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Abstract. In portfolio optimization, an agent continuously rebalances the assets
of a financial portfolio to maximize its long-term value. With advancements in
artificial intelligence, several machine learning methods have been employed
to develop agents capable of effectively managing portfolios. Among these, re-
inforcement learning agents have achieved significant success, particularly af-
ter the introduction of a specialized policy gradient algorithm that is currently
the state-of-the-art training algorithm of the research field. However, the full-
exploitation characteristic of the algorithm hinders the agent’s exploration abil-
ity – an essential aspect of reinforcement learning – resulting in the generation
of sub-optimal strategies that may even reduce the final portfolio value. To over-
come this challenge, this paper explores the integration of noise functions to im-
prove exploration in the agent’s action space. Three distinct noise formulations
adapted to the portfolio optimization task are evaluated through experiments in
the Brazilian market. The results indicate that these noise-driven exploration
strategies effectively mitigate the risk of sub-optimal policy generation and sig-
nificantly improve overall portfolio performance.

1. Introduction
Since the introduction of the modern portfolio theory [Markowitz 1952], several financial
institutions apply mathematical and computational models to perform the portfolio opti-
mization task [Gunjan and Bhattacharyya 2022]. In this task, the asset allocation within
a financial portfolio is periodically adjusted in response to market conditions, which may
include price trends, indicators, news, and other relevant data. This approach aims to
maximize the expected return by removing human emotional biases from the decision-
making process. By doing so, it enables the implementation of pragmatic, data-driven
strategies that can more objectively navigate market volatility [Cartea et al. 2015].

Among the possible computational models, the ones based on reinforcement learn-
ing (RL) [Sutton and Barto 2018] are specially suitable to the portfolio optimization task
[Felizardo et al. 2022]. In such approach, an agent interacts with an environment that
mimics the dynamics of the financial market and the effects of the agent’s investments.
The interaction is periodic, so that the training process simulates the constant rebalancing
of the portfolio over time, and the environment provides to the agent, at each time step,
a reward value which is proportional to the obtained profit. Finally, RL algorithms maxi-
mize the expected return of the reward function and, consequently, the expected profit.

The RL formulation achieved great results specially after the introduction of
a training algorithm in [Jiang et al. 2017]. This policy gradient algorithm has been



well accepted in the research field for its ability to be used with modern neural net-
work architectures such as convolutional ones [Shi et al. 2019], graph neural networks
[Soleymani and Paquet 2021, Shi et al. 2022] and transformers [Xu et al. 2020]. Its suc-
cess is related to the fact that it was specifically developed to train agents that optimize
financial portfolios and, according to [Liang et al. 2018], it has shown to be faster, more
efficient and achieve better results than other modern RL algorithms such as DDPG (Deep
Deterministic Policy Gradient) [Lillicrap et al. 2015] and PPO (Proximal Policy Opti-
mization) [Schulman et al. 2017]. However, the algorithm is heavily focused on exploita-
tion, which limits the agent’s ability to effectively explore alternative actions. As a result,
it often gets stuck in local maxima during training, leading to suboptimal performance in
volatile markets.

To address this issue, this paper explores the incorporation of random noise into
the RL agent’s policy to enhance exploration capabilities, similar to those introduced in
the DDPG algorithm [Lillicrap et al. 2015]. Therefore, the contributions of this article
are:

1. Introduction of three noise functions that can be applied to the agent’s action and
adheres to the constraints of the portfolio optimization problem;

2. Analysis of the effectiveness of the introduced noise functions in the training pro-
cess and its results in the Brazilian financial market.

This paper is organized as follows. Section 2 introduces the mathematical defi-
nition of the portfolio optimization problem and Section 3 explains how reinforcement
learning can be applied to solve it. Section 4 details the policy gradient algorithm intro-
duced in [Jiang et al. 2017], while Section 5 points the main consequences of this algo-
rithm, specially its full-exploitation weakness. Section 6 introduces a few action noise
functions that can be applied in order to simulate exploration during training and Section
7 presents the experiments conducted in order to observe the effects of the noise-driven
exploration in the training process. Finally, Section 8 concludes this paper.

