
Optimizing Transfer Learning and Fine-Tuning
Hyperparameters in Image Classification Problems

with Firefly Algorithm
Vinı́cius T. M. G. da Silva1, Gustavo F. V. de Oliveira1,

Fabrı́cio A. Silva1, Marcus H. S. Mendes1

1Instituto de Ciências Exatas e Tecnológicas – Universidade Federal de Viçosa (UFV),
Campus Florestal – Florestal – MG – Brazil

{vinicius.tome,gustavo.viegas,fabricio.asilva,marcus.mendes}@ufv.br

Abstract. Image classification is crucial in computer vision, mainly with Convo-
lutional Neural Networks (CNNs). This paper optimizes transfer learning and
fine-tuning hyperparameters of CNNs pre-trained on ImageNet for still image
classification. Hyperparameter tuning is a complex task that impacts the classi-
fication results. The Firefly Algorithm (FA) was used to optimize these hyperpa-
rameters across four datasets with Xception and ResNet-152 architectures. Ex-
periments show that FA enhances model performance, achieving state-of-the-art
accuracy on three datasets: Multi-Class Weather (99.11%), Pistachio (100%),
and D0 (99.89%). Despite being time-consuming, this approach offers a viable
method for improving image classification, mainly with smaller datasets.

1. Introduction
In recent years, image classification has become a significant task in computer vision
[Mohamed et al. 2022], and the ability to accurately categorize and interpret images is
critical in numerous domains. One of the most widely used solutions is Convolutional
Neural Networks (CNNs), typically pre-trained on a general dataset and then retrained
on a specific dataset. This approach retains part of the previous knowledge to increase
accuracy, employing Transfer Learning and Fine-Tuning techniques.

Transfer learning offers a significant advantage in image classification tasks
[Bloedorn and Webber 2023], taking advantage of pre-trained models on large datasets,
such as ImageNet [Deng et al. 2009]. This approach allows for the reuse of learned featu-
res, which reduces the need for extensive labeled data and computational resources. It is
particularly useful for small datasets, allowing models to achieve high accuracy even with
limited training data by fine-tuning pre-trained weights to new tasks. Using transfer lear-
ning and fine-tuning methods can sometimes be arduous, requiring considerable time and
experimentation with different hyperparameter configurations. Finding the optimal solu-
tion often presents an optimization challenge. As a result, many techniques originally de-
veloped for optimization problems have been adapted for hyperparameter tuning, such as
Bayesian Optimization [Snoek et al. 2012] and Grid Search [Belete and D H 2021]. Me-
taheuristics are also widely employed in this field due to their adaptability to non-linear
optimization problems [Aszemi and Dominic 2019]. However, these methods often face
challenges when dealing with large search spaces.

The Firefly Algorithm (FA) [Yang 2010] offers a promising alternative due to its
simplicity and flexibility to explore the search space. This study proposes that applying



FA to the hyperparameter tuning of CNNs can achieve superior classification performance
compared to other methods, particularly in transfer learning scenarios.

In this work, we used the Firefly Algorithm (FA) to optimize the transfer learning
and fine-tuning hyperparameters of CNNs pre-trained on the ImageNet dataset, speci-
fically for still, colored image classification problems. We tested FA on four different
datasets and evaluated it using two different CNN architectures. The main contributions
of this paper are to extensively test the performance of the FA in this specific task and to
demonstrate its effectiveness in different classification problems, such as weather, pista-
chio type, insect, and cells infected with malaria. We aim to present a relatively simple
and comprehensible solution that can be applied to different image classification problems
with small datasets of colored images.

The remainder of this paper is organized as follows: Section 2 reviews related
work in the field. Section 3 describes the hyperparameters that will be optimized. Sec-
tion 4 explains how we applied the Firefly Algorithm in this study. Section 5 details
additional aspects, such as the datasets and CNN architectures used. Section 6 presents
the results obtained, and Section 7 provides our conclusions.

