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Abstract. Melanoma remains the leading cause of skin cancer-related deaths
worldwide, emphasizing the critical need for early detection to enhance survival
rates. Computational methods are pivotal in aiding its diagnosis through med-
ical imaging, necessitating accurate lesion segmentation to facilitate effective
interpretation. Our study investigates the comparative efficacy of skin lesion
classification with and without segmentation, leveraging pre-trained convolu-
tional neural networks (CNNs) and CapsNet architectures. Findings underscore
CNNs’ superiority, highlighting segmentation’s beneficial impact on their clas-
sification performance, while CapsNet exhibits a degree of independence from
segmentation.

1. Introduction
The number of people with cancer is increasing worldwide. The International Agency for
Research on Cancer (IARC) reported that by 2020 the estimated global cancer burden has
increased to 19.3 million new cases and 10 million deaths [IARC 2020]. This research
addresses cancer known as malignant melanoma, the leading cause of death from skin
cancer. Several studies indicate that the risk of malignant melanoma is correlated with
genetic and personal features and with the behavior of exposure to ultraviolet radiation.

Melanoma is a serious form of cancer that starts in cells known as melanocytes
and is dangerous because of its ability to spread to other organs quickly if not treated early
[SCF 2021]. The medical examination of the skin performed by the specialist can result
in an inaccurate diagnosis due to the similarity between the skin lesions and malignant
tissues. Dermatologists have a 65% to 80% accuracy rate when making a diagnosis with-
out additional technical support, such as a special high-resolution camera and magnifying
glass [Argenziano and Soyer 2001].

Researchers are developing several Computer-Aided Diagnostic (CAD) tools that
use medical imaging to assist professionals and provide additional insight. Two essen-
tial steps in the automatic diagnosis of melanoma are segmentation and classification of



the skin lesion. Segmentation involves isolating the region of interest to prevent inter-
ference from external elements during image analysis. According to [Tang et al. 2019],
segmentation is a complex task due to images’ overlapping elements, noise, shadows,
and extraneous body parts. Classification entails determining whether an image exhibits
the disease. Developing CAD systems for skin lesions in the last decade encountered
challenges due to insufficient dataset sizes, hindering learning performance and feature
extraction, thus complicating classification.

In this sense, this work has as main contributions: 1) Evaluation of the impact
that segmentation causes in melanoma classification; 2) Comparison between pre-trained
Convolutional Neural Networks and Capsule Networks architectures applied in melanoma
classification.

2. Related Works

We’ve compiled various melanoma segmentation and classification studies, de-
tailed in Table 1. Commonly used segmentation techniques include traditional methods
like Otsu threshold and K-means. However, the most successful approaches in the litera-
ture involve deep learning-based methods such as U-net [Ronneberger et al. 2015]. Skin
lesion classification employs both traditional methods and deep learning approaches.

Table 1. Related work on melanoma segmentation and classification.

Work Datasets Segmentation Method
[Barata et al. 2013] PH2 x Thresholding, color and

texture descriptor
[Giotis et al. 2015] MED-NODE x K-means, color and texture

descriptor
[Jafari et al. 2016] MED-NODE x Color and border descriptors

[Karabulut and Ibrikci 2016] DERMIS - Texture descriptor
[Namozov and Im Cho 2018] ISIC 2018 - LeNet + APL Units

[Pal et al. 2018] ISIC 2018 - DCNN
[Reddy 2018] ISIC 2018 - Pre-trained CNNs

[Hekler et al. 2019] ISIC 2018 - Human + CNN
[Alom et al. 2019] ISIC 2018 x RRCNN

[Kassani and Kassani 2019] ISIC 2018 - DCNN
[Khan et al. 2019] DERMIS x Clustering (K-means), color

and texture descriptor
[Saba et al. 2019] PH2, ISBI 2016 e ISBI 2017 x DCNN

[Sarkar et al. 2019] DERMIS, PH2, ISIC, MED-NODE - CNN
[Hosny et al. 2019] DERMQUEST, MED-NODE, ISIC - Pre-trained CNNs

