucial in testing
the models in various clinical settings, ensuring their reliability and acceptance by
medical professionals.

• Scalability and Resource Optimization: Given the resource-intensive nature of
some ML models, future work should focus on optimizing the computational ef-
ficiency of these algorithms. This includes exploring lightweight models and effi-
cient training methodologies that can scale to large datasets without compromising
performance.

• Integration with Wearable Technology: The integration of ML-based BP esti-
mation models with wearable devices offers a promising direction for continuous
and non-invasive health monitoring. Research should investigate the feasibility,
accuracy, and user acceptability of such integrations, with the aim of improving
patient comfort and health outcomes.
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González, S., Hsieh, W.-T., and Chen, T. P.-C. (2023). A benchmark for machine-learning
based non-invasive blood pressure estimation using photoplethysmogram. Scientific
Data, 10(1):149.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182.

Kachuee, M., Kiani, M. M., Mohammadzade, H., and Shabany, M. (2015). Cuff-less
high-accuracy calibration-free blood pressure estimation using pulse transit time. In
2015 IEEE int. symp. on circuits and systems (ISCAS), pages 1006–1009. IEEE.

Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., and He, J.
(2005). Global burden of hypertension: analysis of worldwide data. The lancet,
365(9455):217–223.

La Cava, W. G., Lee, P. C., Ajmal, I., Ding, X., Solanki, P., Cohen, J. B., Moore, J. H.,
and Herman, D. S. (2023). A flexible symbolic regression method for constructing
interpretable clinical prediction models. NPJ Digital Medicine, 6(1):107.

Liang, Y., Chen, Z., Ward, R., and Elgendi, M. (2018). Photoplethysmography and deep
learning: enhancing hypertension risk stratification. Biosensors, 8(4):101.

Makke, N. and Chawla, S. (2024). Interpretable scientific discovery with symbolic re-
gression: a review. Artificial Intelligence Review, 57(1):2.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature machine intelligence, 1(5):206–
215.

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from experimental
data. science, 324(5923):81–85.

Seidyo Imai Aldeia, G. and Olivetti de Franca, F. (2024). Interpretability in symbolic
regression: a benchmark of explanatory methods using the feynman data set. arXiv
e-prints, pages arXiv–2404.

Wong, M. K. F., Hei, H., Lim, S. Z., and Ng, E. Y. K. (2023). Applied machine learning
for blood pressure estimation using a small, real-world electrocardiogram and photo-
plethysmogram dataset. Mathematical Biosciences and Engineering.


