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Abstract. Gesture recognition using myoelectric signals (sEMG) is a power-
ful tool for Human-Machine Interfaces (HMIs). While significant progress has
been made with various machine learning algorithms, more recent and robust
solutions in the sEMG pipeline must be explored. This study reviews recent ges-
ture recognition research to identify gaps and analyze standard classification
and feature extraction approaches from sEMG signals. We performed a review
considering studies published between 2018 and 2024. Our findings reveal a
prevalence of public datasets and time-domain features. We highlight the need
for further research on feature engineering, algorithm exploration beyond tra-
ditional choices, and integration of DL for feature extraction.

1. Introduction

Gesture recognition has been widely explored due to its relevance in human-machine in-
terface applications, especially in the control of prostheses and orthotics [Bi et al. 2019].
This task uses myoelectric signals, which are representations of the electrical activity of
muscles and can be captured by electrodes placed on the skin’s surface. However, it is
still difficult to achieve highly accurate models that can identify a large number of move-
ments, which is fundamental when using this type of device in real life. An initiative
to spread and develop the research area was presented by [Atzori et al. 2014], where the
authors created the Ninapro (Non-Invasive Adaptive Prosthetics) database, enabling re-
search groups around the world to have access to a scientific reference database to carry
out tests and develop increasingly accurate algorithms.

In this context, many studies exploring Machine Learning (ML) tasks have been
proposed to extract complex features from Electromyography (EMG) signals and identify
movement patterns. Two alternatives are commonly explored: classical ML algorithms
or Deep Learning (DL). However, there is no standard for a definitive method to perform
gesture classification and feature extraction from EMG signals [Jia et al. 2020]. In the
gesture recognition scenario, the signal feature extraction appears to be one of the most
critical steps of the pipeline. It directly affects the results of the induced models for
good or bad. Literature has complete studies benchmarking traditional feature extraction
techniques for EMG signals [Phinyomark et al. 2012], but only recently DL has been
investigated [Huang and Chen 2019], leaving open avenues for research in the area.

Thus, this study performs a recent review of gesture recognition studies to identify
gaps in the application of more recent and robust Machine Learning (ML) algorithms in
the EMG pipeline, as well as provide an analysis of the most frequently used approaches



for both classification and feature extraction from EMG signals. This study aims to pro-
vide insights for researchers and practitioners, highlighting new directions for future re-
search with gesture recognition using myoelectric signals. This paper is organized as
follows: Section 2 presents some of the necessary concepts related to EMG and ML.
Section 3 presents the methodology conducted to review relevant studies for EMG signal
classification, while the analysis and discussions are presented in Section 4.

2. Background

2.1. Surface Electromyography

Surface Electromyography (sEMG) is a non-invasive technique widely employed to cap-
ture muscle bio-potentials, facilitating the extraction of information to monitor muscle
activity [Ghaffar Nia et al. 2023]. This technique finds diverse applications, notably in
pattern recognition for prosthetic control [Huang and Chen 2019]. Understanding the
techniques for acquiring EMG signals is crucial for extracting pertinent features in gesture
recognition through surface EMG (sEMG) signals.

Publicly available databases, such as NINAPRO, are pivotal in advancing research
in this field. NINAPRO offers various datasets employing different signal acquisition
methods. For instance, NINAPRO-DB5 utilizes Thalmic Myo Armbands with a 200 Hz
sampling rate, while NINAPRO-DB4 employs Comet electrodes with a sampling rate of
2 kHz. The choice of sampling rate is essential, as it directly impacts signal accuracy and
detail capture [Phinyomark et al. 2018].

Feature extraction is crucial in the pattern recognition of EMG signals. It in-
volves uncovering hidden information about the signal to represent it through fea-
tures capturing specific patterns [Krishnan and Athavale 2018]. This process often in-
corporates dimensionality reduction to produce a smaller set of representative data
for precise signal description. Techniques for feature extraction in biomedical sig-
nals can be categorized into four generations: Time Domain (TD), Frequency Domain
(FD), Joint time-frequency Domain (TFD), and Signal decomposition and sparse do-
mains [Krishnan and Athavale 2018].

2.2. Machine Learning

With the expansion of data generation, Machine Learning (ML) has achieved high popu-
larity in recent years. Progress in this area allowed a significant uptake of ML solutions
by the industry, solving complex problems and providing predictions, recommendations,
and classifications [Janiesch et al. 2021].