[Milton 2019] ISIC 2018 - Pre-trained CNNs
[Hosny et al. 2020] DERMIS, DERMQUEST,

MED-NODE, ISIC 2017
- Pre-trained CNNs

[Amin et al. 2020] ISIC 2018, PH2, ISBI 2016, ISBI
2017

x Thresholding and Pre-trained
CNNs

[Al Nazi and Abir 2020] PH2, ISIC 2018 x U-net and Pre-trained CNNs
[Rodrigues et al. 2020] PH2, ISIC - Pre-trained CNNs

[Moura et al. 2019] DERMIS - Texture features and Deep
features

We have identified some of the main features and their limitations in analyzing
the segmentation and classification works. Some works use only an image dataset or
concatenate some datasets to increase data and are not concerned with cross-evaluating



the datasets to investigate whether the model is learning features of the dataset or the
disease. Others have few evaluation metrics, such as accuracy as a classification metric,
which alone is not enough for this type of operation.

Most works pre-process and resize the images, not worrying about the distor-
tion of skin lesions. We also found great use of data augmentation to solve challenges
such as bases having few samples, unbalanced classes, and overfitting since deep learning
models require many images for adequate training [Al-Masni et al. 2018]. Furthermore,
among the studies that perform segmentation, only [Barata et al. 2013, Giotis et al. 2015,
Jafari et al. 2016, Alom et al. 2019, Khan et al. 2019, Saba et al. 2019, Amin et al. 2020,
Al Nazi and Abir 2020] perform the classification step, but they do not assess the impact
that segmentation causes on melanoma classification.

We noticed that certain papers [Hosny et al. 2019, Hosny et al. 2020] applied data
augmentation to the entire image set before dividing it into training and testing sets, result-
ing in identical images appearing in both sets with minor adjustments, leading to inflated
results. Many studies either rely on physician-provided masks or forego segmentation
altogether. While some studies generate segmentations, expert intervention is often re-
quired to rectify imperfect segmentations. Consequently, there needs to be more analysis
regarding the impact of segmentation on classifying skin lesion images, which is the pri-
mary focus of this research.

3. Materials and Methods

The proposed methodology follows the steps presented in the Figure 1, starting
with image acquisition; soon after, the segmentation obtains the regions of interest; in
the classification, we define which class each image belongs to; and finally, we apply
evaluation metrics to monitor the performance of the methods.

3.1. Image Acquisition

In this research, we gathered the most used public image datasets in the literature. All
datasets have the classes Melanoma and non-melanoma, with the exception of ISIC 2018,
which has seven classes.The details of each one are present in the Table 2.

Table 2. Information about datasets used.

Datasets Classes Images MaskBy class All

PH2 [Mendonca et al. 2015]
Non-melanoma

Melanoma
160
40 200 yes

DermIS [DermIS 2020]
Non-melanoma

Melanoma
87

119 206 yes

ISIC 2018 [Codella et al. 2019, Tschandl et al. 2018]

Melanoma
Nevus

Basal cell carcinoma
Actinic keratosis
Benign keratosis
Dermatofibroma
Vascular lesion

1113
6705
514
327
1099
115
142

10015 no

MED-NODE [Giotis et al. 2015]
Non-melanoma

Melanoma
100
70 170 no



Figure 1. The flow of steps of the proposed methodology.

All datasets used have images in the RGB color system; most of them have dif-
ferent resolutions. Therefore, all the tests we performed used a proportional resizing
algorithm that does not distort skin lesions. This resizing varied depending on the input
shape of the architectures used for the classification, as detailed in Section 7. The resizing
algorithm used bilinear interpolation, which fills the interpolated point with the weighted
average of the four nearest pixels providing the image with smoother transitions in high-
frequency locations. After resizing, the image is inserted in the center of a matrix with
the chosen dimensions, with the pixels of each RGB channel having a value of 0.

