
Interpretable Components Using Genetic Programming
Employing Instruction-like Structure

Arthur Hiratsuka Rezende1, Thiago Ambiel1, Rafael Souza e Silva1,
André C. P. L. F. de Carvalho1

1Institute of Mathematics and Computer Sciences – University of São Paulo (USP)
São Carlos – SP – Brazil

{arthurhr, thiago.ambiel, rafaelsoz}@usp.br, andre@icmc.usp.br

Abstract. This paper introduces a novel feature extraction method, IGP, that
generates components through both linear and non-linear combinations of fea-
tures using Genetic Programming (GP). Unlike traditional GP approaches that
rely on expression trees, IGP utilizes an instruction line structure. The study
evaluates IGP’s performance against 5 established feature extraction methods
across 23 datasets, encompassing binary and multiclass classification tasks.
The results demonstrate that IGP excels in several instances, particularly in bi-
nary classification, with further analysis exploring how the relationship between
the number of classes, features, and instances contributes to its performance.
Additionally, the scope for future investigations of IGP are commented.

1. Introduction

The need for auditable machine learning applications, in compliance with legislation in
Brazil1 and the European Union2, for example, demands the search for solutions that can
be easily interpretable. The feature extraction in well-established algorithms, such as
encoders and PCA, occurs through the combination of all the variables involved. This can
diminish the interpretability [Gambella et al. 2021, Zhang et al. 2021] of the generated
components or the interpretation of the variables involved in the decision-making process.

Advances in telecommunications, such as 5G, 6G, and IoT devices, combined
with the increased use of sensors and data capture tools [Shafique et al. 2020], have re-
sulted in high-dimensional databases concerning both features and instances. Dimension-
ality reduction can facilitate the use of simpler algorithms that require lower computa-
tional capacity, while aiming to maintain or improve performance.

A widely used approach for feature extraction is genetic programming, which
typically employs operation trees to combine the original features, with the leaves rep-
resenting the original features and the nodes representing mathematical operations. This
relatively simple approach allows for linear or non-linear combinations of features.

This study proposes a novel methodology for feature extraction using genetic pro-
gramming, to the best of the authors’ knowledge. The innovation lies in the use of an
instruction-based structure, derived from compiler processing applications, rather than
the widely used operation tree approach, and it does not require crossover operations.

1Regulation on the use of AI - Bill No. 2338/2023.
2AI Act for regulation on the use of AI from 03/2024.

The tree structure is widely employed for solving problems hierarchically and has
been successfully applied in numerous areas, including search algorithms, data sorting,
and complex decision-making models like Random Forest. However, this approach im-
poses certain restrictions, particularly in how information is accessed and propagated, as
each node usually access information from the nodes in the immediately preceding layer.

We formulated the hypothesis that this limitations can be overcome by implement-
ing instruction-based modeling (IGP), similar to a programming language, where every
node can access all available information in the model and in the data. It is believed that
this will facilitate operations between components, compared to the use of trees.

The main objective of this work is to verify the hypothesis that the IGP can achieve
results as good as those obtained with five baseline methods (PCA, t-SNE, autoencoder,
MDS and LLE) for feature extraction. Additionally, it is expected that the proposed
method will offer the advantage of easier interpretability of the generated components,
maintaining performance in a classification task. If the proposed method proves success-
ful, future research will explore whether it has advantages over the use of operation trees.

2. Background and Related Work

Evolutionary computation can be applied in several scenarios [Espejo et al. 2010], and
numerous strategies can optimize this process [Zhan et al. 2022], such as reducing prob-
lem complexity through single-objective fitness functions or accelerating convergence
time by utilizing pre-calculated solutions (implemented through internal memory in
agents), strategies adopted in the present study, among others described in this section.

2.1. Functions, Complexity and Optimization

The selection of potential functions to generate components and the determination of
components quantity are crucial [Kishore et al. 2000, Muni et al. 2004]. These studies
indicate that using simple arithmetic functions (+, -, *, /) is preferable over non-linear
approaches, which may have been limiting during the studies period.

The use of simple functions is not universally agreed upon among researchers and
depends largely on the study’s primary objectives. In cases where a significant reduc-
tion in solution complexity is desired, often in optimization-heavy scenarios (e.g., 500
epochs) [Ma and Teng 2019, Ma and Gao 2020, Ma et al. 2023, Meng et al. 2024], only
the aforementioned simple functions are utilized.

