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Abstract. Maritime surveillance and monitoring systems are crucial in coastal
security and resource management. Vessel recognition and identification are
key tasks. However, visual inspection is a costly and labour-intensive process.
This study compares methods for an automated approach for vessel identifica-
tion using digital image processing. The performance of classical and Machine
Learning-based feature extraction methods is evaluated and compared using a
maritime vessel dataset to verify their ability to identify different vessels. The
results show that BEiT-v2 achieves the highest identification performance with a
mean Average Precision (mAP) of 95.05%. VGG-19 offers the best balance be-
tween accuracy (second-highest mAP) and computational cost. These findings
suggest that Machine Learning methods are valuable for vessel identification,
with the optimal choice depending on the specific needs of the application.

Resumo. Os sistemas de vigilância e monitorização marı́tima são cruciais na
segurança costeira e na gestão de recursos. O reconhecimento e identificação
de navios são tarefas fundamentais. No entanto, a inspeção visual é um pro-
cesso caro e trabalhoso. Este estudo compara métodos para uma abordagem
automatizada para identificação de navios utilizando processamento digital de
imagens. O desempenho dos métodos de extração de caracterı́sticas clássicos
e baseados em aprendizado de máquina é avaliado e comparado usando um
conjunto de dados de embarcações marı́timas para verificar sua capacidade de
identificar diferentes embarcações. Os resultados mostram que o BEiT-v2 atinge
o mais alto desempenho de identificação com uma precisão média média (mAP)
de 95,05%. O VGG-19 oferece o melhor equilı́brio entre precisão (segundo
maior mAP) e custo computacional. Estas descobertas sugerem que os métodos
de aprendizagem automática são valiosos para a identificação de embarcações,
com a escolha ideal dependendo das necessidades especı́ficas da aplicação.

1. Introduction
Ship recognition and identification are critical tasks for various maritime applications,
including surveillance, national defence, port traffic management, and pollution con-
trol [Guo et al. 2021]. Effective identification of inshore and offshore vessels is crucial
for monitoring maritime traffic, preventing illegal activities like smuggling and pollution
dumping in fisheries, and ensuring safe navigation.

Within the realm of visual analysis, object detection, recognition, and identifica-
tion represent a hierarchical sequence of tasks [Biberman 1973, Driggers et al. 1997].



Detection establishes the presence of an object without classifying it. Recognition ele-
vates understanding by assigning the object to a broader category. Recognizing the visual
blob as a vessel or other object helps move forward in the visual understanding process,
but this step does not differentiate between a cargo ship, fishing boat, or other types. Fi-
nally, identification achieves the most granular level of detail. Identifying the specific
vessel class or even a specific ship provides the most detailed and substantial information.

Traditionally, video ship detection, recognition, or identification has relied signif-
icantly on staff monitoring screens, which is inefficient, costly, and can lead to misjudg-
ments [Shao et al. 2018]. Computer vision and image processing technology have been
recently widely used in maritime surveillance to solve these problems. The main sources
of images available for this purpose are: satellite imagery [Bo et al. 2021], Synthetic
Aperture Radar (SAR) imagery [Chang et al. 2019], and infrared and visible imagery
from on-ground cameras [Liu et al. 2020]. Satellite imagery usually covers a large area,
but the revisit period is relatively long and can be affected by clouds and fog [Chen et al.
2019]. Methods based on airborne SAR are relatively mature, but cannot detect ships
in scan-blind zones, which are mainly affected by rain and waves [Li et al. 2018]. De-
tection in infrared images from on-ground cameras has good penetrability on clouds and
fog. However, there are no visual features such as color and texture, and the image is
affected by sea thermal radiation and atmospheric effects [Xie et al. 2017a]. Compared
to other image detection methods, visible spectrum imagery contains rich color, texture,
and spectral information, but its application is limited to daytime.

