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Abstract. This paper addresses the development and application of an innova-
tive model to analyze the historical price series of commodities, significantly im-
pacting the profitability of Brazil’s oil and gas projects. The experiment focuses
on six historical price series of commodities critical to significant oil and gas
exploration companies. It highlights the volatility of steel prices in the Brazil-
ian and international markets and their direct impact on the key suppliers and
explorers in the sector. The research introduces an advanced model, employing
Deep Learning techniques with automated hyperparameters to optimize the se-
lection of the most effective model for each dataset. This selection is based on
a score of seven distinct metrics, ensuring the choice of the most suitable model
to predict market trends relevant to the Oil and Gas sector.

1. Introduction
Brazil’s Oil and Gas sector offers significant market-value projects. Despite this, the
Brazilian Oil & Gas (O&G) sector is relatively archaic in adopting Artificial Intelligence
(AI), Data Mining, and Machine Learning techniques for project financial risk analysis.
Such tools can provide reassurance to critical decision-makers concerning financial risk
mitigation. Brent crude oil is globally recognized as a strategic product, thus significantly
influencing the price dynamics of various other products. Price volatility significantly
increases, contributes to inflationary pressures, and dictates the main challenges for eco-
nomic growth in countries. Given the impact of oil on various supply chains, significant
suppliers must understand the dynamics of oil price fluctuations along with the fluctua-
tions and interdependence of other raw materials. A barrel of oil’s current and future price
guides investment volumes in oil exploration in the coming years.

The production of subsea products has an average timeline ranging from 12 to
18 months. Depending on the contract structure and the composition of these product
packages, the total contract period can reach between 30 and 40 months of supply. In some
instances, a contract involves several exploration wells, thereby determining the number
of orders each contract will generate. In other words, the first link in the supply chain
can be financially exposed to foreign exchange variations, commodity price changes, or
inflationary indexes throughout the contractual period.

Companies producing subsea oil extraction systems must develop medium-
to long-term strategies for market forecasting, raw material inventory management,
and cash flow optimization to maintain financial stability, particularly in the Brazil-
ian Oil & Gas sector, where fluctuations in oil barrel prices, such as WTI and
Brent, are key indicators for future investment decisions [Foroutan and Lahmiri 2024,



Mohsin and Jamaani 2023a]. These fluctuations also affect the volatility of commodi-
ties like metals and steel, essential for subsea systems production, while the predictabil-
ity of oil prices is increasingly analyzed using hybrid time series models, combin-
ing classical statistical methods with deep learning techniques, as seen in recent stud-
ies focused on price curve dynamics and global price benchmarks, including OPEC
[Cihan 2024, Maiti et al. 2024].

Deep Learning in financial risk analysis of projects applied to the O&G sector
impacts companies’ cash flow, risk, and return in this field. In this article, we use a
product composed of approximately 38% carbon steel and stainless steel, which is highly
exposed to the price variation of these commodities. Considering the variations in carbon
and stainless-steel prices between 2020 and 2022, there was an impact of 7.22% on the
raw material’s total value.

The findings of this research underscore that, in sectors characterized by signif-
icant financial risk and complexity, artificial intelligence (AI) offers a powerful tool to
support strategic and financial decision-making. In the Oil & Gas industry, Deep Learn-
ing has proven to be an effective and reliable method for addressing high-risk scenarios
that involve potential loss of shareholder value. However, there is not an extensive body
of literature focused on applying Deep Learning models to financial risk management in
large industries, highlighting the need for further research in this area. Strengthening the
connection between academia and industry in this sector could be a pivotal step toward
modernizing how financial aspects are monitored and managed.

2. Methodology
We employed the DarTS library to develop our model, enhancing hyperparameter opti-
mization using the Optuna tool. This was applied to time series data of Brent oil prices
and Brazilian and imported steel prices, which are pivotal in the production systems of
subsea products for oil and gas exploration. Furthermore, the project is designed to opti-
mize the best model selection. This approach aims to identify the most effective technique
for each dataset under analysis. This initiative stems from the goal of constructing a fi-
nancial risk index based on steel price volatility relative to the contract values offered by
an oil exploration company in bids for subsea products. A significant issue in Brazilian
Oil & Gas (O&G) sector projects is the discrepancy between the procurement prices of
raw materials, determined approximately six months to a year before contract signing,
and the updated value of the contract post-signing. At certain market junctures, this price
fluctuation between the initial procurement estimates and the acquisition of raw materials
is not reflected in the updated contract value between the O&G operator and its supplier.