However, instances using logical/conditional functions (max, min) and non-linear
functions (sin(x), ReLU, etc.) [Lensen et al. 2019, Lensen et al. 2020, Wang et al. 2014]
have successfully created latent spaces with clear class separation, effectively exploring
search spaces. In this context, the present study aims to explore this condition, hypothe-
sizing that clearer separation between class examples in the new space will help identify
variables that are crucial for describing the data.

Regarding the complexity of generated functions, the phenomenon of bloat
[Ma and Gao 2020, Meng et al. 2024] in GP is known, where machine learning model
performance does not improve with overly complex functions, leading to loss of inter-
pretability of constructed features. Controlling the complexity of feature-calculating func-
tions can be achieved through the genetic algorithm’s fitness function [Meng et al. 2024],

minimizing the number of operations. Empirical evidence suggests that lower complexity
enhances performance and significantly reduces execution time.

2.2. Fitness Function - Filter and Wrapper Approaches
There are three possible paradigms for defining fitness functions in genetic programming
for feature extraction. Filter methodologies utilize information theory measures, correla-
tion, and distance, among others. Wrapper approaches employ a simple predictor model
during component generation and use performance metrics (accuracy, number of correct
predictions, etc.) as fitness functions. Lastly, hybrid solutions combine weighted sums of
filter and wrapper measures, albeit with an additional hyperparameter to optimize.

Commonly used filter-based fitness functions include information theory
measures [Wang et al. 2014, Ma and Teng 2019], correlation or distance measures
[Meng et al. 2024]. Wrapper approaches often use accuracy rates [Ma and Teng 2019,
Ma and Gao 2020], balanced accuracy [Zhang and Smart 2006], or the number of predic-
tors correctly classifying [Kishore et al. 2000, Muni et al. 2004].

Some authors also consider complexity measures, such as the proportion of se-
lected features from the total [Ma and Gao 2020], or limiting the number of opera-
tions in expression trees [Meng et al. 2024]. Other approaches use similarity fitness
[Lensen et al. 2019, Lensen et al. 2020], aiming to maintain neighbor relationships in a
high-dimensional space in a lower-dimensional similarity space. [Zhang and Smart 2006]
uses measures of distance and areas of the distribution of the features for each class as a
loss function, minimizing distribution overlap.

While studies like [Ma et al. 2023, Meng et al. 2024] suggest multi-criteria fit-
ness in GP yields superior results compared to single-criteria fitness, hybrid strategies
often assign greater weight to wrapper-derived components, typically 0.8 or higher, un-
derscoring their importance. In comparative studies of wrapper, filter, and hybrid meth-
ods [Ma and Teng 2019], comparable performance is noted, with hybrids often favoring
wrapper contributions, similar to findings in [Ma et al. 2023].

Given the study’s goal to test the proposed methodology’s feasibility using an
instruction-like structure instead of expression trees to perform feature extraction, a sim-
ple wrapper strategy will be employed. The algorithm chosen is K-Nearest Neighbors
(KNN) with 5 neighbors, using macro F1 score as the fitness metric to balance precision
and recall.

3. Instruction-based Genetic Programming
3.1. Modeling
The data structure known as Expression Tree was developed to represent complex math-
ematical operations in programming language interpreters [Mitchell 1991]. Later, this
structure was adapted to serve as a model base for exploring the sample space of arith-
metic functions through genetic algorithms, giving rise to Genetic Programming Trees.

Similarly, we propose adapting the modeling used in the Instruction Selection
paradigm [Cooper and Torczon 2023], employed by compilers to translate code into ma-
chine instructions, for representing complex arithmetic operations. This enables an alter-
native way to explore the sample space of arithmetic functions. In our method, we define
three crucial domains for the model optimization process, as shown below.

1. Attribute Domain (α): This domain encompasses all the attributes that can be
selected for an operation. With each new operation executed, a new attribute is
added to this domain, representing the result of the executed operation.

2. Unary Operations Domain (θ): This domain includes the operations that can be
performed using only one variable. In our experiments, we used the following
operations: a, |a|, sin(a), cos(a), log(a), ea.

3. Binary Operations Domain (π): This domain includes operations that can be per-
formed using two variables as input. In our experiments, we used the following
operations: a + b, a − b, a × b, a/b. It is important to note that the division
operations are protected, meaning that if b = 0, the function returns 0.

