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12247-014– São José dos Campos – SP – Brazil

{galioti.martini,lberton}@unifesp.br

Abstract. Equity in Artificial Intelligence (AI) algorithms applied to healthcare
is an ever-evolving field of study with significant implications for the quality and
fairness of healthcare. This work focuses on applying data analysis to investi-
gate biases in a healthcare dataset and examining how different post-processing
techniques, which are less utilized and discussed in the literature compared to
pre-processing techniques, can be employed to address these biases. We ana-
lyzed the Stroke Prediction dataset, and bias was identified and analyzed along
with its correlation with the data. Subsequently, post-processing techniques
were applied to reduce these biases, and the effectiveness of these techniques
was analyzed. It was found that while all adopted post-processing techniques
reduced biases, this came at the cost of a decrease in classification accuracy and
precision. Among them, the EqOddsPostprocessing technique from the AIF360
library demonstrated the least impact on model accuracy and precision.

1. Introduction

The application of Artificial Intelligence (AI) and Machine Learning (ML) in the health-
care sector has been widely adopted with the aim of enhancing the accuracy and efficiency
of diagnoses, optimizing treatments, predicting clinical outcomes, and monitoring patient
progress [Esteva et al. 2019]. This advancement has piqued the interest of various orga-
nizations and companies, leading to substantial investments in this field.

The increasing integration of AI into clinical applications raises ethical concerns
and questions about whether algorithms are potentially amplifying existing inequalities
in the healthcare system [Chen et al. 2021]. AI has been increasingly adopted in vari-
ous aspects of medical diagnosis and treatment, becoming a fundamental tool in modern
medicine [Jiang et al. 2017]. However, the use of these algorithms can have negative im-
pacts, especially on subpopulations of ethnic minorities and underrepresented communi-
ties, due to spurious data relationships or systematic biases. [Chen et al. 2021] highlights
the lack of adequate regulation in the approval of AI algorithms and the absence of public
policies to ensure equity in the use of algorithms in healthcare, raising the question of
how to ensure that algorithms are fair and do not reinforce existing inequalities. On the
other hand, the study by [Obermeyer et al. 2019] identified that private healthcare systems
are using prediction algorithms that, instead of measuring disease severity, predict health
costs, prioritizing those who can generate more capital for the hospital rather than those
who need it most. This results in a significant racial bias, as black patients, despite having
more severe health conditions, end up receiving less investment in medical care due to



unequal access to healthcare. According to the authors, this problem could be mitigated
by substantially increasing support for black patients, from 17.7% to 46.5%.

In this way, a new area of study called algorithmic equity or ‘fairness’ has
emerged. This field aims to ensure that algorithms and machine learning models treat
all individuals or groups fairly and impartially. The goal is to avoid discrimination or sys-
tematic bias in automated decision-making, striving to ensure that model predictions and
outcomes are not influenced by demographic characteristics such as race, gender, age, or
ethnic origin that should not be relevant to the task at hand [Rabonato and Berton 2024].

Currently, some studies indicate that bias corrections in AI algorithms have proven
effective [Bellamy et al. 2018, Broder and Berton 2021], and many advancements in this
area are due to the development of specific tools to address this issue. Major technology
companies have developed libraries to combat biases in these algorithms. For instance,
IBM created AIF360, a comprehensive library that provides tools to mitigate biases in
all phases of the machine learning process. Similarly, Microsoft developed Fairlearn, a
library that focuses on reducing unfair disparities in machine learning model predictions.
These tools demonstrate that it is possible, and indeed worthwhile, to invest in studies and
bias corrections in AI algorithms in the healthcare domain.

The goal of this work is to examine the fairness of AI algorithms, focusing on the
analysis of post-processing measures, as they are less explored in the literature compared
to pre and in-processing techniques, and to investigate bias occurrence in the dataset con-
cerning the protected attribute identified by a fairness measure. Additionally, we aim to
examine the correlation of this fairness measure with the other attributes of the dataset,
using the SHAP library.

2. Fairness

Fairness is a principle of AI ethics that seeks to eliminate bias or discrimination concern-
ing sensitive attributes such as gender, race, and religion, among others. This means that
an algorithm is considered fair when its decisions or predictions are not unduly influenced
by these sensitive attributes. Fairness is a crucial aspect to ensure that ML systems are eq-
uitable and do not perpetuate or amplify existing discrimination in society. Furthermore,
fairness in ML goes beyond observable data, considering additional causal information
for a better understanding and removal of discrimination [Su et al. 2022].