2. Related works

Metaheuristics are a common approach in various studies that require finding an optimal
set of hyperparameters in deep learning. One of the studies closest to our approach is
[Ayan 2023], which uses a Genetic Algorithm (GA) to optimize transfer learning and fine-
tuning hyperparameters. The chromosome of the GA is composed of 4 genes: freezing
ratio, dropout rate, optimizer, and the width and depth of fully connected layers. The
approach was tested with 3 insect datasets for the classification of crop pests and achieved
state-of-the-art accuracy in two datasets: Deng (97.58%) and D0 (99.89%), as well as
results close to the state-of-the-art with the IP102 dataset (71.84%).

In [Bacanin et al. 2021], the authors tested the Firefly Algorithm (FA) and also
proposed a modified FA to optimize the hyperparameters of CNNs for classifying gli-
oma brain tumors. They optimized hyperparameters such as the number of convolutional
layers, number of dense layers, number of filters, dropout rate, optimizer, learning rate,
and others. However, they did not use pre-trained models and transfer learning. They tes-
ted it in two datasets, the first being a combination of three datasets and the second being
the axial brain tumor images dataset. With both datasets, they achieved a state-of-the-art
accuracy, being 93.3% with the first dataset and 96.5% with the second.

In [Bacanin et al. 2023], various metaheuristics were tested to optimize the hy-
perparameters of deep learning models for energy load forecasting, and one of the me-
taheuristics tested was the FA. However, they did not apply it to an image classification
problem. The firefly representation comprised the number of neurons, learning rate, trai-
ning epochs, and dropout.

In [Golnoori et al. 2023], they tested the Genetic Algorithm, Particle Swarm Op-
timization, and Differential Evolution Algorithm to optimize the hyperparameters of both
pre-trained models and models trained from scratch. They optimized parameters such
as optimization function, number of neurons, drop rate, and others, and tested it on the
ISIC-2018 and ISIC-2017 datasets.



In [Li et al. 2022] the authors tested GA to optimize especificaly the trainability
of layers of the transfer model. In [Lai et al. 2023] the Gray Wolf Optimizer is used to
optimize the number of neurons in the hidden layers of the neural network and the weight
values between neurons and biases, for skin cancer diagnosis. They achieved 97.09% and
95.17% accuracy with the ISIC-2016 and ISIC-2017 datasets, respectively.

In contrast to previous studies, our objective is to utilize the FA to optimize the
number of trainable layers in a pre-trained model, as well as other parameters for further
fine-tuning, and evaluate its effectiveness as a potential solution for image classification
tasks.

3. Transfer learning and Fine Tunning hyperparameters
One of the main techniques for transferring the knowledge of a CNN that has learned to
solve one problem is to freeze some of the layers from the model. By doing so, these
layers are not updated during training, allowing the original knowledge to be retained
while the model adapts to a new problem. Other hyperparameters can also be adjusted
to fine-tune the model and improve its performance. This section focuses on the specific
hyperparameters selected for optimization in our study.

The first hyperparameter is the freezing ratio, which represents the percentage of
layers of the model that will be frozen during training. It is one of the most impactful
parameters in the transfer learning technique, affecting both the accuracy of the model
and the training time. The freezing ratio ranges from 0 to 1, with a minimum variation of
0.01 in this work.

The second is the dropout rate, which determines the proportion of neurons in a
layer that will be randomly dropped during each training iteration. This technique helps
prevent overfitting by ensuring the model does not become overly reliant on specific neu-
rons, promoting more robust learning. The dropout rate ranges from 0 to 1, with a mini-
mum variation of 0.01 used in this study.

The third hyperparameter is the optimizer, which influences how the model
weights are updated during training. Optimizers determine the strategy for minimizing
the loss function by adjusting the learning rate and updating weights based on gradients
computed from the training data. The choice of optimizer can significantly impact the
convergence rate and overall performance of the model. This study evaluates several op-
timizers, including Adam, SGD, RMSprop, Adadelta, Adagrad, and Adamax.