One way to identify a maritime vessel with digital image processing is to extract a
set of descriptors or features from the image, compare them to a database of ship features,
and measure the similarity between those sets of features. In a match, the resulting similar
vessel is returned to the user; in a mismatch, the new set of features can be added to the
database as a new ship. This method of searching for a similar image with another image
as a query is known as Content-Based Image Retrieval (CBIR). Feature extraction is one
of the first steps in CBIR, which converts visual data into numerical descriptions that
machines can manipulate. The accuracy in similarity of the retrieved images is greatly
affected by the quality of the extracted features [Piras and Giacinto 2017]. A recent trend
in image retrieval research focuses on using deep learning to improve accuracy at the
expense of a higher computational cost, particularly at the training phase [Markowska-
Kaczmar and Kwaśnicka 2018].

Visual features from classical approaches are generally designed following heuris-
tics and can be categorized into local and global features. These local and global features
are usually grouped into low-level features and are often hand-crafted. Machine Learning-
based feature extraction has gained increased attention in the last decade, being able to
automatically extract features from the images by training an ML model on sets of im-
ages [Hameed et al. 2021]. This study compares low-level and ML-based descriptors used
in CBIR for maritime vessel identification. State-of-the-art (SOTA) deep learning meth-
ods have shown remarkable retrieval accuracy compared to classical low-level methods
but at a higher computational cost.

This paper is structured as follows: Section 2 presents the overall CBIR archi-
tecture and steps; Section 3 presents the materials and methods employed in this study;
Section 4 presents the experimental results achieved; and finally, Section 5 concludes this



paper with the most important findings and future work.

2. CBIR
A typical CBIR framework consists of stages that can usually be divided into offline and
online, as shown in Fig. 1. In the offline stage, a database of features of known images is
built, which will be used later when the user performs queries to the system. The online
stage is when the user actively uses the system, inputting new images to be recognized by
the system, given its stored database.

Figure 1. A typical CBIR framework.

An optional image preprocessing stage can be included in the framework’s archi-
tecture. This includes resizing, segmentation, denoising, scaling, etc. This optional stage
is followed by the feature extraction stage, in which a visual concept is converted to a nu-
merical form. The extracted features can be low-level features, i.e., color, shape, texture,
spatial information, or local descriptors [Hameed et al. 2021]. The final stage measures
the similarity between the extracted features from the query image and all other images
in the database to retrieve the most relevant images and return them to the user.

The main problem of CBIR is measuring the similarity between images correctly.
Images cannot be directly compared at the pixel level because objects in images can un-
dergo various changes and transformations, such as background changes, brightness, res-
olution, point of view, etc. Therefore, to efficiently compute similarities, we must define
a way to represent these images, which is done by descriptors or feature extractors.

2.1. Image descriptors

Classically, an image can be represented by global and local features. In the global fea-
ture representation, images are represented by one multi-dimensional feature vector that
describes information about the entire image. Global features can be interpreted as spe-
cific properties of the image that affect all pixels, such as color, texture, shape, histogram,
edges, or even a specific descriptor extracted from some filters applied to the image [Oliva
and Torralba 2001]. In contrast, the main purpose of local feature representation is to be
invariant to viewpoint and illumination changes yet still be able to distinguish images
based on some salient regions. Based on its local structure, an image is represented by a
set of local feature descriptors extracted from a set of image regions or key points [Awad
and Hassaballah 2016].



Global features are much faster and more compact while also being easier to com-
pute and generally using less memory. Nevertheless, the global representation is not
invariant to significant transformations and is sensitive to clutter and occlusion. Local
features are expected to be more useful for image matching and object identification be-
cause local structures are more pronounced and stable [Bianco et al. 2015].

Advancements in the last decade in ML have revealed the remarkable ability of
deep learning models to capture transferable image representations [Markowska-Kaczmar
and Kwaśnicka 2018]. These models, trained on vast image datasets, utilize the initial
layers to extract generic image features, which can be later transferred to other domains.
This approach facilitates the automatic generation of image descriptors, albeit with limited
direct interpretability of the learned features.