2. Problem Definition

In the portfolio optimization task, an agent constantly rebalances a financial portfolio
composed of n predefined assets by defining, at each time step t, a portfolio vector or
weights vector W⃗t, which contains the ratio of remaining cash in the portfolio (W⃗t,0) and
the rate of the invested value in each asset of the wallet (W⃗t,i, in which i ∈ {1, 2, ..., n}).
Therefore, W⃗t ∈ Rn+1 and the following constraints must be respected:

0 ≤ W⃗t,i ≤ 1,

n∑
i=0

W⃗t,i = 1. (1)

At each time step t, there is a price vector P⃗t associated with the price of every
asset in the portfolio vector. Thus, P⃗t ∈ Rn+1 and P⃗t,i > 0, in which i ∈ {0, 1, ..., n}.
Similar to the portfolio vector, the first element of the price vector refers to the remaining
cash in the portfolio and, since, in this work, uninvested cash is considered risk-free and
the prices of every other asset is calculated with relation to this one, P⃗t,0 = 1.



Due to the volatility of the market, the prices of the assets change and the weights

vector ⃗
W f

t in the end of the time step t is probably different than the one in the beginning
W⃗t. This variation can be calculated through the equation:

⃗
W f

t =
(P⃗t ⊘ ⃗Pt−1)⊙ W⃗t

(P⃗t ⊘ ⃗Pt−1) · W⃗t

, (2)

in which ⊘ is the element-wise division, ⊙ is the element-wise multiplication and · de-
notes the dot product of vectors.

Finally, it is possible to calculate the value of the portfolio Vt based on its previous
value with the equations:

V f
t = Vt

(
W⃗t · (P⃗t ⊘ ⃗Pt−1)

)
, Vt+1 = µt+1V

f
t , (3)

in which V f
t is the value of the portfolio at the end of time step t and µt+1 is the transaction

remainder factor, a value between 0 and 1 introduced in [Jiang et al. 2017] that simulates
the application of transaction costs in the portfolio rebalancing from W f

t to Wt+1.

In the beginning of the task, no money is invested (W⃗0 = [1, 0, 0, ..., 0]) and the
objective is to find a sequence of portfolio vectors [W⃗1, W⃗2, ..., W⃗T ] that maximizes the
final value of the portfolio V f

T .

3. Reinforcement Learning Approach
This section explains the reinforcement learning approach introduced by
[Jiang et al. 2017] and used in this paper. Firstly, it is important to highlight that
this formulation considers that there is no slippage in the market, so that trading orders
issued are immediately completed, and that the actions of the agent do not impact the
market. These considerations are very adherent to the real world when the portfolio is
composed of high trading volume assets.

The reinforcement learning solution makes use of an agent which constantly inter-
acts with the trading environment. In this paper, this environment is a simulation based on
[Costa and Costa 2023] that implements the mathematical formulation presented in Sec-
tion 2. The environment provides the agent observations Ot about the current state of the
market and this observation is utilized by the agent so it can define an internal state St

which is used as input in the agent’s policy of actions π. The policy can be seen as a
deterministic function π : S → A that maps a state St into an action At that is performed
in the environment. Finally, after the action is performed, the environment simulates its
effects in the value of the portfolio and provides the agent a new observation Ot+1 and a
reward associated with the effects of the performed action Rt+1.

In order to apply this approach in the portfolio optimization task, it is necessary to
define the agent’s state, action, reward function and policy of actions.

State: The state is composed of a three-dimensional tensor of shape (f, n, t), in which f
is the number of features in the state-space, n is number of assets in the portfolio
and t represents the size of the state’s time window. In this work, the state is built
by combining the 50-step time series of closing, high and low prices of each of



the 10 assets used in the portfolio and, thus, its shape is (3, 10, 50). All the time
series are also normalized by dividing all its items by the last one, similar to the
normalization applied in [Shi et al. 2019].

Action: The agent’s action is the weights vector introduced in Section 2.
Reward: In this work, the reward provided by the environment is the logarithmic rate of

return of the portfolio during a timestep t. This reward function can be calculated
with the following equation:

rt = ln
( V f

t

V f
t−1

)
, (4)

in which V f
t is the value of the portfolio at the end of the simulation step. Note

that, by using this function, the environment’s reward is positive when the agent
actions generate profit and negative otherwise.

Policy: The policy of actions can be implemented as any function that maps a state into an
action. However, due to the fact that both state and action spaces are continuous, a
good approach is to make use of a neural network in order to apply deep reinforce-
ment learning (DRL) algorithms [Sutton and Barto 2018]. Since the state of the
agent is composed of multiple price temporal series, the EIIE (ensemble of iden-
tical independent evaluator) architecture was introduced by [Jiang et al. 2017] to
process each time series independently but share the same parameters of a convo-
lutional neural network. Additionally, the EIIE architecture is capable of dealing
with transaction costs by making use of the last performed action in the decision
making. Due to its simplicity and fast training time, this is the architecture used
in this work.

