Understanding the challenges of the call drop prediction
problem in IP Multimedia Subsystem Networks

Pedro Victor Dos Santos Matias', Ricardo Miranda Filho'!, Rosiane de Freitas'

"nstituto de Computagio — Universidade Federal do Amazonas (UFAM)

{pvsm, ricardo.filho, rosiane}@icomp .ufam.edu.br

Abstract. Call drops in mobile networks using IMS (IP Multimedia Subsystem)
technologies like Voice over LTE (VoLTE), Voice over New Radio (VoNR), and
Voice over Wi-Fi (VoWiFi) present significant challenges to maintaining Quality
of Service (QoS) and Quality of Experience (QoE). These failures often occur
due to network congestion, weak signals, or issues related to software problems
and complex situations. This study evaluates the effectiveness of machine learn-
ing models—Logistic Regression, Decision Tree, and XGBoost—in predicting
call drops using a large dataset from Android devices, which had an imbalanced
distribution of data. XGBoost achieved the highest overall accuracy but strug-
gled with detecting rare call drops due to data imbalance. Although resampling
techniques improved the detection of these call drops, they decreased overall ac-
curacy, which remains a challenge. The proprietary nature of the dataset, which
only provides information at the moment of disconnection, limits understanding
of the entire call performance and the changes that occur during the call. Fu-
ture work should focus on improving the data collection process and exploring
deep learning techniques to capture complex patterns and improve prediction
accuracy.

1. Introduction

Modern telephony has moved from traditional circuit-switched networks to IP-based
technologies like Voice over LTE (VoLTE), Voice over Wi-Fi (VoWiFi), and Voice over
New Radio (VoNR), all supported by the IP Multimedia Subsystem (IMS). These tech-
nologies allow voice communication over data networks, which has improved connec-
tivity but also brought new challenges in maintaining Quality of Service (QoS) and
Quality of Experience (QoE) [Elbayoumy et al. 2018]. One of the main problems is
call drops, where calls end unexpectedly (illustrated in Figure 1), which can happen
due to things like network congestion, weak signals, or issues with resource allocation
[G V and Kumari P. 2023, Erunkulu et al. 2019a].

Dial Ring Active —>
Call Successful Setup call ended
Attempt network success successfully
acess

Call Setup

Failure Dropped Call

Access Failure

Figure 1. Generic Call Flow Process in Mobile Networks.

Using big data analytics to create predictive models has become an important tool
to find patterns that can lead to call drops. These models help the network to be more

reliable, allowing issues to be fixed before they affect the service [Kibria et al. 2018].
However, many studies only use data from specific network operators, which limits the
models because they are based on information from just one source [Bahaa et al. 2022].

This work tries to address these gaps by using a proprietary dataset from a major
manufacturer, which includes a variety of call events and parameters collected from An-
droid devices. Because the dataset has a significant class imbalance, we used techniques
like resampling and class weighting to help the models learn better. Our study not only
looks at how well these techniques work but also creates a starting point for future re-
search in predicting call drops using real data from users. Them, this research was guided
by these main questions:

* How effective are machine learning models in predicting call drops based on dis-
connection call data from Android devices?

* Which preprocessing techniques work best to deal with class imbalance in this
scenario?

To answer these questions, a pipeline was implemented to train four machine
learning models: Logistic Regression, Decision Tree, Random Forest, and XGBoost (Ex-
treme Gradient Boosting). The models were chosen because they are widely used in
binary classification problems and serve as a baseline for future comparisons. To handle
imbalanced data, we applied three techniques — undersampling, oversampling, and class
weighting — resulting in a total of 12 experiments.

The remainder of this paper is organized as follows: Section 2 reviews related
work in call drop prediction, including achievements and limitations. Section 3 presents
the methodology used in our study. In Section 4, we discuss the results of the experiments,
comparing the performance of different models and sampling techniques. Finally, Section
5 concludes the paper with a discussion of the implications of our findings and suggestions
for future research.

2. Related Works

Previous research on predictive models for mobile network call failures has been exten-
sive but faced challenges with limited failure data and imbalanced datasets. While some
studies explored comprehensive solutions, others focused on specific scenarios like han-
dover interruptions. A detailed discussion follows, emphasizing connections and gaps
among these studies.