Our analysis, based on the results obtained from Deep Learning models for Brent
oil and the prices of Brazilian and international carbon steel and stainless steel, along
with a brief historical review of the impact of geopolitical factors on the steel time series,
will enable us to propose a risk factor to be considered in the project’s Profit & Loss
(P&L) statement. Equation 1 represents the financial risk index, a weighted sum of each
component multiplied by a specific weight. The formula adapts the parametric Value at
Risk (VaR) framework [Jorion 2007].

FinancialRiskIndex = l1 ∗ w1 + w2 ∗ l2 + w3 ∗ l3 (1)



Where, l1 will represent the risk of steel in Brazil; l2 will represent the risk of
international steel; l3 will be the risk of Brent oil combined with the risk of price loss
due to geopolitical factors. The weights are determined by wx based on the assessment
of the time series of oil and steel prices, as well as a historical evaluation of potential
geopolitical impacts on the behavior of the curve.

3. Related Work
Machine Learning and Artificial Intelligence are technologies emerging in Corporate Fi-
nance and Financial Risk Analysis studies. To improve the efficacy of new studies in the
financial field, Deep Learning models have been used for predicting financial disasters
[Knuth 1984] and evaluating financial risk in various sectors of the economy: Electric
Energy [Oreshkin et al. 2020] using models capable of projecting consumption, includ-
ing the use of the DarTS library [Thomas and K.V. 2023], [Kazmi et al. 2023]; Medicine
[Salehin et al. 2024], [Panja et al. 2023], [Orji and Ukwandu 2024], tourism, economy,
retail, demography, among others [Athanasopoulos et al. 2024].

The importance of oil for the economic development of a nation generates a search
for coverage against the uncertainty in the price of the commodity. In addition to the
effect of the volatility of the price itself, there is also the high variation over time of the
raw materials used by suppliers who are part of the first link in the chain of significant oil
operators. From more traditional research, techniques in price prediction studies for oil
include ARIMA, vector autoregressive models, Monte Carlo Simulation, among others.
In the context of nonlinear scenarios, these models tend to perform poorly despite having
good efficacy for handling linear and stationary time series.

Contemporary literature has shown a shift in studies on oil pricing from tra-
ditional econometric and statistical models to more advanced, nonlinear models with
machine learning and Deep Learning techniques to capture the high volatility in oil
price curves. This moment of change has brought about some studies by researchers
[Ali Salamai 2023], [Yang et al. 2024], [Fang et al. 2023] who are now using artificial
intelligence and deep learning techniques for oil price projection. This sector is relatively
archaic but has been updated through new technologies. This includes explaining price
fluctuations during COVID-19 [Xu et al. 2024] or discussing regional prices, such as in
China [Guo et al. 2023].

Recent research using Deep Learning models, such as Convolutional Neural
Networks - CNN [Mohsin and Jamaani 2023b], Temporal Fusion Transformer - TFT
[He et al. 2023], and Recurrent Neural Networks - RNNs using LSTM and GRU
[Sen and Dutta Choudhury 2024], [Wang et al. 2023], have datasets with daily closing
values of the oil market in China and the United States. Although published between
2023 and 2024, the datasets are from periods up to 2020 - 2021, which may offer distor-
tions with applications carried out between 2022 and 2024, a post-pandemic period with
a cooling in the barrel price.

In addition to presenting an updated dataset, with the final date in December 2023,
the correlation of carbon and stainless steel to the fluctuation curve of oil price linked to
the geopolitical risk index GPR, our model covers the gap of research done with data
from the Brazilian scenario, such as the price of carbon and stainless steel. Additionally,
the novel experimentation with the Python DarTS library offers a variety of models, from



classics like ARIMA to deep neural networks [Herzen et al. 2022].

4. Dataset
All the time series applied in the model are listed in Table 1. Each series is derived from
real-world data, calculated monthly, and indexed to a base of 100.

The datasets underwent an individual preprocessing phase, accounting for ob-
served seasonality and trends as well as the analysis of missing data or any additional
irregularities.