4. Full-Exploitation Policy Gradient
According to [Liang et al. 2018], the best approach to train a portfolio optimization agent
with reinforcement learning is to utilize the policy gradient algorithm introduced in
[Jiang et al. 2017]. In this algorithm, the agent interacts with the environment and save
its experiences (the current state, the action performed and the price variation) in a replay
buffer ordered in time. After filling the replay buffer, the agent is trained for a number of
training steps following the steps below:

1. The agent retrieves a sequential batch of experiences from the replay buffer;
2. The agent’s actions related to the batch of data are determined;
3. The logarithm of the profit obtained in the batch of sequential data is calculated;
4. The parameters of the neural network are updated to maximize that profit value.
5. The replay buffer is updated.

It’s important to highlight that batches with overlapping temporal data are consid-
ered different, so the batches with data from the intervals [T1, T2] and [T1 +1, T2 +1], for
example, are equally valuable in the training process. Additionally, [Jiang et al. 2017] ar-
gues that newer experiences are more relevant to train the agent, therefore, the sequential
batch is chosen following a geometric distribution [Ross 2014] that favors more recent
data.

Algorithm 1 details the policy gradient algorithm. It is noticeable that the policy
is defined as a neural network that receives the current agent state and the last performed



action Wt−1. As in [Jiang et al. 2017], in order to provide Wt−1 to the policy, a structure
called portfolio vector memory saves all the actions performed by the agent ordered in
time during an episode.

Algorithm 1 Policy gradient for portfolio optimization

1: Initializes policy neural network ϕ(s⃗, W⃗ |θϕ).
2: Initializes replay buffer R.
3: Resets the environment and receives initial state s⃗0.
4: for step = 1 until episode size do ▷ Filling the replay buffer
5: Defines action W⃗t = ϕ(s⃗t, W⃗t−1|θϕ).
6: Executes action in the environment and observes rt e ⃗st+1.
7: Saves experience (s⃗t, W⃗t−1, P⃗t ⊘ ⃗Pt−1) in R.
8: end for
9: for step = 1 until num steps do ▷ Training the agent

10: Samples a sequential batch of data (from T1 to T2).
11: Generates batched action W⃗t = ϕ(s⃗t, W⃗t−1|θϕ).
12: Calculates batched µt = 1− c

∑N
i=1 |W⃗t(i)− W⃗t−1(i)|, in which c is the commis-

sion fee rate and N is the size of portfolio vector.
13: Updates the parameters of the policy using gradient ascent:

∇θϕJ = ∇θϕ

T2∑
t=T1

ln(µt(W⃗t · (P⃗t ⊘ ⃗Pt−1))

T2 − T1 + 1
.

14: Updates replay buffer.
15: end for

Finally, a benefit of this algorithm is that it can be easily used in online training,
since new experiences can be saved in the replay buffer as the agent interacts with the
market and a few training steps can be run between portfolio rebalances considering the
new experiences so that the algorithm makes use of new market data to keep its policy
of actions updated. In this work, this strategy is used when testing the agent in order to
consider the effects of online learning in the final performance of the learned strategy.

5. Consequences of the Full-Exploitation Approach
In this section, we discuss the consequences of the approach introduced in Section 4.

5.1. Sub-optimal Policies
As it can be seen in algorithm 1, even though the policy gradient algorithm achieves higher
performance than other approaches [Liang et al. 2018], it lacks one of the most important
features of the reinforcement learning formulation: the exploration-exploitation trade-off
[Sutton and Barto 2018]. In this trade-off, the agent must balance its decision-making
during training in order to also explore the action space to avoid learning sub-optimal
policies of actions. Since the policy gradient algorithm is full-exploitation, no exploration
is performed and the agent does not consistently learns an optimal policy. This problem
is specially present when the target market is volatile, such as the Brazilian one, and the
agent can even learn trading strategies that makes him lose money.



To empirically show this problem, we have conducted an experiment in the Brazil-
ian market 1. 50 reinforcement learning agents are created in order to optimize a portfolio
composed of 10 high-volume assets (VALE3, PETR4, ITUB4, BBDC4, BBAS3, RENT3,
LREN3, PRIO3, WEGE3, ABEV3). The agents are trained using historical daily high,
low and close prices time series2 from 2011/01/01 to 2019/12/31 (2233 trading days) and
they are tested in the period of 2020/01/01 to 2020/12/31 (248 trading days). Note that a
very volatile interval of the market was chosen as test period (in 2020, the beginning of
the COVID-19 pandemic has considerably hit the Brazilian economy) in order to high-
light the weakness of the training algorithm. Table 1 contains the hyper-parameters used
to train the agents.