Different studies have centered on predicting call drops by directly modeling fail-
ure events in specific network environments. For instance, Bahaa et al. introduced a
methodology that combines machine learning models with feature selection techniques
to predict call failures within IMS networks [Bahaa et al. 2022]. They developed eight
machine learning models using four different classifiers—Decision Tree, Naive Bayes, K-
Nearest Neighbor (KNN), and Support Vector Machine (SVM)—paired with two feature
selection methods (Filter and Wrapper). Their results showed that the SVM classifier,
combined with the Wrapper feature selection method, achieved the highest prediction ac-
curacy of 97.5%. While their approach succeeded in identifying the root causes of call
failures and provided valuable insights into multi-factorial issues, it relied on data traces
from a single mobile operator, limiting its applicability to broader, multi-operator envi-
ronments and scenarios with more varied network conditions.

Similarly, the work by Mishra and Yadav focused on predicting call drops during
user mobility, with an emphasis on handover scenarios [Mishra and Yadav 2020]. They
used an Artificial Neural Network (ANN) model to minimize interruptions by analyz-
ing parameters such as signal strength and subscriber speed, achieving a 95% accuracy.
However, like Bahaa et al., their study was constrained by a small dataset, which raises
concerns about the robustness of the model in varied real-world conditions.

In contrast, other studies have taken a more traditional approach by addressing
call drop prediction in older network technologies, which, while insightful, limits their
relevance to modern systems. Erunkulu et al. applied an ANN to predict call drops
in GSM networks, achieving 87.5% accuracy [Erunkulu et al. 2019b]. Although their
research demonstrated the effectiveness of ANNSs, the focus on outdated GSM technology
makes it less applicable to current networks like VOLTE and 5G.

Expanding beyond traditional models, recent work has explored advanced ma-
chine learning techniques. Ashok introduced a deep learning model that integrates auto
imputation with Bayes optimization and transfer learning, specifically designed to handle
the large and complex datasets typical in modern networks [Ashok 2024]. The inclu-
sion of the Hybrid Skill-Levy Search Algorithm further enhanced the model’s efficiency.
Despite these innovations, the model’s complexity presents challenges for real-time de-
ployment, and its practical effectiveness remains to be validated with real-world data.

In another approach focusing on specific network conditions, Holmbacka and Al-
Thaedan et al. both explored the prediction of network performance metrics that indirectly
relate to call drops [Holmbacka 2018, Al-Thaedan et al. 2023]. Holmbacka concentrated
on predicting network alarms in LTE networks, which could signal potential failures lead-
ing to call drops. However, the study’s limitation to LTE environments diminishes its ap-
plicability to newer technologies. Similarly, Al-Thaedan’s work on downlink throughput
prediction in 4G-LTE networks suggested a method for preventing call drops due to inad-
equate throughput, but it did not address call drop prediction directly, thus missing other
critical factors contributing to call interruptions.

Additionally, others researches explored more specialized scenarios. Dardczy et
al. incorporated Self-Organizing Networks (SON) aspects into their model for session
drop prediction in LTE networks, enhancing its ability to predict drops in dynamic envi-
ronments [Dardczy et al. 2015]. However, this innovation was not thoroughly validated
in real-world scenarios, and its relevance to more modern network technologies remains
untested. Qu’s study, on the other hand, focused on deep learning-based prediction of
communication quality in LTE-R (Railway) networks, which could influence call drop
predictions in similar environments [Qu 2020]. Yet, the specificity of LTE-R networks
limits the broader applicability of the findings.

Lastly, Mudaliyar et al. investigated machine learning models for the automatic
healing of call drops in 5G networks [Mudaliyar et al. 2020]. This study represents a
forward-looking approach to predictive maintenance and real-time network adjustments,
although it lacks a detailed analysis of model accuracy and the challenges of deploying
these models in live networks.

A recurring limitation in these studies is their reliance on datasets that are often
restricted to specific operators or network conditions. This narrow focus makes it difficult

for the models to generalize effectively across different network scenarios, limiting their
use in real-world applications. Furthermore, while deep learning models offer potential
for high accuracy, they often lack interpretability and are challenging to deploy in mobile
environments with limited resources.