The fourth hyperparameter is the number of fully connected layers (depth),
which is responsible for integrating features extracted by previous layers and making final
predictions. The depth and size of these layers can influence the capacity of the network
to learn complex patterns and generalize from the data. In this study, the depth will range
from 1 to 5.

The fifth hyperparameter is the number of neurons (width) in each fully connec-
ted layer, which determines the number of units available to process and integrate features
extracted by previous layers. A larger number of neurons can increase the capacity of the
model to learn more intricate features but may also lead to overfitting and higher compu-
tational costs. However, too few neurons might limit the performance of the network. In
this study, the width of the fully connected layers is evaluated with values of 64, 128, 256,



512, 1024, and 2048.

The sixth and final hyperparameter to be optimized is the L2 regularization pa-
rameter, which controls the strength of the L2 regularization applied to the model. L2
regularization, also known as weight decay, adds a penalty to the loss function proportio-
nal to the square of the magnitude of the weights. This technique helps prevent overfitting
by discouraging the model from assigning excessive importance to any single weight,
thus promoting simpler and more generalizable models. This study will evaluate the L2
regularization parameter with values ranging from 0.001 to 0.1, with a minimum variation
of 0.001.

4. Firefly Algorithm

To optimize these parameters, we chose the Firefly Algorithm (FA), a well-known me-
taheuristic that is easy to adapt to various optimization problems. Developed by Xin-She
Yang in 2008, FA is inspired by the behavior of fireflies in nature, which emit light to
attract mates. In the context of optimization, a firefly represents a potential solution, and
its “brightness”indicates the quality or fitness of that solution. The algorithm iteratively
updates the positions of fireflies, with each firefly moving according to the brightness of
other fireflies, being attracted to brighter ones. The brightness level and the distance from
the target firefly influence the movement of each firefly.

Since this is a maximization problem, the brightness Ii of a fireflyi will be equal
to the objective function f(xi), which we will call fitness. The fitness, as shown by
Equation (1), in this problem will be how the model performs with the current set of
hyperparameters, and inspired by [Ayan 2023] this will be measured by the mean value
of four metrics: accuracy, precision, recall and F1 score.

fitness =
accuracy + precision+ recall + F1 score

4
(1)

Since training a CNN is a task that requires time and typically increases propor-
tionally with the dataset size, running the FA in this scenario is very time-consuming. In
[Ayan 2023], they limited the Genetic Algorithm to a population of 10 through 10 ite-
rations, which limits the algorithm to 100 fitness evaluations. Similarly, we restrict the
population size n and the number of generations. In this case, n = 5 and the number of
generations is 10, limiting the number of fitness evaluations to approximately 100.

In our implementation, each variable of the firefly is represented by a number
between 0 and 100. To convert these variables into the equivalent hyperparameters, whe-
never a solution is to be evaluated, each variable is modified to be used in the model. The
freezing ratio and dropout rate are multiplied by 10−2, the L2 regularization parameter
is multiplied by 10−3, and for the discrete variables (optimizer, number of fully connec-
ted layers, and neuron number), the firefly variable is divided into equal parts, each part
representing an option of the hyperparameter.

Due to the limitations in population size and the number of generations, as well
as the characteristics of the fireflies, we made a few adaptations to the FA parameters.
The most significant change was to β0, which is typically set to 1 [Yang 2010]. In our
implementation, we initially set β0 to 60 and decreased it by 7 with each iteration. This



adjustment was necessary because the large variable range and limited iterations would
otherwise restrict the fireflies movements, reducing search area exploration. The final
value was determined through experimentation. Consequently, firefly attractiveness was
higher in the initial iterations, enhancing early exploration. Other parameters were set to
standard values: α was set to 0.5 and decreased by 0.02 each iteration, while the light
absorption coefficient γ was set to 0.1.

5. Materials and Methods
To test the proposed method, we needed to choose a CNN model and datasets where it
could be applied. First, we selected two models pre-trained with the ImageNet dataset,
and then we chose four different datasets to test with each model.

5.1. CNN models
We decided to use the models provided by the Keras library for training and chose
models with good top-1 and top-5 accuracy and relatively low model complexity
[Bianco et al. 2018].