Table 1. Hyper-parameters used in the training procedure.

Hyper-parameter Value Description
Learning rate 0.00005 The step size used in the gradient ascent.

Batch size 200
Size of the sequence of experiences used in the
optimization.

Sample bias 0.002
Probability considered in the geometric distribution
used when sampling the batches of experiences.

Number of training steps 300000 Number of training steps used to train the agent.

Time window size 50
Size (in steps) of the time window considered in the
state representation.

Comission rate 0.0025
Rate of comission fee applied when rebalancing the
portfolio.

Initial portfolio value 100000 Initial value of the portfolio in BRL.

Table 2 demonstrates the results of the experiment. The FAPV is a metric of
profit and can be calculated by dividing the final value of the portfolio by its initial value.
Therefore, an FAPV smaller than 1.0 indicates that the portfolio lost value, which denotes
that the optimization process failed. As it can be seen in the results of the experiment, 34%
of the runs can be categorized as a failed portfolio optimization, showing that the training
algorithm is not reliable. Additionaly, only 1 run was able to achieve FAPV bigger than
2.0, which indicates that the algorithm does not consistently learns the optimal policy.

Table 2. Results of 50 runs with the full-exploitation algorithm.

Value
Mean FAPV of runs 1.15

Runs with FAPV bigger than 1.0 33
Runs with FAPV bigger than 1.5 5
Runs with FAPV bigger than 2.0 1

5.2. Heterogeneous Portfolio Vectors
Another characteristic of this algorithm is the fact that after several training steps, the
agent tends to learn policies that generate very heterogeneous portfolio vectors, i.e. vec-

1Repository with code and data: https://github.com/CaioSBC/noise_portfolio.
2The data was retrieved from https://finance.yahoo.com/.

https://github.com/CaioSBC/noise_portfolio
https://finance.yahoo.com/


tors allocating the majority of the portfolio value in one asset. This issue was first de-
scribed in [Shi et al. 2022] and a common workaround is to use a softmax with tempera-
ture layer [Hinton et al. 2015] in the output of the policy neural network.

Empirically, this behavior can be observed with a simple experiment in which a
training process in the Brazilian market with the same data and hyper-parameters of the
experiment in Section 5.1 is conducted, excluding the number of training steps, which was
limited to 65000 in order to simplify the process. At each training step, a heterogeneity
index is calculated using the batch of generated actions in the training step through the
following equation:

heterogeneity =

T2∑
t=T1

(
max(W⃗t)−min(W⃗t)

)
T2 − T1 + 1

, (5)

in which max(W⃗t) and min(W⃗t) are, respectively, the maximum and minimum values of
the portfolio actions defined by the policy in the batch of data from simulation steps T1

to T2. Therefore, a batch of completely homogeneous W⃗ , such as [0.25, 0.25, 0.25, 0.25],
contains a heterogeneity index equal to zero, and a batch of completely heterogeneous W⃗ ,
such as [0, 1, 0, 0], has an index equal to one.

Figure 1 shows the heterogeneity index at each training step. The blue transparent
and noisy time series denotes the real heterogeneity index calculated using equation 5 and
the smoothed opaque curve is a moving average of the transparent one, highlighting the
asymptotic nature of the index. Analyzing the graph, it is noticeable that, after training
using algorithm 1, the agent tends to perform heterogeneous actions.

Figure 1. Heterogeneity index during the training process. The smoothed curve
is generated by a moving average of 100 past values.

6. Exploration with Action Noise
A possible solution to mitigate the issue introduced in Section 5.1 is to apply a noise
function r : W⃗ → W⃗ to the action generated by the agent’s policy in order to add a
stochastic step to the training process. The core idea is that given an input state s⃗t, the



agent’s performed action W⃗
′
t = r(W⃗t) is slightly different than the agent’s intended action

W⃗t = ϕ(s⃗t, W⃗t−1) so that different gradients are calculated in the optimization process and
the policy neural network is able to avoid local maxima and overfitting.