4. Segmentation

We used a methodology based on U-net, Transfer learning, and Fine-tuning (UTF)
that we developed in our work [Araújo et al. 2021] for the segmentation step. We per-
formed experiments with the three datasets with specialist segmentation masks and ob-
tained promising results, with Dice coefficient (DSC) = 0.923 in the PH2 dataset, DSC =
0.879 in the DermIS dataset, and DSC = 0.893 in the ISIC 2018 dataset. Figure 2 presents
some examples of segmentations obtained with the proposed methodology.

5. Classification

In two classification approaches, we compare Convolutional Neural Networks
(CNNs) with Capsule Networks (CapsNet).

Convolutional Neural Networks: We utilized pre-trained VGG16
[Simonyan and Zisserman 2014], Xception [Chollet 2017], and DenseNet201



Figure 2. Examples of segmentations. In red, the segmentation with the pro-
posed methodology, and in green, the specialist’s marking.

[Huang et al. 2017] networks, pre-trained on ImageNet, selected for their perfor-
mance and prevalence in the literature. These networks extracted features from images
for analysis by four classifiers: Multi-Layer Perceptron (MLP), Random Forest, XG-
Boost, and CapsNet. CapsNet was used to evaluate its efficiency in recognizing spatial
patterns within high-level features extracted by CNN compared to traditional classifiers.
We removed the fully connected layer from the networks and did not fine-tune the
convolutional layers. Additionally, empirical tests were conducted to determine the best
hyperparameters for the classifiers: 1) MLP with 256 neurons, dropout of 0.5, and 30
epochs; 2) Random Forest with random state = 50 and 100 estimators; 3) XGBoost with
100 estimators, maximum depth of 3, and learning rate of 1.0.

Capsule Networks: we use CapsNet with the same settings as
[Sabour et al. 2017]. Figure 3 illustrates the used CapsNet architecture. The image
with a 64×64 size in the RGB model enters the encoder that starts with a convolutional
layer to detect the features that the capsules will analyze. These extracted features serve
as input to the primary capsules, where 32 different capsules apply eight 9×9×256
convolutional kernels producing a 4D vector output that, through dynamic routing,
are routed to the higher-level capsules (Melanoma capsule). Melanoma capsules will
produce a 16D vector containing all the instantiation parameters needed to reconstruct
the lesions. Then, a decoder receives the output vector and learns how to decode the
lesion instantiation parameters. The decoder used is a neural network composed of two
dense layers of 512 and 1024 neurons and a final layer with a softmax activation function.

Figure 3. CapsNet architecture used in classification.

6. Validation
The validation step consists of measuring the results of the techniques. For this, we use
the classification metrics most present in the literature. The classification metrics used
were: Accuracy (ACC), Recall, Precision (PRE), F1-Score (F1), Area under the curve
receiver operating characteristic (AUC) and Coefficient kappa (Kappa) [Cohen 1960].



7. Experimental Results and Discussion
In this section, we present the results of the two proposed classification approaches. The
first uses pre-trained CNNs, and the second uses Capsule Networks.

7.1. Results of Convolutional Neural Networks

We divided this experiment into two steps: 1) identify the best pre-trained CNN to ex-
tract the features and which is the best classifier; 2) evaluate the impact of segmentation
on ranking using the best combination of CNN and classifier obtained. During the ex-
periments, we scaled the images proportionally to the size 224x224, as it obtained better
results in preliminary tests as it is the standard size for most pre-trained networks. Finally,
we randomly split the datasets into 60% training, 20% validation, and 20% testing.

The DenseNet201 architecture provides 94,080 features, Xception offers 100,352,
and VGG16 yields 25,088. Reshaping the network’s output was essential to integrate
CapsNet as a classifier. We determined the optimal combination of pre-trained CNN
and classifier through 60 tests detailed in Table 3. Based on these findings, we selected
Xception for feature extraction and CapsNet for classification.

Several results fell below expectations, suggesting potential issues like imperfect
segmentation, an imbalance or an insufficient number of images for effective training, or
a necessity for fine-tuning to tailor the convolutional layers to skin lesion characteristics.
Recall and precision metrics more accurately identified the negative class over the pos-
itive, except for the MED-NODE dataset. This discrepancy is problematic, particularly
in melanoma detection, as false negatives can delay treatment for individuals with the
disease, jeopardizing early intervention.