3. Methodology

This section outlines the methodologies employed in this research, including data descrip-
tion, preprocessing steps, techniques for handling imbalanced data, the machine learning
models used, the experimental protocol, and the evaluation methods.

3.1. Data Description

The dataset used in this study consists of 100,477,198 entries with 21 features, including
numerical, categorical, and boolean data types. The primary target variable is is_drop,
a boolean indicator representing whether a call was dropped. The features include radio
signal parameters (e.g., rssi, rsrp, rsrq), device-related features (e.g., android
version, build_code), network-related features (e.g., mcc, mnc, initialRAT),
and temporal features (e.g., day_of _week, hour_of _day). Table 1 provides a detailed
description of the dataset. Due to the proprietary nature of the dataset, there are limita-
tions in terms of full disclosure of specific details, which restricts the possibility of direct
comparisons with other studies.

Table 1. Dataset Description.

Column Name Data Type | Description

android_version | int8 Android OS version

build_code int64 Unique identifier for the build version
product_code int64 Unique product identifier

initialRAT int8 Initial radio access technology used
activeRAT int8 Active radio access technology
disconnectRAT int8 Radio access technology at disconnection
channel intl6 Absolute Radio-Frequency Channel Number (ARFCN)
band intl6 Frequency band used

rat_handover boolean Indicator of a RAT handover

mcc int32 Mobile country code

mnc int32 Mobile network code

day-of_week int8 Day of the week when the event occurred
hour_of_day int8 Hour of the day when the event occurred
wifi_st boolean Indicator of Wi-Fi state

ims_reg boolean Indicator of IMS registration

roam boolean Indicator of roaming status
duration_sec int32 Duration of the event in seconds

rssi intl6 Received signal strength indicator

rsrp intl6 Reference signal received power

rsrq intl6 Reference signal received quality
is_drop boolean Indicator of call drop

3.2. Data Preparation and Preprocessing

Initial data preparation included restricting anonymized recorded events, collected via in-
strumented code in Android software from version 12 to 14 and recorded in 2024, that
were disconnected in one of the following technologies: LTE, LTE-CA (Carrier Aggega-
tion), WiFi Calling and NR - handling missing values, feature engineering and splitting

the dataset. Missing values in numeric and categorical features were dealt with by re-
moving incomplete records, resulting in a final dataset with all the features needed for
the models. The plmn resource was split into mcc and mnc, and duplicate records were
removed.

To prepare the data for machine learning models, the dataset was divided into
training and testing sets in a 70-30 ratio. This split was stratified based on the is_drop
target variable to maintain a balanced distribution of call failures and successful calls
in both sets. Stratification is essential in cases of class imbalance, as it helps prevent
the model from becoming biased towards the majority class and improves its ability to
accurately predict call failures.

3.3. Techniques for Handling Imbalanced Data

Given the significant imbalance in the dataset, particularly the low occurrence rate of call
drops, 3 techniques were employed to mitigate this issue. Random Undersampling was
used to reduce the number of instances from the majority class (successful calls), thereby
balancing the dataset. This method helps to equalize class distribution but can result in
the loss of potentially valuable information, which may affect the model’s performance
[Drummond and Holte 2005]. Conversely, Random oversampling was applied to increase
the representation of the minority class (call drops) by duplicating existing instances.
While this approach enhances balance, it also risks overfitting by repeating data without
introducing new information [Chawla et al. 2002].

To further address the class imbalance, class weighting was implemented across
all models. By assigning higher weights to the minority class, the models were incen-
tivized to focus more on correctly predicting call drops, improving their performance on
these rare but critical events [Kumar et al. 2022]. This technique is particularly effective
in scenarios like ours, where the skewed class distribution can lead to a model that is
biased towards predicting the majority class. By adjusting the importance of each class,
class weighting helps to mitigate this bias while preserving the original data distribution.

While data balancing techniques can facilitate better model training by making the
classes more representative, they may also distort the natural occurrence rates in the data.
To prevent this distortion from affecting the final model evaluation, the test data used to
assess the models remains unbalanced, reflecting the real-world distribution of call drops
[Krawczyk 2016].