It is important to highlight that this idea is highly inspired by the action noise
introduced in the DDPG algorithm [Lillicrap et al. 2015], so it considers that, for a given
state s⃗t and last portfolio vector W⃗t−1, close actions performed leads to close outcomes.
This hypothesis make sense in our use-case since similar portfolio strategies generates
similar profit. Additionally, one should note that the random function r : W⃗ → W⃗ must
generate an action which complies with the constraints specified in equation 1. In this
section, we introduce a few random functions and discuss their applicability.

6.1. Constant logarithmic noise
The first possible noise function simply applies a noise that is a sample of a normal dis-
tribution with mean 0 and standard deviation proportional to a hyper-parameter ε. The
bigger the value of ε, the bigger the standard deviation of the normal distribution, mean-
ing that a bigger random noise is applied to the action. Finally, in order to adhere to
the constraints in equation 1, the noise is added in the logarithmic domain and a softmax
function is applied. The equations of the constant logarithmic noise are expressed below:

∆W⃗t ∼ N

(
0,
(
ε|ln(10−7)|

)2)
, W⃗

′
t = softmax

(
ln(W⃗t) + ∆W⃗t

)
. (6)

6.2. Variable Logarithmic Noise
This is a variation of the noise function introduced in Section 6.1. The main distinction
between the two is the fact that the variable logarithmic noise makes use of a normal
distribution whose standard deviation is dependent on the maximum value of the absolute
value of the logarithm of W⃗t. Equation 7 shows how to calculate this noise function.

∆W⃗t ∼ N

(
0,
(
εmax

w

(
ln(W⃗t)

abs
))2)

, in which X⃗abs :=
(
|xi,j|

)
(i,j)

,

W⃗
′
t = softmax

(
ln(W⃗t) + ∆W⃗t

)
.

(7)

The difference between both approaches is that the constant variable noise is also
effective in homogeneous actions while the variable logarithmic noise only affects portfo-
lio vectors who are partially heterogeneous. Figure 2 demonstrates this difference, show-
ing that the constant logarithmic noise modifies a homogeneous portfolio vector more
effectively than the variable one. It is also noticeable that the peak of effectiveness of
both noise functions happens when the heterogeneity index is near 0.5. Considering the
behavior outlined in Section 5.2, it means that both functions apply more noise when the
agent is in the middle of the learning process and, thus, starting the policy neural network
convergence.

6.3. Dirichlet Noise
This noise function takes advantage of the properties of the Dirichlet distribution
[Gelman et al. 2015], which generates samples of vectors that adheres to the constraints



Figure 2. Comparison between constant and variable logarithmic noise effective-
ness on portfolio vectors with different heterogeneity indexes (ε = 0.1).

introduced in equation 1. Usually, this distribution is parameterized by a vector with dif-
ferent parameters, but in this work, we consider that all the parameters in the distribution
input vector are equal to α ∈ R+. The implication of this approach is that, the bigger the
α parameter, the more homogeneous the distribution samples are, and vice-versa.

Equation 8 shows how to generate a noisy portfolio vector using the Dirichlet
noise and the effect of the α parameter can be seen in figure 3: the smaller the parameter,
the more effective the noise function is to modify homogeneous portfolio vectors. Fi-
nally, considering the consequence of the full-exploitation training algorithm discussed in
Section 5.2, it is noticeable that this noise function is dominant in the end of the training
process, since its peak of effectiveness is related to high heterogeneity indexes.

W⃗t

rand
∼ Dir(α), W⃗

′
t = (1− ε)W⃗t + εW⃗t

rand
. (8)

Figure 3. Effectiveness of different values of α in the Dirichlet noise function
applied to vectors of different heterogeneity indexes (ε = 0.1).

7. Effects of the Action Noise
In order to verify if the effects of the noise functions introduced in Section 6, an exper-
iment3 is conducted: for each noise function and different values of ε (0, 0.001, 0.005,

3Repository with code and data: https://github.com/CaioSBC/noise_portfolio.

https://github.com/CaioSBC/noise_portfolio


0.01, 0.05, 0.1, 0.25), 50 reinforcement learning agents are trained to optimize a finan-
cial portfolio identical to the one in the experiment conducted in Section 5.1 (VALE3,
PETR4, ITUB4, BBDC4, BBAS3, RENT3,LREN3, PRIO3, WEGE3, ABEV3) using the
same hyper-parameters introduced in table 1. The agents are also trained using the same
datasets used in that experiment.