2.2. Measuring Similarity
The retrieval performance of a CBIR system is affected by how the features are extracted
and how those features are compared to other feature sets in the database. Therefore, the
similarity measurement directly impacts the accuracy of the system. One widely used
distance measure is the Minkowski family distance due to its simple computation and
implementation [Hameed et al. 2021]. It is a bin-by-bin distance function, so for each
element xi ∈ X and yi ∈ Y this distance function only compares xi with yi and it can be
calculated as:

Lp(X, Y ) =

(
N∑
i=1

|xi − yi|p
) 1

p

, (1)

where X and Y are two feature vectors and N is the total dimensionality of the feature
sets. The Minkowski distance is also called Lp-Norm. For p = 1, the L1 distance, also
known as the Manhattan distance, is computed, which is variant to coordinate system
rotation but robust to reflections and translations. If p = 2, L2 distance is calculated. It is
also known as Euclidean distance and is invariant to orthogonal transformation. If p = ∞,
then it is the L∞ distance, also known as Chebyshev distance, which is computationally
efficient and robust to outliers, but with the cost of loss of information.

Another common distance measure used is the cosine distance. Given two n-
dimensional feature vectors X and Y , this distance can be calculated by the angle θ be-
tween these two vectors as:

d(X, Y ) = 1− cosθ = 1− X · Y
∥X∥ · ∥Y ∥

. (2)

2.3. Performance Evaluation
The main metrics for retrieval evaluation are precision, recall and mean average precision
[Alzu’bi et al. 2015]. Precision (Pk) is the ratio of the relevant images (true positives)
retrieved within the first k results to the total number of images retrieved:

Pk =
No. of relevant images retrieved

No. of retrieved images
(3)

Recall (Rk) is the ratio of the number of relevant images retrieved within the first
k results to the total number of relevant images and is defined as:

Rk =
No. of relevant images retrieved

No. of relevant images
. (4)



For a single user query q, the average precision (AP ) is the mean value of the
precision values at every relevant image and is defined as:

APq =
1

NRI

NRI∑
k=1

Pk(Rk) (5)

where NRI is the number of relevant images in the database for the current query image.

For a set of queries NQ, the mean average precision (mAP ) is the mean of the
average precision scores over all queries, defined as:

mAPQ =
1

NQ

NQ∑
q=1

APq. (6)

3. Methodology

3.1. Dataset

Some well-known image datasets have vessel images, such as ImageNet [Deng et al.
2009], PASCAL Visual Object Classes (VOC) [Everingham et al. 2015], and Microsoft
Common Objects in Context (MS COCO) [Lin et al. 2015]. However, the total number
of vessels is limited and multiple images of the same vessel are uncommon. One way to
distinguish between vessels is by its IMO (International Maritime Organization), a ship
identification number scheme which assigns a unique and permanent number to each ship.
The MARVEL [Gundogdu et al. 2016] dataset is a large-scale image dataset for maritime
vessels, consisting of 2 million user-uploaded images and their attributes, including vessel
identity, type, photograph category, and year of construction, collected from a community
website. It has over 35,000 unique vessels with more than 10 examples per vessel. The
dataset used in this paper (Fig. 2) is a subset of MARVEL. It has 100 unique ships with
42 images of each, where they appear in multiple environments, weather and lighting
conditions, resolutions, and different viewpoints (Fig. 2).

Figure 2. Example of the dataset samples in MARVEL.



3.2. Feature extraction methods

Classical and SOTA feature extraction methods were chosen for this study. The classi-
cal ones are SIFT, ORB, and FREAK due to their importance in the CBIR field. The
SOTA methods selected are all deep learning-based methods, mainly pre-trained CNNs
and Transformers, chosen given their outstanding performance on image classification
(top-1 accuracy). The SOTA methods were first trained on ImageNet-1K dataset and the
specialized to this paper’s dataset with transfer learning. The feature descriptor is obtained
in the last layer before the fully connected network in charge of classification.

Scale-invariant feature transform (SIFT) [Lowe 2004] is one of the most com-
monly used local descriptors. It includes both a key point detector and a descriptor. SIFT
is robust against image rotation and scaling, but it performs poorly in matching at high
dimensions and needs a fixed-size vector for encoding to check image similarity.