The first model we chose for our experiments was the Xception model
[Chollet 2017], which is built upon the Inception architecture by replacing standard con-
volutional with depthwise separable convolutions, which helps to reduce computational
cost while improving accuracy. This model has a good top-1 and top-5 accuracy on the
ImageNet dataset and can be used in tasks that require a balance between accuracy and
computational efficiency.

The second model we chose was the ResNet-152 model [He et al. 2015], which
is part of the ResNet family and is known for its deep residual learning framework incor-
porating residual blocks to address the vanishing gradient problem. With 152 layers, this
model achieves high accuracy on image classification tasks while maintaining relatively
low computational complexity compared to its depth.

Both models are well-established benchmarks, demonstrating strong accuracy on
the ImageNet dataset while maintaining a suitable computational complexity. Although
newer models are available, Xception and ResNet-152 offer a practical balance between
accuracy and resource demands, while also being stable platforms for evaluating the FA
impact on hyperparameter optimization.

5.2. Datasets
FA in this case is very time-consuming, as mentioned. Since we decided to run it multiple
times with each CNN model, we are limited to smaller-sized datasets. We chose four
datasets of increasing size for testing, with the larger datasets being tested fewer times. In
all, the data was initially split randomly into 80% for training and 20% for testing. From
the training set, 12.5% of the images were randomly selected for validation, resulting in
a final distribution of 70% for training, 10% for validation, and 20% for testing.

The first dataset we used is the Multi-Class Weather dataset [Gbeminiyi 2018],
which provides outdoor images totaling 1,125 colored images of different weather con-
ditions. It is divided into four classes: Cloudy (300 images), Rainy (215 images), Shine
(233 images), and Sunshine (356 images). We executed the Firefly Algorithm with this
dataset 24 times for each CNN model.



The second dataset we used was the Pistachio Image Dataset [Singh et al. 2022,
Ozkan et al. 2021], which provides colored images of two types of pistachios: Kirmizi
pistachio and Siirt pistachio. The dataset contains 2,148 images divided into two classes:
1,232 images of the Kirmizi type and 916 images of the Siirt type. This dataset was also
tested with the Firefly Algorithm 24 times for each model.

The third dataset we chose was the D0 dataset [Xie et al. 2018], which provides
colored images of insects and is useful for classifying crop pests. The dataset contains
4,508 images, divided into 40 species of insects. This dataset was tested with the Firefly
Algorithm 6 times for each model.

The fourth and final dataset used was the Malaria dataset [Rajaraman et al. 2018],
which provides images of cells useful for identifying cells infected with malaria. The
dataset contains 27,558 images, divided equally between two classes: infected cells and
uninfected cells. We applied horizontal and vertical flip data augmentation to the training
and validation subsets. We executed the FA with this dataset only once for each model.

5.3. Training setup

We used the TensorFlow and Keras libraries to execute the algorithm and ran it on an Intel
Core i5-8600 with 16 GB of RAM and an NVIDIA GTX 4060 with 8 GB of VRAM, on
a Linux Mint 21.3 operational system. Each training was conducted over 32 epochs with
a batch size of 32. We applied the early stopping method to stop training after 13 epochs
without an improvement in validation accuracy. Source code in footnote.1

6. Results
In this section, we present the results of multiple algorithm executions. Multiple executi-
ons are important because the initial population of fireflies can limit the search area. We
then highlight the best solutions for each case and compare these results with those from
other studies that applied different training methods to the same datasets. Notice that each
column from the Tables 1, 2, and 3 represents the metrics separately, meaning that each
line does not necessarily represent the same execution. In the case of the Malaria dataset,
the metrics are in Table 5 since there was only one execution.

From the results of the multiple executions, it is noticeable that the best accuracy is
not consistently obtained. This highlights the limitations of many metaheuristics, which
may not be able to explore the entire search area of the problem. In the case of the
Firefly Algorithm, this limitation is especially pronounced due to the initial positions
of the fireflies. The movement of each firefly is directed toward other fireflies, leaving
areas outside their pathways unreachable. However, from the multiple executions, we
can observe that the mean values obtained are close to the best values, and the standard
deviation is relatively low.