The problem that algorithmic fairness seeks to address is complex and has var-
ious dimensions. ML algorithms are trained on datasets that often mirror biases ex-
isting in society. This means that such algorithms may end up acquiring and replicat-
ing these biases in their decisions. Additionally, the lack of transparency and the diffi-
culty in explaining the decision-making processes of ML models can make it challeng-
ing to identify when and how these biases are being perpetuated [Castelnovo et al. 2022,
Rabonato and Berton 2024].

Therefore, algorithmic fairness is an effort to identify and mitigate these biases,
ensuring that algorithmic decisions are fair and non-discriminatory. This is done through
various approaches and techniques, including modifying the data used to train the algo-
rithm (pre-processing), incorporating fairness constraints during the algorithm’s training
(in-processing), and adjusting algorithmic decisions after training (post-processing). Ad-



ditionally, there are three important concepts related to fairness in algorithms and auto-
mated systems: group fairness, individual fairness, and causality-based fairness, each of
them having specific metrics. Group fairness aims to avoid discrimination and dispar-
ities regarding specific groups, while individual fairness seeks to treat each individual
fairly, regardless of their group affiliation, and causality-based fairness focuses on an-
alyzing causal relationships to identify and mitigate the root causes of discrimination
[Castelnovo et al. 2022].

For the metrics defined in the following specifications, it is important to define the
concept of the trinomial (X,A, Ŷ ), where:

• X: It is a set of variables that represents the characteristics or attributes relevant
to the problem under discussion. These characteristics include information about
the individuals involved in the decision-making process.

• A: It is a variable that represents the attribution to a certain group or category. It
can indicate characteristics such as gender, race, age, etc. This variable is used to
analyze possible treatment disparities or biases towards different groups.

• Ŷ : It is a target variable or result that we want to predict or analyze. It can
represent a decision, an obtained result, or an expected response.

We would like to note that fairness is a complex and even subjective concept, and
there are various, often conflicting, definitions of what it means to be ”fair”. Therefore, a
significant challenge in algorithmic fairness is understanding how these different defini-
tions relate and how they can be applied in different contexts.

3. Related Work
The following studies investigate biases in machine learning algorithms applied to health-
care data. They represent a sample of the studies rather than a complete review, indicating
that fairness issues occur across different datasets.

3.1. Works that explored electronic records
[Gianfrancesco et al. 2018] propose interdisciplinary approaches, continuous human en-
gagement, and strategies to ensure diverse representation in training sets to mitigate bi-
ases. [Li et al. 2023] focus on evaluating the fairness of ML models predicting cardio-
vascular diseases using EHR data. Their study reveals biases favoring certain race and
gender groups. To mitigate bias, they explore methods like removing protected attributes
and resampling to balance training group distributions. [Pivovarov et al. 2014] identify
inherent biases in laboratory testing data within EHRs, arising from uncontrolled envi-
ronments and missing data patterns. They propose solutions, such as leveraging missing
data patterns and conducting separate analyses for different patient groups, to enhance the
understanding of patient health. [Dueñas et al. 2020] investigate biases in EHRs affecting
disease diagnosis and treatment. They highlight sources of bias, including changes in di-
agnostic criteria over time and systematic differences between demographic groups. The
solutions involve considering the order and persistence of diagnoses and using biological
knowledge to test the accuracy of phenotype definitions. [Noseworthy et al. 2020] eval-
uate biases in an AI algorithm detecting cardiac dysfunction from ECGs. The study re-
veals performance disparities related to patient race, attributed to a lack of diversity in the
training dataset. To mitigate bias, they assess algorithm performance across racial/ethnic
subgroups and train on a homogeneous population for comparison.