ORB [Rublee et al. 2011] aims to enhance image-matching applications in low-
power devices without GPU acceleration while maintaining accuracy. ORB is built on the
FAST (Features from Accelerated Segment Test) key point detector [Rosten and Drum-
mond 2005] and the BRIEF (Binary Robust Independent Elementary Features) descrip-
tor [Calonder et al. 2010], hence the name ORB (Oriented FAST and Rotated BRIEF).

FREAK (Fast Retina Keypoint) detects the key points using an approach inspired
by the human retina [Alahi et al. 2012]. FREAK is a binary descriptor and to sample the
pairs of pixels to compare intensity, it uses the retinal sampling grid, which is a circular
grid with a higher density of points near the center.

The Inception architecture [Szegedy et al. 2014] uses a parallel filter strategy
within a single module to capture multi-scale features from the input image. It employs
different convolutional filters applied concurrently to extract both local and global infor-
mation. The resulting outputs from these parallel branches are then concatenated, forming
a richer feature representation while reducing the number of parameters. The version V4
presents a more uniform and simplified architecture [Szegedy et al. 2017].

The Visual Geometry Group (VGG) network architecture [Simonyan and Zisser-
man 2014] is characterized by its simplicity and efficacy. It leverages repeated stacks
of 3x3 convolutional layers, capturing essential spatial information like vertical and hor-
izontal edges. The number after VGG refers to the number of layers with VGG-16 or
VGG-19, respectively, consisting of 16 and 19 convolutional layers.

Residual Networks (ResNets) introduced the concept of residual learning [He et al.
2016]. This framework addresses the vanishing gradient problem that hinders the training
of very deep networks. ResNets address this by introducing residual blocks, which bypass
the main layers with a direct identity connection. ResNet-200D has two hundred layers
and also employs average pooling for downsampling. ResNeXt101 [Xie et al. 2017b] is
based on the ResNet architecture and it is constructed by repeating blocks that aggregate
a set of transformations with the same topology.

MobileNet [Howard et al. 2017] was introduced as a new class of efficient models
for mobile and embedded vision applications. This architecture introduced the depthwise
separable convolutions as a replacement for traditional convolution layers. MobileNetV3
implements some improvements which maintain the accuracy of previous versions but



with a considerably lower inference time.

DenseNet [Huang et al. 2017] was designed to ensure maximum information flow
between layers in the network. This was achieved by connecting all layers, with matching
feature-map sizes, directly with each other.

The Vision Transformer (ViT) [Dosovitskiy et al. 2020] divides an input image
into fixed-size, non-overlapping patches. These patches are then linearly projected into
lower-dimensional embeddings, and positional encodings are added to each patch embed-
ding to incorporate spatial information. The resulting sequence of vectors is then fed into
a standard Transformer encoder.

BEiT [Bao et al. 2021], Bidirectional Encoder representation from Image Trans-
formers, is a self-supervised vision representation model that uses a pre-training phase
called Masked Image Modeling (MIM). MIM generates image patches from each im-
age, as in ViT, and visual tokens. During pre-training, some of the image patches are
randomly masked. The model learns to recover the visual tokens of the original image
even though some of the image patches are masked. The key enhancement introduced by
BEiT-v2 [Peng et al. 2022] was to employ a semantic-rich visual tokenizer for the token
generation during a pre-training phase.

4. Results

The dataset is usually split into training and test using an 80/20 ratio in CBIR systems
employing neural network [Qiao et al. 2020]. Out of the 80% used for training, 70%
was used for training the networks and 30% for validation. The 20% for test is used as
the query dataset and the remaining 80% is used as gallery dataset, simulating the feature
database. Classical methods do not require training, therefore only the split for query and
gallery dataset was used.

4.1. Classical Methods

Fig. 3 shows the mAP for the classical methods for increasing numbers of retrieved im-
ages. As expected, given the changes in the images in the dataset, none of the classic
methods performs satisfactorily for this kind of application, with very low mAP values.