After structuring the time series, the Dickey-Fuller (ADF) test was applied to
check the stationarity of each variable. It was necessary first to transform the data us-
ing logarithms, which showed a high p-value. In the second phase, the technique of log
differentiation by a twelve-month moving average was applied to make the series station-
ary. From this point, the experimental phase began.

Table 1. Statistical description of the data

# Column Period count mean std min 25% 50% 75% max

0 oil jan/82-nov/23 503 130.3 88.8 26.6 53.8 85.6 191.0 372.6
1 carbon br jan/96-dec/23 336 149.1 137.2 18.8 53.2 124.5 162.2 576.7
2 carbon us jun/82-dec/23 499 151.2 59.9 92.5 101.1 113.7 193.5 340.7
3 carbon cru apr/82-dec/23 357 152.2 57.3 68.9 100.9 154.7 177.2 355.4

5. Metrics
The accuracy of each model is measured using seven statistical indices calculated by the
library itself: Mean Absolute Error (MAE), Mean Absolute Scaled Error (MASE), Mean
Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Square Er-
ror (RMSE), Mean Absolute Ranged Relative Error (MARRE), and Root Mean Squared
Logarithmic Error (RMSLE). Additionally, we have developed a classification approach
that considers the combination of all these metrics through a score, allowing us to au-
tomatically determine the best model among all those tested in the DarTS library. This
automation in the developed model brings more clarity to the interpretation of results, of-
fering a more concise structure to assist decision-makers based on the obtained outcomes.
Having a model that demonstrates high levels of accuracy in predicting steel prices helps
mitigate the imminent risk of financial loss in projects with a high cost of raw materials,
with a concentration of 34% in a single commodity.

6. Experiment and Analysis
DarTS is a library for forecasting and anomaly detection in time series, comprising a
wide array of models ranging from classic ones like ARIMA through regression mod-
els to neural networks for Deep Learning. The diversity of models makes the DarTS
library a versatile tool that is applicable in various fields, such as the oil and gas sector.
Despite being a recent library, its comprehensive documentation facilitates understand-
ing the functioning of different models and the implementation of time series forecasting
projects. This makes using this innovative library for forecasting and anomaly detection in
time series particularly relevant. The importance of using DarTS is evident in this project,



specifically in forecasting steel prices, where the library becomes a good choice due to its
available models, which are crucial for predicting steel prices. This is evident from the
results of experiments showing that the library’s neural network-based models performed
satisfactorily. The training set, which corresponds to 75% of the data, is used to fit the
model, meaning the model ”learns” relevant patterns from historical data. The testing set,
representing the remaining 25%, is used to evaluate the model’s ability to generalize to
new, unseen data during training.

The initial models were those referenced in published articles mentioned
in the library’s documentation: RNN (Recurrent Neural Networks) as per arti-
cle [Herzen et al. 2022] with Vanilla structure, LSTM (Long Short-Term Memory),
and GRU (Gated Recurrent Unit), which are architectures of recurrent neural net-
works; NBeatsModel (Neural Basis Expansion Analysis for Time Series) as per article
[Oreshkin et al. 2019], and finally, the Transformer model. Thus, we can understand the
performance of PyTorch-based models compared to other classics for constructing a finan-
cial risk index in the procurement of Carbon and Stainless Steel for Oil and Gas industry
projects.

According to article [Flunkert et al. 2017], DeepAR is a probabilistic forecasting
method using autoregressive recurrent neural networks (RNNs) to learn a global model
from historical data of all-time series. This enables DeepAR to capture complex rela-
tionships between time series and make more accurate predictions. DeepAR also pro-
vides quantile forecasts, which can estimate the likelihood of different future outcomes.
DeepAR is suitable for this case as it can capture complex relationships between time
series, which is crucial for steel price forecasting. Experiments applied vanilla, LSTM,
and GRU RNNs.

On the other hand, article [Flunkert et al. 2017] discusses a forecasting method
that uses neural basis functions to represent the underlying structure of a time series. This
makes N-BEATS more interpretable than other forecasting methods, allowing users to see
which factors are most important for predictions. N-BEATS can also handle long-term
dependencies in time series data. It’s useful for this case as it’s more interpretable than
other forecasting methods and crucial for understanding the causes of variations in steel
prices. This article also provides insights into how the Transformer model can be used to
learn relationships between different time series, like steel and oil prices.