The algorithm performed best with the Pistachio dataset (see Table 2), achieving
100% accuracy with the Xception model in 16 out of 24 executions. In the case of the
ResNet-152 model, it achieved the best result in 12 out of 24 executions. With the Multi-
Class Weather dataset(see Table 1), the best accuracy was achieved only 3 times out of
24 executions with the Xception model, and the best overall accuracy of 99.11% was

1https://github.com/viniciustmgs/POC



Table 1. Results of the firefly algorithm with the Multi-Class Weather dataset

Xception
Accuracy Precision Recall F1 score

Best 0.986666 0.986732 0.991031 0.986666
Worst 0.964444 0.963458 0.968468 0.955555
Mean 0.979259 0.978891 0.980649 0.975925

Standard deviation 0.005689 0.005839 0.005429 0.007361
ResNet-152

Accuracy Precision Recall F1 score
Best 0.991111 0.990955 0.991031 0.986666

Worst 0.959999 0.958766 0.959999 0.915555
Mean 0.980370 0.979955 0.983420 0.976666

Standard deviation 0.007017 0.007211 0.005912 0.013653

Table 2. Results of the firefly algorithm with the Pistachio image dataset

Xception
Accuracy Precision Recall F1 score

Best 1.000000 1.000000 1.000000 1.000000
Worst 0.993023 0.992849 0.993023 0.993023
Mean 0.998837 0.998810 0.998837 0.998837

Standard deviation 0.001898 0.001943 0.001898 0.001898
ResNet-152

Accuracy Precision Recall F1 score
Best 1.000000 1.000000 1.000000 1.000000

Worst 0.995348 0.995250 0.995348 0.995348
Mean 0.998449 0.998416 0.998449 0.998449

Standard deviation 0.001733 0.001770 0.001733 0.001733

Table 3. Results of the firefly algorithm with the D0 dataset

Xception
Accuracy Precision Recall F1 score

Best 0.998891 0.999090 0.998886 0.994456
Worst 0.991131 0.989267 0.993311 0.982261
Mean 0.994456 0.993438 0.996465 0.989283

Standard deviation 0.003263 0.004132 0.001973 0.003768
ResNet-152

Accuracy Precision Recall F1 score
Best 0.997782 0.998147 0.997772 0.993348

Worst 0.992239 0.990280 0.995531 0.987804
Mean 0.995750 0.995317 0.996841 0.991685

Standard deviation 0.001743 0.002511 0.000769 0.002098

achieved only once with the ResNet-152 model. In that regard, it is noticeable that the
Multi-Class Weather dataset had a more limited set of hyperparameters that achieved a



close to optimal result, while the Pistachio dataset had different areas of the search space
that achieved an optimal result.

In the case of the D0 dataset (see Table 3), the algorithm achieved the best result
with the Xception model twice out of the 6 executions, and with the ResNet-152 model,
it achieved the best result once out of the 6 executions. The mean values were relatively
close to the best results, with low variation.

From these results, it is possible to infer that, in the case of the Malaria dataset
(see Table 5), the optimal set of hyperparameters was possibly not obtained from only one
execution. It may also have only achieved a local maximum. To further test this, more
executions of the algorithm are needed. However, this approach would be unfeasible due
to the significant time requirements. In cases where improvement in accuracy is urgently
needed, conducting more executions is a possible solution, but it could very well achieve
only small improvements.