With these domains defined, we obtain a discrete search space composed of the
combination of possible values from these three main domains. This space can be utilized
to find nonlinear relationships between input variables and the target variable.

For example, considering the function 1 that uses the variables sepallength,
petallength, and sepalwidth from the classic Iris dataset.

sepallength
petallength × sepalwidth

(1)

We can model this function using only two simple instructions:

Table 1. Example of matrix modeling for a nonlinear expression with three vari-
ables from the Iris dataset and two division operations.

Line Node (a) Operation Domain (θπ) Node Aux. (b)

π θ

1 sepallength
a
b

NULL petallength

2 sepallength

petallength

a
b

NULL sepalwidth

The idea is to model simple operations that comprise a complex equation as a
sequence of instructions, organized in a two-dimensional matrix.

1. The matrix columns represent the metadata of each instruction, including the vari-
ables involved and the operation applied to them.

2. The matrix rows represent the instructions, which are executed sequentially from
the first to the last.

The return value from line 2 is the result calculated by the last executed instruction.
This process is similar to how computers execute software, following the instructions of
the code stored in memory. To improve the interpretability of this modeling, we can track
the behavior of the output variable as a function of the number of executed instructions.

sepallength −→ sepallength
petallength

−→ sepallength
petallength × sepalwidth

(2)

3.2. Optimization

A simplified implementation of genetic programming (GP) is employed, operating solely
with mutations and eliminating the need for crossover operations. This approach is based
on the bio-inspired strategy of asexual reproduction [Farasat et al. 2010], which aims to
reduce execution time. This strategy has also demonstrated interesting results when ap-
plied to genetic programming [Khanteymoori et al. 2021].

Furthermore, we apply a selection technique that favors solutions with fewer in-
structions to achieve a satisfactory outcome. The performance of the solutions is assessed,
and if the absolute difference between their results is smaller than a threshold ϵ — set to
10−4 — the solutions are considered equivalent, and the one with the fewest instructions
is selected as the best. The mutation process occurs by choosing a random operation line
from an individual, and one of the following mutation operations is executed:

Table 2. Proposed mutation operations for our modeling.

Mutation Domain

Select a new attribute to perform a unary or binary operation. α
Replace a unary operation with a binary operation. π
Replace a binary operation with a unary operation. θ
Select a new auxiliary attribute to perform a binary operation. α
Add a new random operation line to the solution. α, θ, π

Since the search space is very complex and small changes can result in significant
topological changes in the generated space, we opted not to use crossover operations
between solutions. Mutation operations alone are sufficient to make significant structural
changes. The goal of defining this search space for complex mathematical expressions is
to find interpretable nonlinear transformations that project the data into a low-dimensional
space where the classes of the target attribute are well separated, as shown in Figure 1.

4 3 2 1 0
Component 1

2.0

1.5

1.0

0.5

0.0

C
om

po
ne

nt
 2

PCA

Malignant
Benign

40 20 0 20 40
Component 1

20

10

0

10

20

C
om

po
ne

nt
 2

TSNE

Malignant
Benign

5 10 15 20
worstsymmetryworsttexture

10

15

20

25

30

35

m
ea

n s
ym

m
et

ry
+

w
or

st
ra

di
us

New Metric Space

Malignant
Benign

Figure 1. Example of low-dimensional spaces generated by the PCA, t-SNE meth-
ods, and our algorithm IGP on the Breast Cancer dataset. The better the
separation of points of different colors, the easier it is to solve the prob-
lem.

By finding this type of transformation, we can extract valuable information from
the data, such as creating new attributes for simpler classification models and identifying

the most influential features on the target attribute, even if this influence relationship is
not linear. To evaluate these transformations, we use the mean F1-Score in a 5-fold cross-
validation, employing the KNN model with 5 neighbors. This approach allows robust
evaluation of the quality of the transformations, ensuring that the new attributes truly
enhance the model’s ability to capture nonlinear interactions between the variables.

4. Experiments
The conducted experiment aims to compare the proposed method with five well-
established dimensionality reduction algorithms to verify if the proposed method has
satisfactory performance. To evaluate if there are statistically significant differences in
the performance of the algorithms, the non-parametric Wilcoxon signed-rank test is used
for pairwise comparisons between the algorithms. The results are derived from a k-fold
cross-validation and the training data is Z-score normalized.