We employed the combination (Xception + CapsNet) to assess segmentation’s
impact on classification. We tested non-segmented images with specialist masks and
images segmented using the UTF method [Araújo et al. 2021]. Since the MED-NODE
and ISIC 2018 datasets lacked specialist masks, we segmented them using U-net trained
on datasets with available masks. Table 4 presents the test results.

Upon examining the DermIS dataset, we observed that expert segmentation sig-
nificantly improved classification, raising the ACC from 0.6904 to 0.8571. Additionally,
U-net segmentation yielded gains, albeit less pronounced, elevating the ACC to 0.7142.
This suggests that U-net achieved a DSC of 0.879 on DermIS, approximately 12.1% lower
than the expert’s (100%), leading to a decrease in positive impact from 16.67% to 2.38%
(roughly -14.29%), yet still surpassing unsegmented images.

In the PH2 dataset, specialist and U-net segmentation achieved the same posi-
tive performance of +2.5%. U-net’s DSC in this base is 0.932, higher than the previous
base, but the performance gain in the classification was smaller. The U-net trained in
the DermIS, PH2 and ISIC 2018 SEG datasets obtained DSC = 0.893 and presented high
generalization capacity when segmenting the MED-NODE dataset with no specialist seg-
mentation. The segmentation made the ACC of the MED-NODE rating rise from 0.8823
to 0.9411 (+5.88%).

The impact was negative in the 2018 ISIC dataset (-3.5%), as the ACC decreased
from 0.7615 to 0.7265. Finally, we performed a test with the combination of all datasets
to solve the problem of having too few sample images. The results indicated that there is



Table 3. Test results to choose the best CNN and classifier.

Dataset CNN Classifier ACC Kappa Recall PRE F1

DermIS

DenseNet201
MLP 0.6666 0.2794 0.6319 0.6781 0.6250

Random Forest 0.5952 0.1904 0.5972 0.5952 0.5931
XGBoost 0.6904 0.3546 0.6736 0.6851 0.6755
CapsNet 0.6904 0.3809 0.6944 0.6904 0.6888

Xception
MLP 0.7142 0.3913 0.6875 0.725 0.6888

Random Forest 0.8095 0.5942 0.7847 0.8416 0.7925
XGBoost 0.5714 0.1000 0.5486 0.5535 0.5456
CapsNet 0.7142 0.4084 0.7013 0.7091 0.7035

VGG16
MLP 0.6666 0.2575 0.6180 0.7361 0.5916

Random Forest 0.6428 0.2222 0.6041 0.6515 0.5906
XGBoost 0.5952 0.1438 0.5694 0.5795 0.5654
CapsNet 0.7142 0.3823 0.6805 0.7437 0.6785

PH2

DenseNet201
MLP 0.9250 0.7272 0.8125 0.9571 0.8622

Random Forest 0.9000 0.6551 0.7968 0.8725 0.8268
XGBoost 0.8250 0.5205 0.7968 0.7382 0.7584
CapsNet 0.9500 0.8275 0.8750 0.9705 0.9134

Xception
MLP 0.9500 0.8275 0.8750 0.9705 0.9134

Random Forest 0.9500 0.8275 0.8750 0.9705 0.9134
XGBoost 0.9000 0.6875 0.8437 0.8437 0.8437
CapsNet 0.9500 0.8275 0.8750 0.9705 0.9134

VGG16
MLP 0.9000 0.6551 0.7968 0.8725 0.8268

Random Forest 0.9000 0.6551 0.7968 0.8725 0.8268
XGBoost 0.8000 0.4285 0.7343 0.7000 0.7132
CapsNet 0.9250 0.7540 0.8593 0.8982 0.8769

MED-NODE

DenseNet201
MLP 0.8529 0.7058 0.8642 0.8529 0.8517

Random Forest 0.7058 0.3511 0.6642 0.7211 0.6640
XGBoost 0.7352 0.4813 0.7535 0.7491 0.7350
CapsNet 0.7647 0.4925 0.7357 0.7750 0.7424