Table 4. Best set of hyperparameters achieved for each dataset

Multi-Class Weather dataset
Model Freezing ratio Dropout Optimizer FC layers Neurons L2

XC 0.04 0.21 Adamax 5 512 0.023
RN-152 0.73 0.46 SGD 2 64 0.075

Pistachio dataset
XC 0.31 0.39 RMSprop 3 128 0.031

RN-152 0.57 0.45 Adam 2 512 0.012
D0 dataset

XC 0.41 0.27 Adamax 1 1024 0.037
RN-152 0.57 0.14 SGD 1 512 0.036

Malaria dataset
XC 0.32 0.56 RMSprop 2 256 0.003

RN-152 0.78 0.37 SGD 2 1024 0.015

Table 5. Metrics of the best solution achieved for each dataset

Multi-Class Weather dataset
Accuracy Precision Recall F1 score

Xception 0.986666 0.986732 0.986666 0.986666
ResNet-152 0.991111 0.990955 0.991031 0.982222

Pistachio dataset
Xception 1.000000 1.000000 1.000000 1.000000

ResNet-152 1.000000 1.000000 1.000000 1.000000
D0 dataset

Xception 0.998891 0.999090 0.998880 0.988913
ResNet-152 0.997782 0.998147 0.997772 0.993348

Malaria dataset
Xception 0.971516 0.971516 0.971516 0.971516

ResNet-152 0.971153 0.971152 0.971153 0.971153



Table 4 shows the values of hyperparameter for the best solutions, and Table 5
shows the subsequent results from these solutions.

Table 6. Comparison with other works

Multi-Class Weather dataset
research method Accuracy Precision Recall F1 score
[Tian et al. 2021] 93.50% 93.42% 92.9% 93.15%

[Al-Haija et al. 2020] 98.22% 96.50% - -
XC (this work) 98.66% 98.67% 98.66% 98.66%

RN-152 (this work) 99.11% 99.09% 99.10% 98.22%
Pistachio dataset

[Avuçlu 2023] 88.57% 88.44% - 88.28%
[Ozkan et al. 2021] 94.18% 95.13% - 94.94%
[Lisda et al. 2023] 96.00% 96.00% 96.00% 96.00%
[Singh et al. 2022] 98.84% 98.28% - 98.84%

XC (this work) 100.00% 100.00% 100.00% 100.00%
RN-152 (this work) 100.00% 100.00% 100.00% 100.00%

D0 dataset
[Saranya et al. 2024] 98.02% 98.92% 97.88% 98.88%

[Ayan et al. 2020] 98.81% 98.88% 98.81% 98.81%
[Ung et al. 2021] 99.78% 99.66% 99.71% 99.68%

RN-152 (this work) 99.78% 99.81% 99.77% 99.33%
[Nanni et al. 2022] 99.81% 99.83% 99.77% 99.71%

[Ayan 2023] 99.89% 99.82% 99.91% 99.86%
XC (this work) 99.89% 99.91% 99.89% 98.89%

Malaria dataset
[Sibinraj et al. 2024] 88.00% 88.00% 88.00% 88.00%
[Behera et al. 2024] 96.24% - - 95.5%

[Narayanan et al. 2023] 97.10% - - -
RN-152 (this work) 97.11% 97.11% 97.11% 97.11%

XC (this work) 97.15% 97.15% 97.15% 97.15%
[Gesmundo 2022] 97.46% - - -

[Mujahid et al. 2024] 97.57% 96.59% 98.62% 97.55%
[Schwarz Schuler et al. 2022] 97.61% - - -

[Rajaraman et al. 2018] 98.60% - - 98.70%
[Mishra 2021] 99.37% 99.52% 99.23% 99.37%

Table 6 shows that, compared with other works that applied different deep learning
techniques, our proposed method achieves astounding results with the Weather, Pistachio,
and D0 datasets. It improves the current state-of-the-art performance with the Weather
and Pistachio datasets, while achieving a result equal to the state-of-the-art with the D0
dataset.

On the other hand, with the Malaria dataset, the algorithm could have improved
the accuracy compared to other works that achieved better results with the same dataset.
In a medical image classification problem, such as the classification of malaria-infected
cells in this case, a model with higher accuracy, such as the one from [Mishra 2021], is



preferable. However, the proposed method still achieved good results compared to other
works implementing more complex methods.