Tables 3, 4 and 5 present the results of the experiments conducted using constant
logarithmic noise, variable logarithmic noise and Dirichlet noise, respectively. Notably,
all noise functions yield better performance compared to experiments without noise (ε =
0), with improvements in mean FAPV observed in several results. However, it is evident
that the logarithmic noises produce more consistent results since it is possible to identify
a trend: bigger ε values usually lead to gains in performance. The Dirichlet noise, on
the other hand does not present an evident pattern, which might indicate that finding the
optimal value for the ε parameter can be difficult when using that noise function.

Table 3. Results of 50 runs with the constant logarithmic noise.

Epsilon Mean FAPV
of runs

Runs with FAPV
bigger than 1.0

Runs with FAPV
bigger than 1.5

Runs with FAPV
bigger than 2.0

0 1.15 ± 0.05 33 5 1
0.001 1.25 ± 0.06 36 10 3
0.005 1.24 ± 0.07 35 9 3
0.01 1.35 ± 0.07 41 16 4
0.05 1.27 ± 0.06 37 10 4
0.1 1.27 ± 0.06 41 8 4

0.25 1.43 ± 0.06 45 19 5

Table 4. Results of 50 runs with the variable logarithmic noise.

Epsilon Mean FAPV
of runs

Runs with FAPV
bigger than 1.0

Runs with FAPV
bigger than 1.5

Runs with FAPV
bigger than 2.0

0 1.15 ± 0.05 33 5 1
0.001 1.33 ± 0.07 40 12 4
0.005 1.23 ± 0.05 35 14 1
0.01 1.22 ± 0.05 36 10 4
0.05 1.31 ± 0.07 39 12 3
0.1 1.37 ± 0.07 43 16 4

0.25 1.47 ± 0.07 46 17 7

The application of action noise also demonstrates to be effective in mitigating the
sub-optimal policies issue presented in Section 5.1, specially when using higher ε values
in the logarithmic approaches. The fact that the action noise exploration could reduce
the number of simulations in which the agent loses portfolio value from 34% to 8% (in
the best-case scenario) indicates that this type of exploration can be effectively used to
improve the performance of the policy gradient algorithm.

Finally, since the performance gap between the constant and variable logarithmic
approach is minimal and the main difference between these noise functions is that the for-
mer applies more noise to homogeneous portfolio vectors and considering the asymptotic



Table 5. Results of 50 runs with the Dirichlet noise (α = 0.01).

Epsilon Mean FAPV
of runs

Runs with FAPV
bigger than 1.0

Runs with FAPV
bigger than 1.5

Runs with FAPV
bigger than 2.0

0 1.15 ± 0.05 33 5 1
0.001 1.29 ± 0.06 39 10 5
0.005 1.22 ± 0.05 40 11 1
0.01 1.41 ± 0.08 45 14 8
0.05 1.20 ± 0.05 37 5 1
0.1 1.21 ± 0.05 40 10 1

0.25 1.19 ± 0.05 35 8 3

behavior described in Section 5.2, the results indicate that the application of noise effects
in the beginning of the training process is irrelevant. Additionally, because the Dirichlet
noise is more effective in heterogeneous portfolio vectors, its inconsistent results suggests
that noisy actions do not seem to improve the training process when applied in the end
of it. Therefore, the experiments of this study concludes that the best approach to imple-
ment noise-driven exploration to the algorithm introduced in Section 1 is to apply noise
functions in the middle of the policy neural network convergence.

8. Conclusions
The policy gradient algorithm introduced in [Jiang et al. 2017] is currently the state-of-
the-art training method for reinforcement learning agents optimizing financial portfolios.
However, its full-exploitation strategy compromises one of the core strengths of rein-
forcement learning: the agent’s ability to explore and develop a generalizing policy. To
address this limitation, this study conducts extensive tests with this algorithm and empir-
ically demonstrates that it tends to generate sub-optimal action policies, which can even
lead to a decline in portfolio value.

This paper then explores the idea of simulating agent exploration by applying a
noise function to the actions generated by the agent’s policy, similar to the approach in
[Lillicrap et al. 2015]. Three action noise formulations that adhere to the constraints of
the portfolio optimization action space are introduced and their performances are evalu-
ated with experiments in the Brazilian market. The results demonstrate that this explo-
ration approach effectively mitigate the problem of sub-optimal policies and improves the
performance of the portfolio.

Finally, this article concludes that the most effective noise functions are those
that introduce larger noise during the middle phase of the neural network’s convergence.
Therefore, for this specific algorithm, adding noise at the beginning and/or end of the
training process should be avoided.
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