Xception
MLP 0.9117 0.8197 0.9142 0.9070 0.9098

Random Forest 0.7941 0.5509 0.7607 0.8244 0.7700
XGBoost 0.7647 0.5244 0.7678 0.7604 0.7614
CapsNet 0.9411 0.8811 0.9500 0.9375 0,9403

VGG16
MLP 0.7647 0.5142 0.7571 0.7571 0.7571

Random Forest 0.6176 0.1264 0.5571 0.6103 0.5252
XGBoost 0.6470 0.2714 0.6357 0.6357 0.6357
CapsNet 0.7352 0.4476 0.7214 0.7271 0.7235

ISIC 2018

DenseNet201
MLP 0.6735 0.0348 0.1901 0.2656 0.1874

Random Forest 0.6325 0.2714 0.2479 0.1330 0.1492
XGBoost 0.6493 0.2652 0.2423 0.2533 0.2415
CapsNet 0.757 0.5040 0.4593 0.5910 0.4759

Xception
MLP 0.6670 0.0380 0.1480 0.1677 0.1264

Random Forest 0.6145 0.2614 0.2441 0.1327 0.1458
XGBoost 0.6495 0.2847 0.2533 0.2765 0.2615
CapsNet 0.7265 0.4430 0.3669 0.4199 0.3813

VGG16
MLP 0.6775 0.0712 0.1603 0.2391 0.1460

Random Forest 0.6170 0.2195 0.2279 0.1264 0.1429
MLP 0.6620 0.3279 0.3014 0.4519 0.3209

XGBoost 0.6150 0.2182 0.2221 0.2310 0.2255
CapsNet 0.7135 0.3602 0.3093 0.4452 0.3407

The results in bold represent the best performance obtained in this comparison.

still a need to solve the class imbalance problem. The impact of segmentation in this test
was also negative, but we conclude that it is due to the presence of the ISIC 2018 dataset.

We performed additional analysis to understand why segmentation impaired the
classification of the 2018 ISIC dataset. Of the 2000 images in the test set, segmentation
impaired the classification of 207 images and improved 147. Looking at these images,
we found that the segmentations are accurate and the difficulty in distinguishing the seven
classes that cause the decrease in performance. With that, we concluded that, for all
datasets with only two classes, segmentation brought great performance gains. But for
ISIC 2018, which has seven classes with similar lesions, segmentation diminishes the
model’s distinguishing ability.

7.2. Capsule Network Results

CapsNet’s experiments aim to compare their performance with traditional CNNs. In pre-
liminary tests, we identified that the 64×64 size achieved the best results. The images



Table 4. Segmentation impact results on classification using (Xception + Cap-
sNet). Where (+) positive and (-) negative.

Datasets ACC Kappa Recall PRE F1 AUC Impact

DermIS

(2 classes)

No Segmentation 0.6904 0.3809 0.6944 0.6904 0.6888 0.7893

Expert Segmentation 0.8571 0.7042 0.8472 0.8605 0.8517 0.9212 +

U-net Segmentation 0.7142 0.4084 0.7013 0.7091 0.7035 0.7476 +

PH2

(2 classes)

No Segmentation 0.9250 0.7540 0.8593 0.8982 0.8769 0.9160

Expert Segmentation 0.9500 0.8275 0.8750 0.9705 0.9134 0.9863 +

U-net Segmentation 0.9500 0.8275 0.8750 0.9705 0.9134 0.9863 +

MED-NODE

(2 classes)

No Segmentation 0.8823 0.7571 0.8785 0.8785 0.8785 0.9053

U-net Segmentation 0.9411 0.8811 0.9500 0.9375 0.9403 0.9857 +

ISIC 2018 CLASS

(7 classes)

No Segmentation 0.7615 0.4910 0.4507 0.5775 0.4953 0.8626

U-net Segmentation 0.7265 0.4430 0.3669 0.4199 0.3813 0.8089 -

All∗

(2 classes)

No Segmentation 0.8947 0.3803 0.6461 0.7953 0.6858 0.8254

U-net Segmentation 0.8871 0.2917 0.6051 0.7768 0.6381 0.7335 -

(*) Combination of all datasets that are divided in two classes: melanoma and non-melanoma (all other classes).