7. Conclusion
In this paper, we applied the Firefly Algorithm to optimize the percentage of trainable
layers and other fine-tuning hyperparameters in pre-trained models for image classifi-
cation problems. Based on our experiments with different datasets, the Firefly Algo-
rithm can successfully optimize the set of parameters for this specific task. We achieved
state-of-the-art performance with three of the four datasets tested, obtaining 99.11% ac-
curacy with the Multi-Class Weather dataset, 100% accuracy with the Pistachio dataset,
and 99.89% accuracy with the D0 dataset.

The method also achieved good results with the Malaria dataset, with an accuracy
of 97.15%. Although these results are comparable to other studies, they did not reach the
state-of-the-art.

From this, we can determine that the proposed Firefly Algorithm method is gene-
rally effective for this specific task. However, based on the results and the time limitations
previously mentioned, it is best suited for cases with small-sized datasets, since in this
case it is also possible to increase the population of fireflies.

Future work can test different metaheuristics with the same set of hyperparame-
ters. Different combinations of parameters and other CNN architectures can also be ex-
plored. Parallelization strategies or surrogate models could make the computational cost
manageable for larger datasets.

References
Al-Haija, Q. A., Smadi, M. A., and Zein-Sabatto, S. (2020). Multi-class weather classifi-

cation using resnet-18 cnn for autonomous iot and cps applications. In 2020 Interna-
tional Conference on Computational Science and Computational Intelligence (CSCI),
pages 1586–1591.

Aszemi, N. M. and Dominic, P. (2019). Hyperparameter optimization in convolutional
neural network using genetic algorithms. International Journal of Advanced Computer
Science and Applications, 10(6).

Avuçlu, E. (2023). Classification of pistachio images with the resnet deep learning model.
Selcuk Journal of Agriculture and Food Sciences, 37(2):291–300.

Ayan, E. (2023). Genetic algorithm-based hyperparameter optimization for convolutional
neural networks in the classification of crop pests. Arabian Journal for Science and
Engineering, 49(3):3079–3093.

Ayan, E., Erbay, H., and Varçın, F. (2020). Crop pest classification with a genetic
algorithm-based weighted ensemble of deep convolutional neural networks. Compu-
ters and Electronics in Agriculture, 179:105809.

Bacanin, N., Bezdan, T., Venkatachalam, K., and Al-Turjman, F. (2021). Optimized con-
volutional neural network by firefly algorithm for magnetic resonance image classifica-
tion of glioma brain tumor grade. Journal of Real-Time Image Processing, 18(4):1085–
1098.



Bacanin, N., Stoean, C., Zivkovic, M., Rakic, M., Strulak-Wójcikiewicz, R., and Stoean,
R. (2023). On the benefits of using metaheuristics in the hyperparameter tuning of
deep learning models for energy load forecasting. Energies, 16(3).

Behera, N., Das, S., Singh, A. P., Swain, A. K., and Rout, M. (2024). Cnn - based
medical image classification models for the identification of pneumonia and malaria.
In 2024 International Conference on Advancements in Smart, Secure and Intelligent
Computing (ASSIC), pages 01–06.

Belete, D. and D H, M. (2021). Grid search in hyperparameter optimization of machine
learning models for prediction of hiv/aids test results. International Journal of Com-
puters and Applications, 44:1–12.

Bianco, S., Cadene, R., Celona, L., and Napoletano, P. (2018). Benchmark analysis of
representative deep neural network architectures. IEEE Access, 6:64270–64277.

Bloedorn, F. G. and Webber, C. G. (2023). Transfer learning applied to a classifica-
tion task: a case study in the footwear industry. IEEE Latin America Transactions,
21(3):427–433.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255.

Gbeminiyi, A. (2018). Multi-class weather dataset for image classification. Mendeley
Data, 6:15–23.

Gesmundo, A. (2022). A continual development methodology for large-scale multitask
dynamic ml systems.

Golnoori, F., Boroujeni, F. Z., and Monadjemi, A. (2023). Metaheuristic algorithm based
hyper-parameters optimization for skin lesion classification. Multimedia Tools and
Applications, 82(17):25677–25709.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recogni-
tion.