4.1. Experimental Setup - Comparison with Established Methods

Due to the stochastic nature of the proposed method (IGP), three random initialization
seeds are used. Evaluation metrics are obtained through 5-fold stratified cross-validation,
with 70% of the data for training and 30% for testing. Two components are generated in
all cases, which are used in conjunction with Logistic Regression for classification. The
maximum number of iterations is defined as 200 and the newton-cg solver is adopted.

The 23 datasets selected for benchmarking, with their characteristics listed in Ta-
ble 3, are collected from the UCI machine learning repository. The experiments use
datasets with numerical and categorical features, ranging from 3 to 60 features. Addi-
tionally, the datasets contain between 150 and 6497 instances, with 8 of them for binary
classification and 15 for multiclass classification (between 3 and 10 classes).

Table 3. Dataset characteristics and metadata, Class/Feat denotes the number
of classes divided by the number of features and Class/Inst denotes the
number of classes divided by the number of instances

ID Dataset Classes Features Instances Class/Feat Class/Inst

1 Bank Note 2 4 1372 0.500 0.001
2 Blood Transfusion 2 4 748 0.500 0.003
3 Mammographic Mass 2 5 961 0.400 0.002
4 Rice 2 7 3810 0.286 0.001
5 AIDS Clinical Trials 2 23 2139 0.087 0.001
6 Breast Cancer 2 30 569 0.067 0.004
7 Ionosphere 2 34 351 0.059 0.006
8 Mines vs Rocks 2 60 208 0.033 0.010
9 Iris 3 4 150 0.750 0.020
10 Vertebral Column 3 6 310 0.500 0.010
11 Wholesale Customers 3 7 440 0.429 0.007
12 Website Phishing 3 9 1353 0.333 0.002
13 Wine 3 13 178 0.231 0.017

Continued on next page

Table 3. Dataset characteristics and metadata (continued).

ID Dataset Classes Features Instances Class/Feat Class/Inst

14 Healthy Aging 3 14 714 0.214 0.004
15 Waveform 3 21 5000 0.143 0.001
16 Land Mines 5 3 338 1.667 0.015
17 User Knowledge 5 5 403 1.000 0.012
18 Glass 6 9 214 0.667 0.028
19 Dermatology 6 34 366 0.176 0.016
20 Wine Quality 7 11 6497 0.636 0.001
21 Ecoli 8 7 336 1.143 0.024
22 Yeast 10 8 1484 1.250 0.007
23 Cardiotocography 10 21 2126 0.476 0.005

The possible operations are those described in section 3.1, with a maximum of 3
instructions to avoid the bloat phenomenon described in section 2.1 (increased complexity
of generated components translates to higher computational cost without performance
gain). A population of 75 individuals, 8 epochs, and a tournament size of 10 is initialized.
For the fitness wrapper function, which considers the F1 score obtained using KNN, the
number of neighbors is set to 5. The mutations described in section 3.2 occur in all
individuals (except the best one) in each epoch.

Below are listed the feature extraction and dimensionality reduction algo-
rithms adopted for comparison and their respective hyperparameters, in the cases
which differ from the default hyperparameters in the scikit-learn implementaiton
[Pedregosa et al. 2011].

• Principal Component Analysis (PCA) [Jolliffe 2011]: Computes some linearly
uncorrelated components, such that each successive component represents the axis
of most remaining variance.

• T-distributed Stochastic Neighbor Embedding (t-SNE)
[Van der Maaten and Hinton 2008]: Seeks to minimize the Kullback-Leibler
divergence between the joint probabilities (obtained through converting the
similarity between instances) of the low-dimensional embedding and the
high-dimensional data. The perplexity value was set to 25.

• Multi-dimensional scaling (MDS) [Ingwer Borg 2005]: An algorithm that seeks
to maintain the distances between instances observed in the higher-dimensional
space in the newly transformed space. The Euclidean distance is used as dissimi-
larity measure.

• Locally Linear Embedding (LLE) [Roweis and Saul 2000]: An algorithm that
models each instance in the high-dimensional space as a linear combination of
its neighbors and seeks to maintain this combination in the reduced space. The
solver used to compute the eigenvectors was the dense solver.