In general, ML encompasses a set of algorithms that allow programs to learn in-
trinsic patterns in data and perform specific tasks without the need for explicit instruc-
tions [Somvanshi et al. 2016]. Regarding this aspect, learning can be supervised, unsu-
pervised, or by reinforcement, the most common being supervised learning. In supervised
learning, the specialists provide the algorithms with the desired outputs (labels) according
to their respective inputs in a training set. After the training (model induction), the algo-
rithm (model) generates the correct outputs from any possible inputs. It can be subdivided
into two sub-tasks: classification, when the model learns to assign a class or category to
each input; and regression, a task where the model predicts a continuous value.



In the context of gesture recognition using myoelectric signals, the use of super-
vised learning is far superior to other approaches. This approach has stood out for its wide
application and for presenting better performance compared to reinforcement learning.

3. Research Methodology
We performed a traditional literature review, extracting meta-information from the se-
lected papers. Although it is not a systematic review or mapping, we explored some of
their insights to list valuable information and gaps for future research in gesture classifi-
cation using EMG.

3.1. Selection of the Studies
The studies included in this review were selected following specific criteria. The search
used three databases: IEEE Xplore, MDPI, and Science Direct. They were selected due
to their reputation, reliability, and breadth of content relevant to the scope of this study.
The next step defined the keywords desired to be presented in the title or abstract of the
studies of gesture classification using EMG. These keywords are detailed in Table 1.

Table 1. Search String and Keywords

Primary Search String Keywords in Abstract

EMG Hand Gesture Classification EMG, Classification, Recognition,
Machine Learning, Deep Learning

3.2. Screening
A total of 1,577 works were returned considering the three databases. These studies were
subjected to a screening process to ensure their relevance. This screening has three steps:

• date filtering: we selected studies published between 2018 and 2024, aiming for
the most recent and relevant studies, considering only publications in conferences
and journals. A total of 527 studies were removed since they did not meet the
criteria;

• title screening: a total of 907 studies were removed, not presenting all the primary
search string words contained in their titles;

• abstract screening: the remaining 143 studies had their abstract content analyzed
considering the keywords described in Table 1, resulting in the removal of 105
works

After these steps, there were 38 remaining studies. In the final selection step, we per-
formed a guided reading of the abstract, introduction, and conclusion sections to deter-
mine which studies would fit the review. Due to the space restrictions and the ongoing
status of this research, we reported just the 23 most relevant studies in the detailed review.
The entire screening process and the number of studies available in each stage are detailed
in Table 2.

3.3. Metadata Extraction
For each study, we list: 1) the reference id; 2) the year of publication; 3) its title; 4) the
type of study (classification or comparative); 5) datasets used in the study; 5) ML and/or
DL algorithms used to classify gestures; and 6) feature extraction methods used to process
EMG signals.



Table 2. Research Methodology for Article Selection

Database Primary Data Screening Screening Final
Search Filtering by Title by Abstract Selection

IEEE Xplore Access 388 300 65 12 10
MDPI 36 35 35 9 5
Elsevier 1.153 715 43 17 8

Total 1.577 1.050 143 38 23

4. Results and Discussion
Table 3 lists all the metadata extracted from the 23 selected studies, which will be dis-
cussed in more detail below. During the analysis, all studies on the classification of ges-
tures presented a similar pipeline, with the same steps included in their solutions. This
pipeline contains four main steps: data acquisition, data preparation, classification, and
model evaluation. This general pipeline is depicted in Figure 1.
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Figure 1. Gesture classification process through sEMG

The pipeline starts with a data acquisition step, generating a dataset with informa-
tion from different individuals. The second step is data preparation, which involves signal
preprocessing procedures and feature extraction. It aims to extract relevant features from
the raw EMG signal. The third step is model induction, where a classifier is trained with
the preprocessed data and extracted features. To achieve satisfactory performance, the
classifier must have adequate speed and be able to handle variation in feature values. Fi-
nally, there is a model evaluation step where the induced model is evaluated according to
its predictions, and gestures identified.

4.1. Overview of the studies
Different Deep Learning (DL) algorithms have been evaluated for EMG signals.
In [Samadani 2018], the authors presented a comparative analysis of different Recur-
rent Neural Networks (RNNs) for hand gesture classification based on EMG. More
specifically, LSTM and GRU architectures are considered. Additionally, the ef-
fects of an attention mechanism and varied learning rates are evaluated. Similarly,
[Côté-Allard et al. 2019] introduced three new ConvNet architectures and compared them
with traditional sEMG-based classifiers. A novelty was a Transfer Learning scheme that
enhanced the performance of the proposed ConvNet models. [Ozdemir et al. 2022] also
applied Transfer Learning (TL) for hand gesture classification using time-frequency (TF)
images of sEMG signals.