The combination of class balancing techniques, as proposed by He et al. (2008),
has proven effective in various studies. The use of class weighting, together with oversam-
pling techniques, mitigates the effects of class imbalance and improves the performance
of classification models, particularly in terms of the sensitivity (recall) of the minority
class [He and Garcia 2009].

3.4. Classifiers Used

In this study, we selected Logistic Regression, Decision Tree, Random Forest, and XG-
Boost as our baseline models. These algorithms were chosen for their ability to provide
interpretable results and clear insights into the importance of parameters, which is es-
sential when analyzing call drop scenarios using our dataset. The data consists of pa-
rameters collected from Android devices at the moment of call disconnection. Based on

the approach discussed in Bahaa et al. (2022), we focused on these models to better
understand the relationships within this specific dataset before exploring more complex
machine learning techniques. This strategy allows us to establish a foundation for future
enhancements and analysis of call drop patterns.

The parameters for the classifiers used were initially set empirically, with the in-
tention of refining them through future fine-tuning. We selected average values within
the recommended ranges provided by each model’s documentation as a starting point.
Additionally, the settings were adjusted based on the large number of instances to be pro-
cessed during training. Parameters such as the choice of loss function and the number
of iterations were configured through a series of preliminary experiments to ensure com-
putational efficiency. Fine-tuning these parameters remains as planned work for future
studies to further optimize the models’ performance.

Logistic Regression, a well-established method for binary classification in linear
problems, was one of the models used in this study. The model was configured with the
L-BFGS optimizer, known for its efficiency in handling large datasets, and balanced class
weights to address the issue of class imbalance. We selected the 1bfgs solver due to its
optimization algorithm, which approximates the BFGS method but with reduced memory
usage, making it suitable for problems with many features [Morales and Nocedal 2011].
The model was also set with a maximum iteration limit of 1000 and a tolerance of 10~
To ensure reproducibility, a fixed random seed was applied.

The Decision Tree model, a fundamental algorithm in machine learning, was also
evaluated. This model splits data into branches based on feature values, creating a tree-
like structure where each internal node represents a decision and each leaf node represents
the outcome. Decision Trees are highly interpretable and capable of handling both cate-
gorical and numerical data [Gilpin et al. 2018]. However, to prevent overfitting, which is
a common issue when trees grow too deep [Bertsimas and Dunn 2017], the maximum tree
depth was limited to 15. The model was further configured with balanced class weights
and a fixed random seed for reproducibility.

Random Forest, an ensemble method, was another model evaluated in this study. It
constructs multiple decision trees using random subsets of features and bootstrapped data
[Lee et al. 2020], with the final prediction made by averaging or majority voting across
trees. This approach reduces overfitting and improves accuracy [Lebedev et al. 2014].
Our Random Forest model was configured with a maximum tree depth of 15, 150 es-
timators, balanced class weights, and a warm start for robustness. Additionally, par-
allel processing was enabled to improve efficiency, and a fixed random seed was set
for reproducibility. This model’s ability to capture complex interactions and nonlin-
ear patterns makes it particularly suitable for large, complex datasets, offering signifi-
cant advantages over traditional statistical methods that often assume linear relationships
[Sucahyo et al. 2024].

Finally, XGBoost, an efficient implementation of gradient boosting, was included
in the study. XGBoost builds decision trees sequentially, optimizing the learning process
by minimizing a loss function [Chen and Guestrin 2016]. The model was configured for
training with a maximum tree depth of 15, 150 estimators, and a learning rate of 0.05
to control complexity and prevent overfitting. The XGBoost also utilized 1ogloss as

the evaluation metric for binary classification. To handle the imbalanced dataset, the
scale_pos_weight parameter was adjusted, ensuring better representation of the mi-
nority class [Jiang 2024]. Like Random Forest, XGBoost employed parallel processing
using all available cores to enhance computational efficiency. Additionally, automatic
label encoding was disabled due to the dataset was already encoded.

3.5. Evaluation Methods

The performance of the machine learning models was evaluated using metrics suitable
for imbalanced datasets: weighted accuracy, precision, recall, F1-score, and ROC-AUC.
These metrics offer different perspectives on the model’s performance, especially when
class distribution is uneven. The following Table 2 summarizes each metric with its cor-
responding equation.