• Auto-encoder (AE) [Kramer 1991]: A neural network architecture that can be
used for feature extraction and dimensionality reduction. A single-layer auto-
encoder with a two-dimensional latent space, trained for 200 epochs with the
Adam optimizer and a learning rate value of 1.0× 10−3.

4.2. Experimental Results
The accuracy and AUC results obtained are listed in Tables 4 and 5, respectively. Since
only the IGP, PCA, and AE methods performed best on at least one dataset, the results
presented are only for these methods. The complete experiment results, including t-SNE,
MDS, and LLE, are available in a public repository.

Regarding the accuracy results in Table 4, the IGP performs best on 9 out of 23
datasets, is equivalent on 7, and inferior on 7, with PCA better in 4 cases and AE being
superior in 3. In the binary classification datasets (1 to 8), IGP’s results have higher
accuracy in 4 cases, is equivalent in 3, and is outperformed by PCA in 1 case. For the
multiclass classification datasets (9 to 23), there are 4 cases with no statistical difference
between methods, with IGP being superior in 5, followed by PCA in 3 and AE in 3.

Table 4. Comparison of Accuracy values between IGP, PCA, and AutoEncoder. p-
PCA and p-AE denote the p-values for PCA and AutoEncoder, respectively,
regarding Wilcoxon’s test with the proposed IGP method.

Dataset IGP PCA AE p-PCA p-AE Result

1 0.982 ± 0.000 0.758 ± 0.000 0.749 ± 0.001 0.000 0.000 + +
2 0.767 ± 0.000 0.772 ± 0.000 0.771 ± 0.000 0.030 0.028 - -
3 0.811 ± 0.000 0.806 ± 0.001 0.810 ± 0.000 0.378 0.712 = =
4 0.928 ± 0.000 0.926 ± 0.000 0.923 ± 0.000 0.155 0.011 = +
5 0.807 ± 0.000 0.761 ± 0.001 0.780 ± 0.000 0.000 0.008 + +
6 0.940 ± 0.000 0.952 ± 0.001 0.944 ± 0.000 0.125 0.570 = =
7 0.831 ± 0.001 0.585 ± 0.006 0.586 ± 0.001 0.000 0.000 + +
8 0.671 ± 0.003 0.590 ± 0.006 0.587 ± 0.006 0.003 0.003 + +
9 0.938 ± 0.001 0.916 ± 0.002 0.911 ± 0.003 0.026 0.035 + +
10 0.812 ± 0.002 0.680 ± 0.009 0.672 ± 0.002 0.003 0.003 + +
11 0.717 ± 0.000 0.718 ± 0.000 0.718 ± 0.000 0.373 0.373 = =
12 0.653 ± 0.000 0.799 ± 0.009 0.783 ± 0.000 0.000 0.001 - -
13 0.923 ± 0.000 0.959 ± 0.002 0.959 ± 0.001 0.033 0.041 - -
14 0.521 ± 0.001 0.525 ± 0.000 0.524 ± 0.001 0.649 0.733 = =
15 0.735 ± 0.000 0.866 ± 0.001 0.866 ± 0.000 0.000 0.000 - -
16 0.447 ± 0.002 0.284 ± 0.005 0.282 ± 0.001 0.000 0.000 + +
17 0.880 ± 0.001 0.528 ± 0.002 0.542 ± 0.002 0.000 0.000 + +
18 0.466 ± 0.003 0.584 ± 0.008 0.589 ± 0.002 0.000 0.000 - -
19 0.685 ± 0.000 0.800 ± 0.014 0.770 ± 0.003 0.004 0.044 - -
20 0.501 ± 0.000 0.460 ± 0.000 0.461 ± 0.000 0.000 0.000 + +
21 0.756 ± 0.002 0.792 ± 0.004 0.787 ± 0.001 0.018 0.029 - -
22 0.446 ± 0.001 0.445 ± 0.002 0.451 ± 0.000 0.454 1.000 = =
23 0.527 ± 0.000 0.518 ± 0.004 0.515 ± 0.000 0.733 0.762 = =

Analyzing the AUC results in Table 5, the IGP stands out in 9 datasets, has equiva-
lent performance in 7, and worse performance in 7, PCA being superior in 5 cases and AE
in 2. In binary classification datasets, the IGP has superior results in 4 cases, and there is
no statistical difference in the other 4. In the multiclass datasets, the IGP performs better
in 5 cases, is equivalent in 3, and is outperformed by PCA in 5 and by AE in 2.