Continuing with experiments, we implemented the TCNModel (Temporal Convo-
lutional Network). The convolutional neural network is also used in the DarTS library
for time series forecasting [Bai et al. 2018],[Chen et al. 2020]. This method aims to learn
more complex patterns, such as seasonality and holiday effects, both within and in multi-
variate series. The architecture consists of stacked residual blocks based on dilated causal
convolutional networks designed to capture the temporal dependencies of the series under
analysis.

Another model used was N-HiTS (Neural Hierarchical Interpolation for Time
Series) [Challu et al. 2022], which combines hierarchical interpolation techniques with
multi-rate data sampling. Predictions are sequentially structured, emphasizing compo-
nents presenting different frequencies and scales, decomposing the input signal, and syn-
thesizing the forecast. The paper argues that N-HiTS achieves an average accuracy im-



provement of nearly 20% over Transformer architectures, with a 50-fold reduction in
time.

Finally, the TiDE (Time-series Dense Encoder) was tested on the datasets. This
model is an encoder-decoder based on a Multi-Layer Perceptron (MLP). Authors of the
article [Das et al. 2024] argue that in more recent works, simple linear models can outper-
form Transformer-based approaches for long-term time series. They continue to discuss
that TiDE can match or exceed previous approaches in popular benchmarks, being 5 to
10 times faster than Transformer-based models.

To achieve better results, hyperparameters were optimized using Optuna, an au-
tomatic hyperparameter optimization library for Python. This optimization was crucial
for making the models more efficient, showing improved performance for each model. A
total of 20 iterations were performed for each model, optimizing key parameters.

Thus, the experiment made it possible to evaluate the performance of different
time series forecasting models for constructing a financial risk index in procuring carbon
and stainless steel for the Oil and Gas industry. Analyzing the results, it is understood
that, as expected, models based on deep neural networks showed superior performance to
classic models, considering that the Transformer model had the best overall performance,
and RNN-based models also performed well. On the other hand, the TCN and TiDE
models showed inferior and below-expected performance.

In the comparative analysis of machine learning models on Table 2 for oil price
forecasting, as indicated in our results table, the Transformer model demonstrates supe-
rior performance across multiple accuracy metrics. Specifically, it achieved the highest
aggregated score of 54, reflecting its robustness in predicting oil prices. The evaluation
metrics used include MAE, MSE, MAPE, RMSE, MASE, MARRE and RMSLE. The
Transformer model consistently registered the lowest error values in MAE, MSE, and
RMSE, among others, and secured the top or near-top ranking across the individual met-
rics. While other models such as Long Short-Term Memory (LSTM), TIDE, N-BEATS,
Gated Recurrent Unit (RNN GRU), Temporal Convolutional Network (TCN), and Vanilla
Recurrent Neural Network (RNN) were included in the study, none outperformed the
Transformer in overall score. However, LSTM and TIDE showed competitive results.
This finding suggests that the Transformer model, known for capturing complex temporal
dependencies, is particularly effective for this forecasting task and may offer substantial
predictive capabilities for stakeholders in the oil market sector.

Table 2. Comparison of different models based on various metrics and scores -
oil.

oil MAE MSE MAPE RMSE MASE MARRE RMSLE Score

Transformer 0.113 -8 0.022 -8 0.148 -8 29.490 -7 2.544 -8 13.860 -8 0.098 -7 54
RNN LSTM 0.116 -3 0.022 -7 0.149 -7 28.676 -8 2.614 -3 14.241 -3 0.098 -8 39
NHiTS 0.113 -6 0.022 -5 0.150 -5 29.574 -4 2.560 -6 13.948 -6 0.099 -5 37
TiDE 0.113 -7 0.022 -4 0.150 -4 29.764 -2 2.556 -7 13.923 -7 0.099 -4 35
RNN GRU 0.116 -2 0.022 -6 0.149 -6 29.534 -5 2.622 -2 14.285 -2 0.098 -6 29
NBEATS 0.114 -5 0.023 -2 0.151 -2 29.506 -6 2.575 -5 14.027 -5 0.100 -2 27
TCN 0.115 -4 0.023 -3 0.150 -3 29.576 -3 2.593 -4 14.130 -4 0.099 -3 24
RNN Vanilla 0.118 -1 0.024 -1 0.154 -1 32.513 -1 2.664 -1 14.513 -1 0.103 -1 7