In [Yoo et al. 2019], the authors investigated the most effective method for clas-
sifying myoelectric signals with a small number of electrodes. Twenty-three individuals



and fourteen different hand movements were employed in the study. Furthermore, the arti-
cle compared the models’ accuracy of sEMG data using Discriminative Feature-Oriented
Dictionary Learning (DFDL).

A different approach for classifying hand gestures with sEMG without dividing
data into static and dynamic segments is proposed by [Simão et al. 2019]. It employed
RNNs for sequential classification. Compared to different neural network architectures,
the results showed that static and dynamic models achieved high accuracies, but dynamic
models were more efficient in time.

In [Huang and Chen 2019], it was demonstrated that features with specific phys-
ical meaning, such as spectrograms, are less effective than combining such features
with neural networks. The authors combined Spectrogram, CNN, and LSTM to utilize
the spatial local physical and temporal sequence information fully. On the other hand,
in [Sun et al. 2019], using a Generative Flow Model (GFM) alongside a SoftMax clas-
sifier is suggested to overcome the limitations of conventional classification methods in
understanding the features learned by the model. The GFM achieved an accuracy of
63.86% across 53 different gestures, with the learned features appearing to be related to
muscular synergy.

The study [Chen et al. 2020] proposed a new compact CNN architecture with four
convolutional and single MaxPooling layers. Experiments were conducted on two public
datasets (Myo Dataset and NinaPRO DB5) and using various combinations of algorithms
for feature extraction and classification. The study of [Jia et al. 2020] employed ML al-
gorithms to classify ten hand gestures based on EMG signals. It preprocessed the data by
applying normalization, feature extraction, and windowing methods. Subsequently, the
data is fed into multiple algorithms, and results are compared through statistical analysis.
Ultimately, the study demonstrated that the proposed model, consisting of CAE+CNN
using windowing and majority voting, outperformed the baselines.

The research developed by [Fajardo et al. 2021] presented a method combining
CNN deep features with handcrafted values derived from a discrete spectral analysis in
time. Time features extracted were MAV, SSC, and Peak Frequencies. The combined
features fed a MLP classifiers to recognize signals recorded from a single-channel device.
A similar benchmark is proposed by [Javaid et al. 2021]. The same structure is explored
in [Javaid et al. 2021].

In the [Zhang et al. 2022] study, the authors addressed the development of ML
pipeline for detecting hand movements considering gender differences to identify move-
ment patterns. Results indicated significant differences between genders in muscle
pairs during movements. The ANN algorithm benefited greatly from this method,
achieving 98% accuracy. Similarly, in [Vásconez et al. 2023], the authors compared
supervised learning and reinforcement learning methods for recognizing hand gestures
based on EMG signals. The results suggest that supervised learning methods are
more effective for EMG-based HGR systems. A similar benchmark is also conducted
by [Ghaffar Nia et al. 2023], where the authors applied different ML/DL algorithms to
classify four hand gestures. The results demonstrate that the ANN model achieved the
best performance, reaching an accuracy of 93%.

The study by [Triwiyanto et al. 2024] develops a DL classifier based on a DNN



architecture to enhance hand gesture classification and explores the impact of force vari-
ations on gesture accuracy in amputees. The classifier, which can recognize six gestures,
demonstrated robustness across different strength levels (18 combinations) and achieved
an average accuracy of 92%. Similarly, [Ozdemir et al. 2020] propose a deep learning ap-
proach utilizing a 50-layer CNN based on the ResNet architecture to improve prediction
accuracy for hand movements, attaining 99.59% accuracy and an F1-Score of 99.57% for
seven hand gestures.

[Tavakoli et al. 2018] introduce a minimalist model that classifies four gestures
using only two EMG channels installed on the forearm’s flexor and extensor muscles.
Employing a high-dimensional feature space and SVM classifier, the system also includes
methods to reject unsolicited gestures during body movement, achieving recognition ac-
curacy between 95% and 100% for a single user. [Tepe and Demir 2022] focus on the
real-time and ”not real-time” classification performance of sEMG signals using SVM,
comparing custom and generalized training data. The study finds that the highest ac-
curacy for ”non-real-time” classification was 96.38%, while real-time accuracy reached
95.83% for custom data and 91.79% for generalized data.