The results in bold represent the best performance obtained in this comparison.

used were in their original RGB model, and we randomly divided the datasets between
training, validation, and testing, with a proportion of 60%, 20%, and 20%, respectively.
Table 5 presents the results of the execution of CapsNet for 100 epochs in the four datasets,
and the combination of all datasets.

Table 5. Segmentation impact results on classification using CapsNet. Where (+)
positive and (-) negative.

Datasets ACC Kappa Recall PRE F1 AUC Impact

DermIS

(2 classes)

No Segmentation 0.7500 0.4681 0.7292 0.7418 0.7333 0.5560

Expert Segmentation 0.7000 0.3750 0.6875 0.6875 0.6875 0.7070 -

U-net Segmentation 0.7000 0.3617 0.6771 0.6868 0.6800 0.7266 -

PH2

(2 classes)

No Segmentation 0.9500 0.8276 0.875 0.9706 0.9134 0.8828

Expert Segmentation 0.8750 0.4898 0.6875 0.9324 0.7365 0.8223 -

U-net Segmentation 0.8750 0.5455 0.7344 0.8429 0.7704 0.8242 -

MED-NODE

(2 classes)

No Segmentation 0.8333 0.6471 0.8143 0.8438 0.8222 0.7893

U-net Segmentation 0.8750 0.7391 0.8643 0.8778 0.8693 0.8893 +

ISIC 2018

(7 classes)

No Segmentation 0.7455 0.4615 0.4295 0.5209 0.4534 0.8817

U-net Segmentation 0.6978 0.3154 0.2640 0.3708 0.2877 0.8417 -

All∗

(2 classes)

No Segmentation 0.8804 0.2318 0.5794 0.7772 0.6039 0.8013

U-net Segmentation 0.8726 0.0982 0.5305 0.7484 0.5263 0.7909 -

(*) Combination of all datasets that are divided in two classes: melanoma and non-melanoma (all other classes).

The results in bold represent the best performance obtained in this comparison.

Regarding CapsNet, the segmentation had a positive impact only on the MED-
NODE dataset and had a better performance than CNN for non-segmented images, in-
dicating that CapsNet needs information around skin lesions to identify them better. We
believe that it considers information about the spatial relationships between healthy skin
and lesions important, and this information is lost after segmentation.

7.3. Comparison with related works
The Table 6 presents a comparison with related studies, showing promising results for
our proposed methods. In the PH2 dataset, [Sarkar et al. 2019] and [Saba et al. 2019]



achieved higher accuracy (ACC) than our CapsNet-based approach, with 0.9677
and 0.9840, respectively, compared to our 0.9500 ACC. For the DermIS dataset,
[Sarkar et al. 2019], [Hosny et al. 2019], and [Hosny et al. 2020] achieved recall rates of
1.0000, 0.9690, and 0.9892, respectively. Notably, some studies applied data augmenta-
tion across the entire dataset, biasing performance evaluation, unlike our approach, which
applies augmentation only to the training set. In the ISIC 2018 dataset, our method (Xcep-
tion + CapsNet) achieved similar ACC results to [Milton 2019], [Pal et al. 2018], and
[Hekler et al. 2019], with 0.7615 compared to 0.7600, 0.7750, and 0.8295, respectively.

Table 6. Comparison of the proposed methods with the related works. The results
in bold represent the best performance obtained in this comparison.