3.2. Works that explored NLP

[Straw and Callison-Burch 2020] aimed to uncover biases in textual data, like electronic
health notes and social media posts, analyzed using Natural Language Processing (NLP).
The study revealed gender bias in medical diagnoses, with women more likely to be diag-
nosed with personality disorders and men with Post-Traumatic Stress Disorder (PTSD).
Age and gender bias in clinical trials were also identified. To address these biases, they
used bias removal techniques for NLP models, cautioning that these methods might only
hide persistent biases. Fairness assessment within the model was suggested through met-
rics like false positives, false negatives, and statistical polarity across different datasets.
[Wissel et al. 2019] investigated whether an NLP algorithm, trained on doctors’ notes,
produced biased recommendations for pre-surgical epilepsy evaluations. The algorithm,
trained on 1,097 notes from 443 patients, showed no influence of patient race, gender,
or primary language on surgical candidacy scores after adjusting for demographic and
socioeconomic variables. Higher scores were associated with factors like living outside
the hospital’s geographic area, continuing care after 18, higher household incomes, and
public insurance. The study suggested that these results likely reflected referral patterns
influenced by various factors, such as the severity of the patient’s condition, local special-
ist availability, and socioeconomic factors affecting healthcare access.

3.3. Works that explored images

[Mehta et al. 2023] investigated the fairness of machine learning models in medical im-
age analysis, focusing on tasks like classification, segmentation, and regression. They
observed biases in demographic subpopulations such as race, sex, and age and employed
techniques like data balancing and distribution-robust optimization to address these is-
sues. The fairness metric used was the ”Fairness Gap”, measuring differences in task
evaluation metric values based on binary sensitive attributes. However, improvements
in fairness were noted to potentially compromise uncertainty estimates associated with
model predictions. [Miller et al. 2023] aimed to train AI models for diagnosing Coronary
Artery Disease (CAD) from myocardial perfusion images. They identified a selection
bias in the training data and addressed it by augmenting the dataset with more cases of
patients without obstructive CAD, making it more representative. Model calibration was
used as a fairness metric to enhance accuracy in predicting obstructive CAD in low-risk
patients. [Liu et al. 2022] explored the use of deep learning in analyzing chest images for
diagnosing and predicting COVID-19. The study emphasized the sources of bias in deep
learning models and stressed the importance of internal and external validation for reduc-
ing bias and improving model generalizability. The lack of large-scale reference datasets
was identified as a significant challenge for developing fair and unbiased models.

4. Methodology

4.1. Dataset

The dataset employed in the analysis was Stroke Prediction published on the website
Kaggle1. The dataset in question is interesting for analyzing bias in AI algorithms in
healthcare as it includes a variety of attributes related to the risk of stroke, one of the

1https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset



main causes of death across the world 2. Through it, it is possible to study how different
factors - biological, behavioral, and social - can interact and contribute to the occurrence
of stroke.

Additionally, some of the attributes such as gender and age, may be especially
prone to bias. The prevalence of stroke increases significantly with age. Most cases occur
in individuals aged 65 or older, although stroke can also affect younger people. Stroke has
a slightly higher prevalence in men than in women, especially at younger ages. However,
women tend to experience more fatal strokes, particularly after age 65, possibly due to
their longer life expectancy.

This way, as sensitive attributes, we can consider gender, age, or both. The study
by [Lisabeth et al. 2009] shows that stroke can present differently in men and women and
that social and medical perceptions can influence diagnosis and treatment.

4.2. Preprocessing
Pre-processing techniques are fundamental to improving data quality and preparing it for
analysis. The following preprocessing actions were performed:

• Removing null values with the dropna function from the panda’s libraries.
• Removal of the “Other” gender, as there was only one record, and its removal

makes it possible to transform the attribute into a binary type.
• Removal of the “id” column, which represented a unique identifier for the record.
• Transformation of categorical values into numeric values using the fit transform

method of the LabelEncoder object, which is part of the sklearn.preprocessing
library. This is important because not all ML algorithms support categorical data.
After this treatment, it was identified the imbalance caused by the low represen-

tation of the class with AVC (stroke = 1). This scenario motivated the application of
Undersampling and Oversampling techniques, both from the imbalanced-learn library.

Subsampling, reducing examples from the predominant class, reduces the imbal-
ance presented, but can lead to the loss of important information. Therefore, to counter-
balance this, oversampling using the SMOTE technique, which generates new synthetic
examples of the minority class, helps to reinforce the presence of this class in the data
set. This combination creates a fairer balance between the classes, potentially improv-
ing the model’s ability to learn features from both, resulting in more accurate predictions
[Mohammed et al. 2020].

Table 1 shows that the prevalence of positive cases was previously only 4.25%,
and after applying the balancing techniques it went to 50%. This balancing enabled an
improvement in the performance of the models (presented in Table 2). The focus of
the study turns now to the central analysis: investigating whether the models’ accuracy
remains consistent across different groups and analyzing the possible presence of bias in
the results.