Tab. 1 summarizes the characteristics and performance of the classical methods.
Calculation time is the time it takes for each method to detect and compute the features of
a given image, presented as an average over the entire dataset. ORB was the best method
concerning mAP, however the performance is still very low (5.65%).

Table 1. Summary of classic methods.

Model
Feature Vector
Dimension

mAP [%]
@N=30

Calc.
Time [s]

ORB 512 × 32 5.65 0.062
FREAK 512 × 64 1.73 0.293
SIFT 512 × 128 0.85 0.731
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Figure 3. SIFT, ORB and FREAK mAP.

4.2. SOTA Methods

Tab. 2 presents the hyperparameters used among all models for training. All models were
trained in an RTX 3070 with 8GB of memory. Tab. 3 summarizes the results of SOTA
methods, and Fig. 4 summarizes the best methods analyzed over the number of retrieved
images. Cosine and Euclidean distance were the prevailing dissimilarity metrics, Manhat-
tan came close for some models, and Chebyshev always underperformed the others. When
comparing the different models with 30 images retrieved (N = 30), VGG-19 presents a
high mAP of 94.99%, with the more recent models around the same accuracy rate. BEiT-
v2 was the best with 95.05% of mAP despite having the smallest feature descriptor, with
only 768 features. Regarding inference time, VGG-19 was almost an order of magnitude
faster than the other models. All models were implemented using the same library, the
inference was run in the same computer, and no optimization was made.

Table 2. Training hyperparameters.

Parameter Value

Pre-Trained on: ImageNet-1K
Epochs 300
Batch size 8
Optimizer SGD
Initial LR 3.0e-3
LR Scheduler Cosine
Decay Rate 0.1
Weight Decay 2.0e-5
Warm-up Epochs 5
RandAugment (M / N / MSTD) 9 / 2 / 0.5
EMA Decay 0.99998
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Figure 4. Summary of the best performing state-of-the-art methods.

Table 3. Summary of results of SOTA methods.

Model Metric
mAP [%]
@N=30

Number of
Params [M]

Number of
Features

Inference
Time [µs]

BEiT-v2 Euclidean 95.05 85.8 768 8.16
VGG-19 Cosine 94.99 140.0 4096 0.84
ViT Euclidean 93.04 87.6 768 7.59
ResNeXt-101 Cosine 79.85 81.6 2048 9.65
ResNet-200d Cosine 77.30 62.8 2048 14.48
DenseNet-201 Euclidean 54.98 18.3 1920 15.22
MobileNetV3 Euclidean 31.17 4.3 1280 5.03
Inception-v4 Cosine 11.12 41.3 1536 11.20

Fig. 5 shows the Precision-Recall curve as the number of images retrieved in-
creases. BEiT-v2 and VGG-19 have very similar behavior, maintaining a high precision
as the recall increases. Conversely, the Inception-v4 and MobileNetV3 models showed
non-satisfactory results with low precision values. Overall, the area under the curves of
the VGG-19 and BEiT-v2 models are the highest, evidencing their ability to cope with the
precision-recall trade-off in this application.

5. Conclusions
This study comparatively evaluated CBIR approaches for automated vessel identification
using various distance metrics. Results shown that BEiT V2 presented outstanding re-
sults, with 95.05% mAP and so does VGG-19, with 94.99% mAP, which also had the
fastest inference time (0.84µs) They also presented better precision-recall curves, manag-
ing to keep an overall trade-off of both metrics high. Neural networks with Transformer
architecture performed better in average than the convolutional architectures, where in the
top 3 best mAP, two of them use Transformers. Other advantages are their short feature
vector (768) and low inference time (between 7.5 and 8.2 µs). Classical descriptor ap-
proaches had the worst retrieval results. They are not good or able to generalize according
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Figure 5. Precision and Recall curve for different deep-learning methods.

to the object itself, but only to images captured that are very near in the spatiotemporal
dimension.

Further investigations may include evaluating network generalization with larger
datasets, exploring image pre-processing techniques, and optimizing inference speed
through multi-layer output fusion or hyperparameter tuning.
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