In [Khan et al. 2021], the authors employ Cubic-SVMs trained on spectral domain
characteristics to classify four different hand gestures, achieving a cumulative classifica-
tion accuracy of 98.9%. [Sayin et al. 2018] also focus on hand movement classification
using an ANN, extracting data from five individuals with Myo Armbands. The study
achieved an average classification accuracy of 88.4% using features such as MAV, SSC,
WL, Willison Amp, and Mean Frequency.

[Challa et al. 2023] propose using individual EMG sensors placed on various
hand parts to capture signals related to three hand gestures. The study extracted eight
time-domain features and used Random Forest (RF) and Logistic Regression (LR) algo-
rithms, achieving average accuracies of 96.66% and 94%, respectively. [Oh and Jo 2019]
utilize a CNN to classify three hand gestures and three sign language gestures, finding
that combining CNN with Wavelet Transform improved accuracy up to 94% for selected
hand gestures.

[Esaa et al. 2022] present a method for analyzing DB5 Myo signals, focusing on
segmenting long-term signals into short-term segments representing single gesture muscle
activities. The method achieved high performance, with average accuracy, sensitivity, and
F1-score of 86.5%, 83%, and 82.2%, respectively, for 17 gestures.

4.2. Which datasets are used?
Naturally, there are some questions we would like to answer. The first one is related to
data quality and availability. If data is inadequate, it can influence the development of an
unreliable and biased model. Considering the studies reported in Table 3, some of them
were developed with only public datasets. Twelve studies were conducted with private
datasets, and just two of them [Côté-Allard et al. 2019, Yoo et al. 2019] with both private
and public data.

Considering public data, the most used was the NINAPRO-DB5 dataset, which
appeared in five studies. NINAPRO-DB5 has sEMG and kinematic data from 10 intact
subjects with 52 hand movements plus resting position and uses two Thalmic Myo Arm-
bands for data acquisition with a sampling rate of 200 Hz. Seven of the studies with



Table 3. Metadata extracted from the selected studies

Ref Title Type Dataset(s) Algorithm(s) Feature(s)

[Samadani 2018] Gated Recurrent Neural Networks for EMG-Based Hand
Gesture Classification: A Comparative Study

Comparative NinaPRO DB2 LSTM, GRU Not Indicated

[Sayin et al. 2018] Hand Gesture Recognition by Using sEMG Signals for
Human Machine Interaction Applications

Classification Self Data ANN MAV, SSC, WL, WAMP,
Mean Frequency

[Tavakoli et al. 2018] Robust hand gesture recognition with a double channel
surface EMG wearable armband and SVM classifier

Classification Self Data SVM MEAN

[Côté-Allard et al. 2019] Deep Learning for Electromyographic Hand Gesture Sig-
nal Classification Using Transfer Learning

Classification Self Data,
NinaPRO DB5

SVM, ANN, RF,
KNN, LDA, Con-
vNet

MAV, ZC, SSC, WL, RMS,
iEMG, AR, Hjorth, mDWT,
SE, CEPSTRAL

[Oh and Jo 2019] EMG-based hand gesture classification by scale average
wavelet transform and CNN

Classification Self Data CNN WT, STFT

[Yoo et al. 2019] Myoelectric Signal Classification of Targeted Muscles
Using Dictionary Learning

Classification Self Data,
NinaPRO DB3

DFDL, SVM, LDA,
NB, RF, KNN

WT

[Simão et al. 2019] EMG-based online classification of gestures with recur-
rent neural networks

Classification UC2018DualMyo,
NinaPRO DB5

FFNN, RNN, LSTM,
GRU

STD

[Huang and Chen 2019] Surface EMG Decoding for Hand Gestures Based on
Spectrogram and CNN-LSTM

Classification NinaPRO DB2 CNN, RNN, LSTM SPECTROGRAM, CNN,
RNN

[Sun et al. 2019] sEMG-Based Hand-Gesture Classification Using a Gen-
erative Flow Model

Classification NinaPRO DB5 GFM GFM

[Chen et al. 2020] Hand Gesture Recognition Using Compact CNN via Sur-
face Electromyography Signals