Regarding the Carbon US dataset, displayed in Table 3, the Transformer achieved
the best overall performance with the highest total score of 46, indicating consistently
high rankings across all metrics and locations. The RNN GRU had the weakest perfor-
mance, with the lowest total score of 7. Generally, the models appear to have varied per-
formances, with some (like the Transformer and RNN Vanilla) demonstrating robustness
across multiple metrics and others (such as TiDE and RNN GRU) showing limitations in
their predictive performance.

Table 3. Comparison of different models based on various metrics and scores -
carbon us.

carbon cru MAE MSE MAPE RMSE MASE MARRE RMSLE Score

Transformer 0.115 -8 0.022 -5 0.149 -5 21.634 -7 5.476 -8 17.163 -8 0.093 -5 46
RNN Vanilla 0.116 -7 0.022 -6 0.148 -6 21.898 -6 5.525 -7 17.317 -7 0.093 -6 45
NBEATS 0.117 -6 0.021 -8 0.144 -8 24.284 -2 5.564 -6 17.44 -6 0.092 -8 44
RNN LSTM 0.119 -3 0.022 -7 0.147 -7 22.585 -4 5.635 -3 17.663 -3 0.092 -7 34
NHiTS 0.118 -4 0.023 -4 0.150 -4 22.217 -5 5.588 -4 17.513 -4 0.094 -4 29
TCN 0.117 -5 0.024 -2 0.155 -2 20.862 -8 5.568 -5 17.452 -5 0.096 -2 29
TiDE 0.119 -2 0.023 -3 0.150 -3 23.222 -3 5.678 -2 17.796 -2 0.095 -3 18
RNN GRU 0.132 -1 0.024 -1 0.156 -1 26.53 -1 6.254 -1 19.601 -1 0.099 -1 7

In Table 4, we find the results for the Carbon CRU dataset, where the Transformer
model continues to lead the ranking, like previous datasets, with the highest total score
of 50, reflecting a consistently strong performance across all metrics. On the other hand,
the RNN GRU has the lowest total score of 16, suggesting it is the least effective model
among those listed for this specific dataset. The results for the other models vary, with the
RNN Vanilla and TCN positioning between the Transformer and RNN GRU, having total
scores of 44 and 36, respectively. The N-HiTS, N-BEATS, and TiDE exhibit intermediate
performances with total scores of 28, 23, and 21, respectively. These results indicate that,
for the Carbon CRU dataset, the Transformer can be considered the most robust model,
while the RNN GRU shows significant limitations in its predictive capacity. The other
models display a spectrum of effectiveness, with some offering reasonable performance
and others showing potential for improvement.

Table 4. Comparison of different models based on various metrics and scores -
carbon cru.

carbon cru MAE MSE MAPE RMSE MASE MARRE RMSLE Score

Transformer 0,116 -8 0,022 -6 0,149 -6 21,503 -7 5,493 -8 17,216 -8 0,093 -7 50
RNN Vanilla 0,117 -6 0,022 -7 0,149 -7 21,863 -6 5,539 -6 17,361 -6 0,093 -6 44
TCN 0,116 -7 0,023 -2 0,152 -2 21,310 -8 5,495 -7 17,222 -7 0,095 -3 36
RNN LSTM 0,119 -2 0,022 -8 0,148 -8 22,861 -4 5,664 -2 17,753 -2 0,093 -8 34
NHiTS 0,118 -4 0,023 -4 0,15 -4 22,950 -3 5,632 -4 17,652 -4 0,094 -5 28
NBEATS 0,118 -5 0,023 -1 0,153 -1 22,536 -5 5,62 -5 17,616 -5 0,096 -1 23
TiDE 0,119 -3 0,023 -3 0,151 -3 23,026 -2 5,652 -3 17,714 -3 0,095 -4 21
RNN GRU 0,123 -1 0,023 -5 0,150 -5 24,097 -1 5,841 -1 18,306 -1 0,095 -2 16

It is important to note that in addition to performing best on the crude oil price
dataset, the Transformer model also excelled on carbon steel price datasets in the United



States and Global price, with Recurrent Neural Networks, whether vanilla or LSTM, be-
ing the second choice. This leads us to conclude that the short-term memories of LSTMs
may be sufficient to capture the dynamics of Carbon curves. In the Brazilian market, how-
ever, the Transformer did not maintain its dominance in the first place, suggesting that the
pricing dynamics in Brazil have a different structure.