Table 2. Summary of evaluation metrics and their equations.

Metric Description Equation
Weighted Overall accuracy, adjusted s Ni o TPATN;
Accuracy for class distribution. =1L N 7 TPATNi+FP+FN;

. . Proportion of true positives amon
Precision P ... P .. & = Ir
all positive predictions. TP+FP
Proportion of true positives amon,
Recall p P .. & %
all actual positives. TP+
Harmonic average of precision and Precision x Recall
FI-SCOI'C recall. 2 PreZisEon-%—Recall
B T
ROC-AUC Area under the ROC curve, representing fo TPRA(FPR),
the trade-off between TPR and FPR. TPR = -t

3.6. Technological Setup

All experiments were conducted on a workstation with the following specifications: a
12th Gen Intel® Core™ i9-12900HX processor at 2.30 GHz, 64.0 GB of RAM, and a
64-bit Windows 11 operating system. The environment was managed using Anaconda
with Python 3.11.9, and key libraries used included Scikit-Learn, Imbalanced-Learn, XG-
Boost, Pandas, and NumPy.

3.7. Experimental Protocol

Finally, the experimental protocol was designed to systematically train and evaluate the
performance of various machine learning models on an imbalanced dataset. The workflow
for this protocol is visually summarized in Figure 2. The following steps summarize the
procedure:

1. Dataset Preparation: Call records collected from March 9 to June 15 were pre-
processed to extract Mobile Country Code (MCC) and Mobile Network Code
(MNC), handle missing values, and encode categorical variables. The dataset
was split into training and test sets using a 70/30 ratio, with a stratified hold-out
approach to ensure class distribution consistency in both sets, which is crucial for
imbalanced datasets.

2. Handling Imbalanced Data: To address the significant class imbalance, we ap-
plied undersampling, oversampling, and a baseline approach without resampling,
using only balanced class weights. These methods aimed to improve the detection
of rare call drops while maintaining overall model performance.

1
Dataset of call events recorded | Dataset Split ' | Handling Classifiers
'
. from March 9 to June 15. , | Imbalanced data
1
1
1 Logistic
. Regression
Feature Engineering |
1
1
|

]
1
]
1
1
]
: Train set
MCC and MNC Handle Missing Encode Categorical] .
Extraction Values Variables 1 '
1
: 1
1
| Test set : XGBoost
0/
Analysis of : (ELY !
1
1

results '

Figure 2. Workflow of the experimental protocol for training and evaluating ma-
chine learning models on the imbalanced dataset.

3. Model Training and Evaluation: The four classifiers were trained and evaluated
using metrics like accuracy, precision, recall, F1-score, confusion matrices, and
ROC-AUC curves. Although techniques like cross-validation or multiple hold-
out iterations are recommended to reduce result variability, these were impractical
due to the dataset’s size and the long training times required. Instead, a single
stratified hold-out split was used to balance computational feasibility with reliable
performance evaluation.

4. Exporting models: The trained models were serialized using Pickle for storage
and future use, allowing for integration into mobile applications for real-time call
drop predictions. This ensures the models are reusable and supports ongoing val-
idation and optimization.

4. Results and Discussion

After the training phase, the models were evaluated using a 30% holdout portion of the
dataset. This section summarize the key findings from this evaluation, including insights
from confusion matrices, area under the ROC curve (AUC), and the impact of resampling
techniques.

XGBoost consistently outperformed the other models, as evidenced by its top per-
formance in Table 3. The version Without resampling achieved the highest accuracy,
demonstrating its effectiveness in this ’overall’ classification task. However, while XG-
Boost excels overall, it struggled to identify a significant portion of Drop cases, as shown
in the confusion matrix (Figure 3). This suggests that while it’s highly accurate, its sensi-
tivity(recall at 0.56) to detecting the minority class should be improved.

Random Forest exhibited a well-balanced performance, consistently achieving
strong precision and recall metrics across both classes. Unlike XGBoost, Random Forest
managed to achieve a higher recall for the Drop class, while still maintaining a moder-
ate precision, similar to the XGboost’s version with some sampling, that make Random
Forest as another option when a more balanced approach is desired.