Classification Myo Dataset,
NinaPRO DB5

DT, LDA, SVM,
LCNN, CNN, LSTM

MAV, ZC, SSC, WL, RMS,
CA, SE

[Jia et al. 2020] Classification of electromyographic hand gesture signals
using machine learning techniques

Classification Self Data CNN, NN, RF, DT,
KNN, NB, SVM,
LR, CAE+CNN

SAV, STD

[Ozdemir et al. 2020] EMG based Hand Gesture Recognition using Deep
Learning

Classification Self Data CNN STFT

[Fajardo et al. 2021] EMG hand gesture classification using handcrafted and
deep features

Classification Self Data LDAC, SVM,
MLPC, CNN

FT, WT, ZC, SSC, Mean,
VAR, SKEWNESS, KUR-
TOSIS, RMS

Continue to next page...



Table 3. Metadata extracted from the selected studies (Continued)

Ref Title Type Dataset(s) Algorithm(s) Feature(s)

[Javaid et al. 2021] Classification of Hand Movements Using MYO Armband
on an Embedded Platform

Classification Self Data QDA, SVM,
RF, Gradient
Boost(Tree), Sub-
space KNN, Bagged
Tree

MAV, VAR, SD, SE, MAD,
SKEWNESS, KURTOSIS,
MEAN FREQUENCY, MF,
THD, SNR, PSD

[Khan et al. 2021] Supervised Machine Learning based Fast Hand Gesture
Recognition and Classification Using Electromyography
(EMG) Signals

Classification Kaggle Repository SVM Spectral Roll off
point,Spectral Flatness,
Spectral Crust, Spectral
Decrease, Spectral Slope,
Spectral Spread

[Zhang et al. 2022] sEMG Signals Characterization and Identification of
Hand Movements by Machine Learning Considering Sex
Differences

Classification Self Data KNN, SVM, ANN iEMG, MAV, ICRi, VAR

[Ozdemir et al. 2022] Hand gesture classification using time–frequency images
and transfer learning based on CNN

Classification Self Data CNN STFT, CWT, HHT

[Tepe and Demir 2022] Real-Time Classification of EMG Myo Armband Data
Using Support Vector Machine

Classification Self Data SVM RMS, MAV, ZC, SSC, VAR,
WAMP, SSI, iEMG, PKF,
MNP, TTP, MNF, SM1,
SM2

[Esaa et al. 2022] Hand movements classification based on Myo armband
signals

Classification NinaPRO DB5 SVM RMS, MAV, VAR, ZC, SSC

[Vásconez et al. 2023] A comparison of EMG-based hand gesture recognition
systems based on supervised and reinforcement learning

Comparative EMG-EPN-612 CNN Deep Q-
Network

CNN

[Ghaffar Nia et al. 2023] EMG-Based Hand Gestures Classification Using Ma-
chine Learning Algorithms

Classification Self Data ANN, LSTM, KNN,
SVM, RF

ANN

[Challa et al. 2023] EMG-Based Hand Gesture Recognition Using Individual
Sensors on Different Muscle Groups

Classification Self Data RF, LR iEMG, MAV, SSI, RMS,
WL, WAMP, WAMPV

[Triwiyanto et al. 2024] Deep learning approach to improve the recognition of
hand gesture with multi force variation using electromyo-
graphy signal from amputees

Classification Public dataset DNN, SVM, LDA,
KNN, DT

RMS, WL, AR



private datasets used only electrodes to acquire the EMG signal, using a sampling rate of
4000 Hz, 400 Hz, 2000 Hz, 1000 Hz, 2000 Hz, 2000 Hz and 2000 Hz, respectively. The
other five studies used the Myo armband to perform signal acquisition with a sampling
rate of 200 Hz. Finally, in the studies with both data sources, [Yoo et al. 2019] used elec-
trodes to collect private data at a sampling rate of 500 Hz and used the public database
NINAPRO-DB3, which also used electrodes, however with samples from data at a rate of
2000 Hz. The other study [Côté-Allard et al. 2019] used the Myo armband to collect data
and used the NINAPRO-DB5 database.

4.3. Which feature extraction methods are being explored?

Feature extraction is an important process where the raw EMG signal is converted to a
reduced set of numerical features. Selecting an appropriate feature can directly impact
the performance of the induced classifiers. However, it is essential to note that no specific
set of features suits all problems. Each problem may require a unique optimal set of
features [Mendes Junior et al. 2020].