Unlike American and global prices, Brazilian carbon steel had the NHiTS as the
best model, as shown in Table 5, with RNN models again in second place. The dynamics
of the Brazilian price curve are better accommodated by the convolutional network archi-
tecture of NHiTS than by the attention mechanisms of the Transformers. In any case, the
Transformer model comes in second place, trailing only behind the RNN LSTM model.

Table 5. Comparison of different models based on various metrics and scores -
carbon br.

carbon br MAE MSE MAPE RMSE MASE MARRE RMSLE Score

NHiTS 0,149 -8 0,048 -7 0,220 -7 35,265 -6 3,935 -8 16,784 -8 0,141 -8 52
RNN Vanilla 0,157 -7 0,064 -4 0,252 -4 29,351 -8 4,161 -7 17,75 -7 0,163 -4 41
Transformer 0,172 -4 0,048 -6 0,220 -6 46,763 -4 4,569 -4 19,488 -4 0,144 -7 35
RNN LSTM 0,163 -6 0,069 -3 0,262 -3 29,599 -7 4,324 -6 18,443 -6 0,171 -3 34
TiDE 0,175 -3 0,048 -8 0,218 -8 49,264 -3 4,638 -3 19,784 -3 0,144 -6 34
NBEATS 0,172 -5 0,049 -5 0,220 -5 49,614 -2 4,560 -5 19,448 -5 0,145 -5 32
RNN GRU 0,211 -2 0,091 -2 0,301 -2 40,628 -5 5,583 -2 23,812 -2 0,205 -2 17
TCN 0,322 -1 0,151 -1 0,388 -1 69,722 -1 8,537 -1 36,413 -1 0,283 -1 7

After running all the comparative models, the Friedman test yielded a p-value
significantly lower than 0.05. This indicates the presence of statistically significant dif-
ferences between the models in the metrics analyzed, suggesting that their performances
are not equivalent. Therefore, it is essential to explore further which models stand out for
each time series being evaluated. This result reinforces the validity of mapping through
the scores, demonstrating a significant difference between the models’ performances.

7. Geopolitics and the impact on oil prices
During the post-war period, the price of oil remained stable throughout the ’50s and ’60s,
staying below 2 dollars. In the early ’70s, following a coup in Libya, the establishment
of a tax structure on the value of oil, and international conflicts in Egypt, Syria, the Sinai
Peninsula, and the Gaza Strip, the First Oil Shock began in 1973, raising the price of this
commodity to previously unseen levels.

Since then, as shown in Figure 1, geopolitical factors have started to influence
price volatility, in addition to demand, which, with the economic development during the
post-war period, led to a scarcity of this product during the ’80s and ’90s. Consequently,
this developed the sector for increased production and the discovery of new wells. In
1979, the Iranian revolution and the Afghanistan war with the Soviet Union caused a
sharp increase in the price of oil, reaching historically unprecedented levels, thus leading
to the well-known second oil shock. Since then, the volatility of this commodity has
become highly significant in the global market, impacting various other sectors. Upon
reaching 1990, the Gulf War between the United States and Iraq initiated the third oil
shock. Prices only began to cool down in 2009, but with the death of Osama bin Laden



in 2011, values rose again, peaking above 100 dollars a barrel. The time series remained
unstable, with no apparent trends until the arrival of COVID-19, which again raised barrel
prices above 100 dollars.

It is significant to monitor the price of oil, both for explorers and for first-link
suppliers in the chain, as the current barrel value will dictate the volume of investments
in the sector for the exploration of new wells, as well as the production of new products
for the maintenance of existing wells.