As expected, Logistic Regression underperformed due to its limitations in han-
dling non-linear relationships and its sensitivity to outliers and irrelevant variables. Its
inability to capture the intricate patterns present in the data, combined with its assump-

Table 3. Performance Metrics for Each Model and Sampling Technique.

Resampling | Precision Weighted | Recall Weighted | F1-Score Weighted
Model Method (Drop) Precision | (Drop) Recall (Drop) F1-score Accuracy | ROC-AUC
Logistic i pesampling | 0.20 0.73 0.49 0.56 0.28 061 | 0.561686 | 0.523882
Regression
Logistic 1y campling | 0.20 0.73 0.49 0.56 0.28 061 | 0561686 | 0.524122
Regression
Logistic 1y jersampling | 0.20 0.73 0.49 0.56 0.28 061 | 0561691 | 0.523940
Regression
b eTCrI;"“ No Resampling | 0.51 0.86 0.74 0.83 0.60 0.84 | 0.828342 | 0.878905
DeTcr‘;"“ Oversampling | 0.51 0.86 0.74 0.83 0.60 0.84 | 0.829111 | 0.878826
Dei;:rles?n Undersampling | 0.50 0.86 0.74 0.83 0.60 0.84 | 0.826618 | 0.878738
R}f;‘i‘;“ No Resampling | 0.56 0.87 0.71 0.85 0.63 0.86 | 0.852428 | 0.885802
R;;‘(‘)‘i‘;n Oversampling | 0.56 0.87 0.71 0.85 0.63 0.86 | 0.852652 | 0.885989
R;;‘i‘i?l Undersampling | 0.56 0.87 0.71 0.85 0.63 0.86 | 0.852806 | 0.885987
XGBoost No Resampling | 0.89 091 0.56 091 0.69 090 | 0.011098 | 0.913268
XGBoost Oversampling | 0.57 0.88 0.78 0.86 0.66 0.87 | 0.859735 | 0.913025
XGBoost Undersampling | 0.57 0.88 0.78 0.86 0.66 0.87 | 0.858139 | 0.912905
Decision Tree without Resampling, Logistic Regression without Resampling, Random Forest without Resampling, XGBoost without Resampling,

only Class Weighting only Class Weighting only Class Weighting only Class Weighting

-3 -3 -3 Q
o o o o
9 2 42.30 - 2 2
nc nc nc nc
[} [} % [e] [e)
/= /= /= /=
3 3 3 .3
© © © ©
2 2 2 2
S S S S
I Q < Q) < Q I Q
o 26.31 o 48.95 o 29.35 o 44.03
[a] [a] o [a]
Non-drop Drop Non-drop Drop Non-drop Drop Non-drop Drop
Predicted Labels Predicted Labels Predicted Labels Predicted Labels

Decision Tree with Oversamplin Logistic Regression with Oversampling Random Forest with Oversamplin: XGBoost with Oversampling

Q Q Q Q|
° ° o °
o ° 42.30 9 2
o c o c o c nc
]]] 5]
8 < Q2 ez a2
3 [, 3 3 3
© © © ©
2 2 2 2
S S S S
=g =g 48.95 <8 <8
a a o [a)
Non-drop Drop Non-drop Drop Non-drop Drop Non-drop Drop
Predicted Labels Predicted Labels Predicted Labels Predicted Labels
Decision Tree with Undersamplin Logistic Regression with Undersampling Random Forest with Undersampling XGBoost with Undersampling
Q : Q Q al
o o o o
° ° 42.30 2 ?
nc nc 0 c 0 c
[T} [T} [T [Te]
E P4 E P4 E P4 E =
s s s ©
2 2 2 2
S S S S
< Q << Q) < Q < Q
o 26.07 o 48.94 o 22, Ehl o
[a] [a] [a] [a]
Non-drop Drop Non-drop Drop Non-drop Drop Non-drop Drop
Predicted Labels Predicted Labels Predicted Labels Predicted Labels

Figure 3. Confusion Matrices for Each Model and Sampling Technique.

tion of a linear decision boundary and independence between observations, made it less
suited for the complexities of this dataset compared to more advanced models like XG-
Boost and Random Forest, based on their results.