PH2

Work ACC Kappa Recall PRE F1 AUC
[Barata et al. 2013] — — 0.9300 — — —

[Bi et al. 2016] 0.9200 — 0.8750 — — —
[Sarkar et al. 2019] 0.9677 — 1.0000 — — —
[Saba et al. 2019] 0.9840 — 0.9825 — 0.9827 1.0000

[Al Nazi and Abir 2020] 0.9200 — — — — —
[Rodrigues et al. 2020] 0.9316 — 0.9316 0.9325 0.9315 —

Proposed (Xception + CapsNet) 0.9500 0.8275 0.8750 0.9705 0.9134 0.9785
Proposed (CapsNet) 0.9500 0.8276 0.8750 0.9706 0.9134 0.9688

DermIS
Work ACC Kappa Recall PRE F1 AUC

[Karabulut and Ibrikci 2016] 0.7140 — 0.7080 — — —
[Khan et al. 2019] 0.9600 — — — — —
[Sarkar et al. 2019] 0.9444 — 1,0000 0.9166 — —
[Hosny et al. 2019] 0.9686 — 0.9690 0.9692 — —
[Hosny et al. 2020] 0.9915 — 0.9892 — — —

Proposed (Xception + CapsNet) 0.8571 0.7042 0.8472 0.8605 0.8517 0.9212
Proposed (CapsNet) 0.7500 0.4681 0.7292 0.7418 0.7333 0.5560

ISIC 2018
Work ACC Kappa Recall PRE F1 AUC

[Namozov and Im Cho 2018] 0.9586 — — — — —
[Pal et al. 2018] 0.7750 — — — — —
[Reddy 2018] 0.9100 — — — — —

[Kassani and Kassani 2019] 0.9208 — — — — —
[Hekler et al. 2019] 0.8295 — — — — —
[Alom et al. 2019] — — 0.8700 0.8700 0.8600 —

[Milton 2019] 0.7600 — — — — —
Proposed (Xception + CapsNet) 0.7615 0.4910 0.4507 0.5775 0.4953 0.8626

Proposed (CapsNet) 0.7455 0.4615 0.4295 0.5209 0.4534 0.8817
MED-NODE

Work ACC Kappa Recall PRE F1 AUC
[Giotis et al. 2015] 0.8100 — 0.8100 — — —
[Jafari et al. 2016] 0.7900 — 0.9000 — — —
[Han et al. 2018] — — 0.8763 — — —

[Sarkar et al. 2019] 0.9523 — 0.9233 1,0000 — —
[Hosny et al. 2019] 0.9770 — 0.9922 — — —
[Hosny et al. 2020] 0.9929 — 0.9922 — — —

Proposed (Xception + CapsNet) 0.9411 0.8811 0.9500 0.9375 0.9403 0.9857
Proposed (CapsNet) 0.8750 0.7391 0.8643 0.8778 0.8693 0.8893

The results in bold represent the best performance obtained in this comparison.

In the MED-NODE dataset, recent studies, including [Han et al. 2018] and
[Sarkar et al. 2019], achieved promising recall rates of 0.8763 and 0.9233, respectively.
Our proposed method (Xception + CapsNet) surpassed these with a recall of 0.9500. Al-
though [Hosny et al. 2020] reported a higher recall of 0.9922, this result may be attributed
to the inappropriate use of data augmentation, as discussed earlier.



8. Conclusion and Future Works
Our study employed CNN (Xception + CapsNet) and Capsule networks (CapsNet) to
evaluate segmentation’s effect on classification. Our findings closely resembled existing
literature, revealing that studies achieving near-perfect performance often utilized dataset-
wide data augmentation, leading to test set bias. Segmentation positively impacted CNN
tests, except for ISIC 2018, and only in 1

7
of CapsNet tests. It demonstrated the potential

to enhance CNN performance, contingent on its accuracy. However, segmentation could
adversely affect non-segmented images in cases like ISIC 2018, where image classes are
similar. Additionally, CapsNet did not benefit from segmentation, suggesting its reliance
on spatial lesion-skin relationships, which detracts from segmentation performance.

For future work, we aim to refine segmentation masks from U-net using Autoen-
coders Networks, explore Capsule Networks in novel approaches to validate their seg-
mentation benefits and devise a hybrid method for melanoma diagnosis. This approach
will integrate CNN and CapsNet features without requiring the segmentation step.
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