Figure 1 displays the fluctuating trends of the GPR index [25] on the left axis
and the Brent Oil Price on the right axis during this research period. As observed in
the chart, the GPR exhibits significant volatility, indicating an unstable global political
environment, like the behavior of oil prices. Oil is susceptible to external information,
showing movements like the GPR with some delay. Intuitively, major geopolitical events
may explain the characteristic movements in the oil market. This same comparison of the
GPR and oil prices was presented in [26]; however, the researchers used the daily price of
a barrel of oil as the database instead of the monthly index.

Figure 1. Placement of geopolitical events during the historical series of the
global crude oil price.

8. Risk index for steel in the oil and gas sector

Creating a financial risk index for oil and gas projects in Brazil is crucial due to the
complexity and challenges inherent to this sector. Projects generally involve significant
investments in exploration, production, and infrastructure. In the case of this research,
the evaluated project is linked to infrastructure. Assessing and managing financial risks
helps protect invested capital and ensure the economic sustainability of the project and all
stakeholders involved in the chain.

Given the volatility of oil prices linked to geopolitical factors, changes in global
supply and demand, and unforeseen events, a financial risk index can help assess how
these fluctuations may impact project profitability. The initial purpose of verifying the
impact of the price of oil on one of the primary raw materials for product development
for the oil exploration activity; there are no significant impacts on the steel industry, and
there is a low correlation of the price of crude oil and the types of steel used.



Given future investments in the Oil and Gas supply chain in Brazil, the future
price of the commodity should be considered a financial risk, as there may be a shortage
of proposals to produce submarine exploration systems in the Brazilian market if the price
of a barrel of oil were to fall.

In the paper [27], the authors present an approach used to estimate the influence of
geopolitical risks on the oil and stock markets. They focus on the asymptotic form of the
tail of the distribution rather than modeling the entire distribution. Absorbing part of the
methodology used, for this research, we used the whole time series of GPR and calculated
the maximum loss by calculating Value at Risk (VaR) on the oil price. The result of the
VaR is added to the MAPE, which is the percentage error of the oil price, thus negatively
impacting the proposed risk index.

FinancialRiskIndex = 20.74%∗w1+13.80%∗w2+14.85%∗ (1+27.38%)∗w3 (2)

Where, w1 and w2 – refer to the purchase of Brazilian and international steel, re-
spectively, and will have their weights distributed depending on the purchase volumes at
each location for a given project; w3 – determines the weight of the Brent oil price im-
pact to be considered by the current price at which the index is being calculated versus
the future price, referencing the minimum barrel price considered viable for a project; for
example, in Brazil, for oil exploration activities, the barrel should be around 85 dollars
per barrel; l1 – average of the MAPE metric for the model that achieved the most consis-
tent result for the steel price in Brazil: Carbon and Stainless; l2 – average of the MAPE
metric for the model that achieved the most consistent result for the price of international
steel: Carbon and Stainless; l3 – average of the MAPE metric for the model that achieved
the most consistent result for Brent oil price plus the maximum loss of the GPR series:
MAPE ∗ (1 + V aRGPR).

This index is a preliminary step towards developing a series of studies and im-
proving models for the oil and gas sector, where steel price volatility is a significant con-
cern. The research introduces an innovative approach to addressing this gap, providing a
decision-support tool to assess and mitigate risks in such projects. The study establishes a
robust method grounded in automated machine learning by comparing various libraries’
results to determine the best fit for steel price series and considering significant covari-
ates. This approach automatically selects the most suitable models and hyperparameters
tailored to the specific dynamics of commodity price movements.

9. Limitation and future research
In comparison to other literature, this study highlights several gaps that guide us toward
future research directions. For instance, it suggests examining the correlation between
steel prices and daily crude oil prices, hypothesizing that forecasting daily commodity
prices could be more accurate than monthly predictions. Geopolitical factors significantly
influence future price trends, and accurately forecasting these prices remains a complex
task that requires further investigation. Moreover, hyperparameter optimization could be
more effective with additional iterations; however, we were constrained to 20 iterations
due to hardware limitations. We plan to continue exploring alternative tools, techniques,
and artificial intelligence models to enhance our analysis of oil and steel price fluctuations.



An upcoming area of focus for this research’s risk index is to gain a deeper un-
derstanding of the steel price dynamics in Brazil, considering covariates from sectors that
heavily utilize steel, such as the automotive and civil industries.
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