4.3. Model selection and training
To define which of the tested algorithms would be adopted in the remainder of the study,
the precision and accuracy metrics were evaluated after the pre-processing steps. XG-
Boost was the model chosen to continue the project, as in addition to showing the best

2https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death



Table 1. Prevalence of positive cases in the dataset

Scenario Prevalence
Before preprocessing techniques 0.0425
After Undersampling 0.0909
After Undersampling + Oversampling 0.5

Table 2. Metrics after Undersampling and Oversampling

Model Accuracy Precision
Decision tree (DT) 0.87 0.84
Random forest (RF) 0.93 0.90
Support Vector Machine (SVM) 0.84 0.79
Multi-layer Perceptron (MLP) 0.81 0.79
XG-Boost 0.93 0.90

results, its implementation is simple and does not require fine adjustments of hyperparam-
eters. Although the SVM and MLP models had the potential to outperform XG-Boost in
terms of metrics if the hyperparameters were optimized, the efficiency presented by XG-
Boost was considered sufficient to proceed with the project objectives, as the focus was
not on finding the perfect algorithm for the database, but rather investigate the presence
of bias.

Once the selection was made, an algorithm was created to train and analyze the
bias in the model. For this purpose, the k-fold cross-validation technique was used, divid-
ing the data into 5 parts (k = 5), at each iteration the procedures were carried out:

1. Splitting training and testing data using the split method of the KFold object;
2. Data normalization and standardization with the objects MinMaxScaler and Stan-

dardScaler, respectively. This pre-processing step must stay within the k-fold
iteration to avoid data leakage.

3. Model training with the fit method and predictions with the predict method from
Scikit-learn;

4. Generation of the attribute correlation graph with the SHAP library;
5. Display of model accuracy and precision metrics;
6. Display of bias metrics: Disparate Impact, Statistical Parity Difference and Equal-

ized Odds Difference (EOD).
7. Application of post-processing techniques;
8. Redisplay of the model’s accuracy and precision metrics and bias metrics, to ana-

lyze the impact of the post-processing measure on them.

4.4. Post-processing

Three post-processing techniques were applied and evaluated individually:

• EqOddsPostprocessing (EOP), from the library AIF360: This technique focuses
on equalizing probabilities, that is, ensuring equal chances between groups so that
the rates of false positives and false negatives are similar between them. This
method adjusts the predictions of a classifier model to align the probabilities of a
positive outcome, regardless of the group. Therefore, the best way to evaluate this



technique is through the EOD metric, which must be as close to zero as possible
to indicate success.

• ThresholdOptimizer, from the Fairlearn library: This consists of a threshold op-
timization technique, the method can be configured to meet two different equity
criteria: demographic parity and equal chances :

– Demographic Parity: When configured for demographic parity, Thresh-
oldOptimizer adjusts the model’s decision thresholds to equalize approval
rates between groups. This means that it seeks to ensure that a similar pro-
portion of records from each group receive a positive result, regardless of
the actual rate of positive results within those groups. Therefore, after ap-
plying this technique the bias metrics Disparate Impact should approach 1
and Statistical Parity Difference should approach 0.

– Equal Chances: When the equalized odds parameter is passed, Thresh-
oldOptimizer adjusts the thresholds to ensure that the false positive
and false negative rates are similar between the groups, as well as the
EqOddsPostprocessing technique, from the AIF360 library described pre-
viously.

These techniques were tested in four different scenarios:

1. Protected attribute “gender”: In this scenario, the protected attribute was gender,
with male (gender = 1) chosen as disadvantaged and female (gender = 0) as fa-
vored, because the female gender has a higher frequency than the male gender,
even after balancing techniques, since these made the number of records with and
without stroke equal, without taking into account the gender of the record.

2. Protected attribute “gender” with the addition of synthetic bias: In this scenario,
in addition to replicating the scenario above in terms of the protected attribute, a
synthetic bias was added to randomly change the classifier variable stroke from
1 to 0 in half of the male records who had a stroke. This creates an artificial
disproportion in the relationship between gender and the occurrence of strokes in
the database.

3. Protected attribute “group age”: This attribute was added to use age as a protected
attribute. In this context, the age attribute is eliminated and replaced by group age.
An individual is classified with group age equal to 1 if they are 60 years old or
older, considered elderly, and 0 if they are younger than that. group age = 0 was
considered as an underprivileged group since there are considerably fewer records
in these conditions with stroke compared to records with group age = 1.