Considering the filtered studies, six of them explored only Time Domain (TD)
features. Four studies explored Time Domain (TD) and Frequency Domain (FD).
[Khan et al. 2021] explored the Spectral Domain features. However, mostly of the re-
searches explored TD and Time-Frequency Domain features. The most investigated fea-
ture extraction method was the Average Absolute Value Amplitude (MAV), appearing in
8 studies [Chen et al. 2020, Côté-Allard et al. 2019, Zhang et al. 2022, Javaid et al. 2021,
Tepe and Demir 2022, Sayin et al. 2018, Challa et al. 2023, Esaa et al. 2022], followed
by the: Root Mean Square (RMS), Slope Sign Change (SSC), Zero Crossing (ZC) Wave-
length (WL) and Variance (VAR). All of them are TD features.

Studies have been conducted to analyze DL techniques for feature extraction, as
exemplified by [Fajardo et al. 2021], which employs a combination of features obtained
through discrete spectral analysis in time and deep features extracted from a CNN. The
study concludes that experimental results consistently demonstrate the superiority of the
combined approach over feature extraction solely via time-spectral analysis or CNN-
based extraction. The study [Huang and Chen 2019] also utilizes DL algorithms (CNN,
LSTM) to extract features from the sEMG signal and concludes that the combination of
traditional data preprocessing methods and deep learning positively contributes to classi-
fication accuracy.

4.4. Which are the most common ML/DL algorithms used for model induction?

Considering the algorithms used to perform sEMG signal classification, there is a
wide set of solutions including: i) traditional ML - Support Vector Machine (SVM),
Random Forest (RF), K-Nearest Neighbors (kNN), Artificial Neural Network (ANN);
or ii) Deep Learning (DL) architectures - Convolutional Neural Network (CNN) and
Long Short Term Memory (LSTM). In our review, just two of them explored only
traditional algorithms [Yoo et al. 2019, Javaid et al. 2021], four explored only DL mod-
els [Vásconez et al. 2023, Samadani 2018, Huang and Chen 2019, Sun et al. 2019] and
mostly of them evaluated both. The most traditional algorithm used was SVM, appear-
ing in 13 of 23 studies [Chen et al. 2020, Jia et al. 2020, Ghaffar Nia et al. 2023,
Côté-Allard et al. 2019, Yoo et al. 2019, Fajardo et al. 2021, Zhang et al. 2022,
Javaid et al. 2021, Triwiyanto et al. 2024, Tavakoli et al. 2018, Tepe and Demir 2022,



Khan et al. 2021, Esaa et al. 2022]. The DL algorithms with the highest occurrence are
both: CNN (8 studies), and LSTMs (5 studies).

Even though SVMs present accurate results, the use of DL has been increasing.
The study [Chen et al. 2020] presented a competitive CNN architecture for sEMG signal
classification. Also, in [Jia et al. 2020], the authors proposed a CAE+CNN, reducing di-
mensionality, redundancy, and computational costs for EMG signal processing, achieving
a classification accuracy of 99.38%.

4.5. Final Thoughts
The review of recent study literature reveals a growing trend in using DL for gesture
recognition through sEMG signals. DL models have demonstrated efficiency in both
characteristics extraction and classification. In addition, there is a tendency to combine
handcrafted features with those extracted by deep models, which can improve classifica-
tion performance. Some techniques applied in conjunction with DL algorithms, such as
Transfer Learning, also improved the final performance of the induced models.

It is also noted that most studies only use accuracy as the evaluation measure, in-
dicating an opportunity to explore other metrics, such as recall and F1 score, especially in
imbalanced datasets. Another gap identified is the need for more hyperparameter tuning,
which could be solved using standard ML or AutoML (Automated Machine Learning)
techniques. Most of the studies covered in this review explored less than ten gestures in
their proposals. Those studies that employed a larger number of gestures performed less
than those that used few. The more gestures are included, the more classes need to be
recognized, which raises the difficulty of differentiating them with reasonable accuracy.

Finally, it is important to point out some directions for future work. First, we
intend to perform a regular, systematic review with all the required steps. Although not
explicitly used, many studies listed in this work were taken from the ACM and Scopus
databases. However, in a future version, we intend to explicitly include them as data
sources during the initial phases of the review. Lastly, Table 3 presents studies carried out
in the last five years that address the use of ML for gesture recognition by myoelectric sig-
nals, excluding studies that only present some of the methodological details we extracted.
Thus, we can better describe inclusion and exclusion criteria, clarifying why these studies
were described or not.
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