Lai, W., Kuang, M., Wang, X., Ghafariasl, P., Sabzalian, M. H., and Lee, S. (2023). Skin
cancer diagnosis (scd) using artificial neural network (ann) and improved gray wolf
optimization (igwo). Scientific Reports, 13(1):19377.

Li, C., Jiang, J., Zhao, Y., Li, R., Wang, E., Zhang, X., and Zhao, K. (2022). Genetic algo-
rithm based hyper-parameters optimization for transfer convolutional neural network.
In International Conference on Advanced Algorithms and Neural Networks (AANN
2022), volume 12285, pages 232–241. SPIE.

Lisda, L., Kusrini, K., and Ariatmanto, D. (2023). Classification of pistachio nut using
convolutional neural network. Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan
Komunikasi, 8(1):71–77.

Mishra, S. (2021). Malaria parasite detection using efficient neural ensembles. Journal
of Electronics, Electromedical Engineering, and Medical Informatics, 3(3):119–133.



Mohamed, A., Hemeida, A., and Hassan, M. (2022). Image classification based deep
learning: A review. Aswan University Journal of Sciences and Technology, 2.

Mujahid, M., Rustam, F., Shafique, R., Montero, E. C., Alvarado, E. S., de la Torre Diez,
I., and Ashraf, I. (2024). Efficient deep learning-based approach for malaria detection
using red blood cell smears. Scientific Reports, 14(1):13249.

Nanni, L., Manfè, A., Maguolo, G., Lumini, A., and Brahnam, S. (2022). High per-
forming ensemble of convolutional neural networks for insect pest image detection.
Ecological Informatics, 67:101515.

Narayanan, B. N., de Silva, M. S., and Hardie, R. C. (2023). A patient specific algorithm
for plasmodium malaria detection on cell images. In NAECON 2023 - IEEE National
Aerospace and Electronics Conference, pages 258–262.

Ozkan, I., Koklu, M., and Saraçoğlu, R. (2021). Classification of pistachio species using
improved k-nn classifier. Health, 23:e2021044.

Rajaraman, S., Antani, S. K., Poostchi, M., Silamut, K., Hossain, M. A., Maude, R. J.,
Jaeger, S., and Thoma, G. R. (2018). Pre-trained convolutional neural networks as fea-
ture extractors toward improved malaria parasite detection in thin blood smear images.
PeerJ, 6:e4568.

Saranya, T., Deisy, C., and Sridevi, S. (2024). Efficient agricultural pest classification
using vision transformer with hybrid pooled multihead attention. Computers in Biology
and Medicine, 177:108584.

Schwarz Schuler, J. P., Also, S. R., Puig, D., Rashwan, H., and Abdel-Nasser, M. (2022).
An enhanced scheme for reducing the complexity of pointwise convolutions in cnns
for image classification based on interleaved grouped filters without divisibility cons-
traints. Entropy, 24(9).

Sibinraj, V., Gafoor, F., Anandhu, P., and Anoop, V. (2024). Automated malaria cell
image classification using convolutional neural networks. TechRxiv.

Singh, D., Taspinar, Y. S., Kursun, R., Cinar, I., Koklu, M., Ozkan, I. A., and Lee, H.-N.
(2022). Classification and analysis of pistachio species with pre-trained deep learning
models. Electronics, 11(7).

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms.

Tian, M., Chen, X., Zhang, H., Zhang, P., Cao, K., and Wang, R. (2021). Weather clas-
sification method based on spiking neural network. In 2021 International Conference
on Digital Society and Intelligent Systems (DSInS), pages 134–137.

Ung, H. T., Ung, H. Q., and Nguyen, B. T. (2021). An efficient insect pest classification
using multiple convolutional neural network based models.

Xie, C., Wang, R., Zhang, J., Chen, P., Dong, W., Li, R., Chen, T., and Chen, H. (2018).
Multi-level learning features for automatic classification of field crop pests. Computers
and Electronics in Agriculture, 152:233–241.

Yang, X.-S. (2010). Nature-Inspired Metaheuristic Algorithms. Luniver Press.