4. Protected attribute “group age” with addition of synthetic bias: In this scenario,
in addition to including the new attribute group age, synthetic bias is also added
to it by randomly modifying the classifier variable stroke from 1 to 0 in half of
the records where group age is 0 (younger people) and stroke is initially 1. This
change artificially creates a lower incidence of strokes in this age group specifi-
cally.

The purpose of introducing synthetic bias into the data was to amplify existing
disparities, making biases more prominent and allowing for a more thorough assessment
of the post-processing methods’ effectiveness. As shown in Table 3, even before the ad-
dition of synthetic bias, the distribution of stroke cases between groups was not perfectly



balanced, and after the introduction of synthetic bias, the disparity in prevalence became
even greater.

Table 3. Prevalence of Gender and Age Group with Synthetic Bias (WSB) and
without Synthetic Bias (WOSB)

Variable Category WSB WOSB
Gender 0 (female) 0.558 0.558
Gender 1 (male) 0.189 0.378
Age Group 0 (young and adults) 0.187 0.374
Age Group 1 (elderly) 0.696 0.696

4.5. Correlation analysis

Using the SHAP library, the correlation graph shown in Figure 1 was created. Its inter-
pretation is made as follows:

• Vertical Axis (features): The model’s attributes are listed on the vertical axis. Each
point on a horizontal line represents an instance in the dataset.

• Horizontal Axis (SHAP value): The horizontal axis shows the SHAP values,
which measure the impact of an attribute on the model prediction. Positive SHAP
values (to the right of the vertical axis) indicate that the attribute increases the
probability of class = 1 prediction, while negative SHAP values (to the left of the
vertical axis) indicate a decrease in this probability.

• Colors: The dots are colored to represent the attribute value. The colors range
from blue (value = 0) to red (value 1) and attributes with values between 0 and 1
are represented by the color purple.

• Point Density: The density of points along the horizontal axis represents the vari-
ation in the impact of an attribute. A dense line of dots indicates that the attribute
had a similar impact across many instances, while a scatter indicates variation in
impact.

• Comparison between Attributes: When looking vertically at all attributes, it is pos-
sible to compare their relative importance, where attributes listed higher represent
greater importance for the model prediction than those listed lower.

Analyzing the graph, it is seen that the attribute ”age” has the most significant
impact on the model’s prediction, followed by ”avg glucose level” and ”BMI”. This
means that age is a highly influential factor in the model’s prediction, and the distribution
of points shows that higher values increase the chances of the model’s prediction being
positive, which was already to be expected from the prior knowledge about stroke.

Regarding the ”gender” attribute, there is a smaller distribution of points, indi-
cating that gender has a smaller impact on the model’s prediction compared to age, for
example. However, it is still visible that there is a difference in the distribution of SHAP
values for different genders, suggesting that gender has some role in the model’s predic-
tions. Therefore, by considering the attributes ”age” and ”gender” as protected, we seek
to minimize the risk that the model makes unfair or discriminatory predictions based on
these intrinsically sensitive characteristics.



Figure 1. SHAP correlation analysis

5. Results
Tables 4, 5, 6, 7 portray the results obtained when executing the algorithm. In the columns,
there are the metrics Disparate Impact (DI), Statistic Parity Different (SPD), Equalized
Odds Difference (EOD), Accuracy and Precision. In the lines, XG-Boost Classifier rep-
resents the model without applying post-processing techniques, followed by the lines that
represent the techniques.

From the analysis of the results, it is clear that the application of post-processing
methods in the models produces an improvement in bias metrics at the expense of accu-
racy and precision. This trend occurs in all tested scenarios, regardless of the presence
of synthetic bias. However, in scenarios where synthetic bias is introduced, the decrease
in accuracy and precision is more pronounced than in scenarios without synthetic bias.
This effect is an indication that a more biased database worsens the compromise of per-
formance metrics that post-processing methods try to correct.

For example, while XG-Boost and the Fairlearn and AIF360 methods show a no-
table improvement in fairness after post-processing, accuracy and precision suffer consid-
erable reductions, especially in the “Age scenario group - With Synthetic Bias” (see Table
4), where XG-Boost has an accuracy performance of approximately 0.833, which is re-
duced to approximately 0.685 after post-processing with the method AIF360 EqOddsPost-
processing. This represents a substantial drop, which is greater than that observed in the
“Gender - With Synthetic Bias” scenario, (see Table 6), where the accuracy drops from
approximately 0.879 to 0.701 with the same post-processing method. This difference may
be because the age factor in the data set has a more direct impact on the prediction of the
positive class, making the task of maintaining the model’s performance while adjusting
the bias more complex.