Across all models, precision was consistently higher only for the “Non-drop”
class, reflecting its greater accuracy in predicting instances of non-drop. On the other

hand, revocation was generally slightly higher for the Drop class in the tree-based mod-
els, indicating their greater ability to identify the majority of actual “Drop” cases, despite
some trade-offs in precision.

Regarding the impact of sampling, oversampling and undersampling had a mini-
mal effect on the overall performance of the models, likely due to the large dataset size
and the use of class weights. While XGBoost and Random Forest showed slight improve-
ments in identifying Drop cases with resampling, these gains were not substantial enough
to significantly alter the overall metrics. Given these results, focusing on fine-tuning the
models to enhance their sensitivity to the minority class, rather than relying on resampling
techniques, might be more effective. Adjustments such as optimizing class weights, low-
ering the decision threshold, or tweaking hyperparameters could potentially yield better
recall for the Drop class without compromising the overall performance.

5. Concluding Remarks

This study aimed to understand the challenges of predicting call drops in IP Multimedia
Subsystem (IMS) networks, focusing on the inherent complexities of this problem using
a large and complex dataset obtained from a significant number of Android devices. The
study evaluated four machine learning models—Logistic Regression, Decision Tree, Ran-
dom Forest, and XGBoost—while addressing class imbalance through undersampling,
oversampling, and class weighting. These challenges are partly due to the intrinsic dif-
ficulties in collecting and categorizing data, as well as the non-obvious causes that may
underlie some call drops, which were not captured by the models during training, possi-
bly due to a lack of sufficient examples or the inherent limitations of these less complex
models.

One of the research questions was to determine which model performed best in
predicting call drops, especially given the challenges posed by unbalanced data. Among
the models tested, XGBoost emerged as the most accurate, achieving the highest ROC-
AUC scores, particularly in scenarios without resampling. However, despite its strong
overall performance, XGBoost had difficulty correctly identifying the less frequent call
drops, suggesting a limitation in its sensitivity to minority classes. Random Forest pro-
vided a more balanced performance between accuracy and recall, making it a more de-
pendable choice when both metrics are important. Logistic Regression, as expected, un-
derperformed, likely because it struggled to capture the complex patterns present in the
data. Although resampling techniques offered some improvements, they were insufficient
to significantly enhance the models’ ability to detect the rare call drop events, highlighting
the ongoing challenge in addressing data imbalance.

The proprietary nature of the dataset limits the understanding of the entire call be-
havior, as it only captures data at the endpoint (end user) at the time of call disconnection,
without providing information on the complete lifecycle of the call. This gap prevents a
full understanding of the issues that can arise throughout the call, including factors related
to operator metrics and resource allocation. A more detailed dataset would be essential to
fully analyze the underlying causes of call drops. Additionally, the study highlights the
need for more advanced modeling techniques. While traditional machine learning models
provide a baseline, exploring deep learning approaches, such as Multi-Layer Perceptrons
(MLPs) or other techniques, could better capture the complex patterns in the data.

Future efforts should refine these models to balance accuracy and recall, reduce
false positives, and improve data collection with better collectors to capture the full call
lifecycle. Addressing these challenges is key to improving the detection of call drops,
especially those with non-obvious causes.

Acknowledgements

This research, part of the "SWPERFI - Artificial Intelligence Techniques for Analysis
and Optimization of Software Performance” project, was supported by Motorola Mo-
bility Comércio de Produtos Eletronicos Ltda and Flextronics da Amazo6nia Ltda under
Agreement No. 004/2021 with ICOMP/UFAM, in accordance with Federal Law No.
8.387/1991. Additional support was provided by Brazilian agencies CAPES (Finance
Code 001), CNPq, and FAPEAM through the POSGRAD project 2024/2025.

References

Al-Thaedan, S. et al. (2023). Downlink throughput prediction using machine learning
models on 4g-1te networks. IEEE Access, 11:32345-32356.

Ashok, K. (2024). A deep auto imputation integrated bayes optimized transfer learning
model with hybrid skill-levy search algorithm (dai-bots) for call drop prediction in
mobile networks. Journal of Communication and Information Systems, 39:120—130.

Bahaa, A., Shehata, M., Gasser, S. M., and El-Mahallawy, M. S. (2022). Call failure
prediction in ip multimedia subsystem (ims) networks. Applied Sciences, 12(16):8378.

Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine Learning,
106:1039-1082.

Chawla, N. V., Bowyer, K. W, Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: syn-
thetic minority over-sampling technique. Journal of artificial intelligence research,
16:321-357.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, pages 785-794.

Dardécezy, T. et al. (2015). Machine learning based session drop prediction in lte networks
and its son aspects. IEEE Communications Letters, 19(5):822-825.

Drummond, C. and Holte, R. C. (2005). Severe class imbalance: Why better algorithms
aren’t the answer. In European Conference on Machine Learning, pages 539-546.
Springer.

Elbayoumy, A. D., Hussein, M., and Al-Ashry, S. F. (2018). Ott voip over Ite vs. volte end-

to-end qos using opnet. In The International Conference on Electrical Engineering,
volume 11, pages 1-14. Military Technical College.

Erunkulu, O. O., Onwuka, E. N., Ugweje, O. C., and Ajao, L. A. (2019a). Prediction of
call drops in gsm network using artificial neural network. Jurnal Teknologi Dan Sistem
Komputer, 7:38—46.

Erunkulu, T. A. et al. (2019b). Prediction of call drops in gsm network using artifi-
cial neural network. International Journal of Mobile Network Design and Innovation,
10(3):150-160.

G V, A. and Kumari P, V. (2023). A novel chimp optimized linear kernel regression
(colkr) model for call drop prediction in mobile networks. International Journal on
Recent and Innovation Trends in Computing and Communication, 11:593-603.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M. A., and Kagal, L. (2018).
Explaining explanations: an overview of interpretability of machine learning. 2018
IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA).

He, H. and Garcia, E. A. (2009). Learning from imbalanced data. /IEEE Transactions on
knowledge and data engineering, 21(9):1263—1284.

Holmbacka, S. (2018). Alarm prediction in Ite networks. International Journal of Mobile
Network Design and Innovation, 12(4):345-356.

Jiang, Y. (2024). Predicting loan default: a comparative analysis of multiple machine
learning models. Highlights in Science, Engineering and Technology, 85:169-175.

Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., and Kojima, F. (2018). Big
data analytics, machine learning, and artificial intelligence in next-generation wireless
networks. IEEE Access, 6:32328-32338.

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future direc-
tions. Progress in artificial intelligence, 5(4):221-232.

Kumar, V., Lalotra, G. S., Sasikala, P., Rajput, D. S., Kaluri, R., Lakshmanna, K., Shorfuz-
zaman, M., Alsufyani, A., and Uddin, M. (2022). Addressing binary classification
over class imbalanced clinical datasets using computationally intelligent techniques.
In Healthcare, volume 10, page 1293. MDPL.

Lebedev, A., Westman, E., Van Westen, G., Kramberger, M., Lundervold, A., Aarsland,
D., Soininen, H., Kloszewska, 1., Mecocci, P., Tsolaki, M., et al. (2014). Random forest
ensembles for detection and prediction of alzheimer’s disease with a good between-
cohort robustness. Neurolmage: Clinical, 6:115-125.

Lee, T.-H., Ullah, A., and Wang, R. (2020). Bootstrap aggregating and random forest.

Macroeconomic forecasting in the era of big data: Theory and practice, pages 389—
429.

Mishra, S. and Yadav, P. (2020). Mobility robustness optimization using ann for call drop
prediction. IEEE Transactions on Vehicular Technology, 69(8):8345-8354.

Morales, J. L. and Nocedal, J. (2011). Remark on “algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound constrained optimization”. ACM Transactions on
Mathematical Software (TOMS), 38(1):1-4.

Mudaliyar, R. et al. (2020). Machine learning based call drop healing in 5g. Journal of
Communication and Information Systems, 35:145-155.

Qu, J. (2020). Temporal-spatial collaborative prediction for Ite-r communication quality
based on deep learning. Wireless Networks, 26:1925-1936.

Sucahyo, C. B., Rizqini, F. Q., Naufal, A., Yandratama, H., Shiddiqy, J. A., Utama, A.
B. P, Putri, N. S. F,, and Wibawa, A. P. (2024). Performance analysis of random forest
on quartile classification journal. Applied Engineering and Technology, 3(1):1-15.