It is also important to highlight that between the two techniques used to balance
probabilities - EqOddsPostprocessing from AIF360 and equalized odds from Fairlearn
- the IBM technique (EqOddsPostprocessing) only failed to achieve a better Equalized
Odds Difference (EOD) in the ”Gender - With Synthetic Bias” scenario (Table 6). In all
other scenarios, it produced results closer to zero. Nevertheless, both techniques delivered
very similar accuracy and precision across all cases.



We concluded that the data analysis highlights the delicate balance between im-
proving the fairness of models and maintaining their performance. Post-processing tech-
niques are effective in reducing bias, but this often results in a decrease in accuracy and
precision, especially in contexts where bias is more prevalent. From the data analyzed, the
impact is most pronounced in the “Age Group” scenarios. Furthermore, the EqOddsPost-
processing technique from AIF360 stood out in achieving a balance closer to the ideal in
most scenarios, that is, an EOD value closer to zero, although not in all. This reinforces
the idea that there is no one-size-fits-all solution for all scenarios and highlights the need
for careful selection and adjustment of post-processing techniques, taking into account the
specific characteristics of each dataset. Therefore, this analysis highlights the complexity
involved in creating machine learning models that are both fair and effective.

Table 4. Age group - With Synthetic Bias, techniques Demographic Parity (DP),
Equalized Odds (EO), EOPostprocessing (EOP)

Techniques DI SPD EOD Accuracy Precision
XGBClassifier 0.189 0.602 -0.574 0.833 0.792
Fairlearn DP 0.927 0.009 0.185 0.655 0.649
Fairlearn EO 0.532 0.152 -0.015 0.690 0.666
AIF360 EOP 0.554 -0.139 -0.007 0.685 0.660

Table 5. Age group - No Synthetic Bias, techniques Demographic Parity (DP),
Equalized Odds (EO), EOPostprocessing (EOP)

Techniques DI SPD EOD Accuracy Precision
XGBClassifier 0.522 0.356 -0.067 0.886 0.864
Fairlearn DP 0.955 0.019 0.366 0.782 0.855
Fairlearn EO 0.714 0.203 -0.007 0.811 0.764
AIF360 EOP 0.713 -0.203 -0.005 0.811 0.764

Table 6. Gender - With Synthetic Bias, techniques Demographic Parity (DP),
Equalized Odds (EO), EOPostprocessing (EOP)

Techniques DI SPD EOD Accuracy Precision
XGBClassifier 0.292 0.422 -0.491 0.879 0.846
Fairlearn DP 0.941 0.034 -0.265 0.779 0.686
Fairlearn EO 0.581 0.131 -0.0008 0.706 0.775
AIF360 EOP 0.569 0.131 0.003 0.700 0.764

6. Final Considerations
This work performed a detailed analysis of the application of machine learning algorithms
for a healthcare dataset. It was observed that, although each variable has its role in the
classification, age proved to be the most influential factor.

Post-processing techniques, despite reducing bias, presented trade-offs in terms of
model performance. This highlights that there is no one-size-fits-all solution for all sce-
narios and underlines the need for careful selection and tuning of post-processing tech-
niques, taking into account the specific characteristics of each dataset.



Table 7. Gender - No Synthetic Bias, techniques Demographic Parity (DP), Equal-
ized Odds (EO), EOPostprocessing (EOP)

Techniques DI SPD EOD Accuracy Precision
XGBClassifier 0.680 0.190 -0.040 0.915 0.888
Fairlearn DP 0.989 0.006 -0.014 0.858 0.799
Fairlearn EO 0.755 0.139 0.004 0.891 0.872
AIF360 EOP 0.746 -0.144 -0.001 0.893 0.874

In future work, a detailed comparison can be made between pre-, in-, and post-
processing techniques, focusing on their effectiveness and limitations in different con-
texts. Another work would be to use other databases to verify whether the behavior of the
techniques remains similar in different scenarios, enabling a more robust analysis of the
generalization of the methods studied. The impact on metrics when increasing records for
just one group of the protected attribute could also be explored.
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