Table 5. Comparison of AUC values between IGP, PCA, and AutoEncoder. p-
PCA and p-AE denote the p-values for PCA and AutoEncoder, respectively,
regarding Wilcoxon’s test with the proposed IGP method.

Dataset IGP PCA AE p-PCA p-AE Result

1 0.980 ± 0.000 0.715 ± 0.001 0.703 ± 0.003 0.000 0.000 + +
2 0.126 ± 0.011 0.177 ± 0.006 0.162 ± 0.007 0.050 0.268 = =
3 0.788 ± 0.001 0.799 ± 0.000 0.803 ± 0.001 0.303 0.188 = =
4 0.938 ± 0.000 0.935 ± 0.000 0.933 ± 0.000 0.151 0.012 = +
5 0.477 ± 0.045 0.135 ± 0.003 0.346 ± 0.006 0.000 0.041 + +
6 0.917 ± 0.002 0.935 ± 0.001 0.922 ± 0.001 0.169 0.670 = =
7 0.878 ± 0.003 0.717 ± 0.001 0.718 ± 0.001 0.000 0.000 + +
8 0.630 ± 0.017 0.556 ± 0.004 0.550 ± 0.005 0.021 0.021 + +
9 0.938 ± 0.002 0.915 ± 0.002 0.910 ± 0.003 0.016 0.027 + +
10 0.754 ± 0.012 0.524 ± 0.002 0.545 ± 0.002 0.000 0.000 + +
11 0.278 ± 0.000 0.279 ± 0.000 0.279 ± 0.000 0.373 0.373 = =
12 0.430 ± 0.009 0.551 ± 0.000 0.543 ± 0.000 0.000 0.000 - -
13 0.925 ± 0.002 0.960 ± 0.000 0.961 ± 0.001 0.022 0.026 - -
14 0.248 ± 0.001 0.279 ± 0.001 0.278 ± 0.001 0.001 0.002 - -
15 0.735 ± 0.001 0.866 ± 0.000 0.866 ± 0.000 0.000 0.000 - -
16 0.403 ± 0.006 0.211 ± 0.001 0.213 ± 0.001 0.000 0.000 + +
17 0.722 ± 0.006 0.393 ± 0.003 0.411 ± 0.002 0.000 0.000 + +
18 0.263 ± 0.006 0.346 ± 0.001 0.343 ± 0.001 0.001 0.002 - -
19 0.596 ± 0.017 0.768 ± 0.002 0.709 ± 0.005 0.000 0.026 - -
20 0.179 ± 0.000 0.147 ± 0.000 0.147 ± 0.000 0.000 0.000 + +
21 0.506 ± 0.009 0.522 ± 0.005 0.485 ± 0.003 0.599 0.421 = =
22 0.311 ± 0.005 0.289 ± 0.001 0.329 ± 0.001 0.252 0.489 = =
23 0.346 ± 0.007 0.431 ± 0.000 0.414 ± 0.000 0.001 0.005 - -

These results indicate that IGP performs better especially in binary classification,
with superior results in 4 out of 8 cases and no statistical difference in at least 3 others. For
multiclass cases, IGP shows superior/equivalent results in 9 out of 15 cases (accuracy) and
in 8 out of 15 cases (AUC). These findings suggest that IGP generates components that
lead to superior/equivalent performance compared to well-established methods. Besides,
the components involve a reduced number of features (there are only 3 instruction lines),
making IGP versatile and effective for binary and multiclass datasets.

To explore the types of data for which IGP performs best, an analysis is conducted
considering the class ratio concerning the number of features and instances. Considering
the class/instance ratio, as shown in Figure 2, it is possible to observe that in the range of
0.005 to 0.015, the IGP is superior in 5 out of 7 cases, both in terms of accuracy and AUC,
and in the remaining 2 cases, there is no statistical difference with the other methods.

For datasets that fall above the 0.015 threshold, IGP is better in only 1 out of
5 (multiclass) cases, the dataset 9-iris (150 instances, 4 features, and 3 classes) both in
terms of accuracy and AUC. The cases that IGP has worse performance are on 13-wine
(178x13x3), 18-glass (214x9x6), 19-dermatology (366x34x6), and 21-ecoli (336x7x8).

0.005 0.005 0.015 0.025
class/instances

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

IGP
PCA
AE
Ties
All features

0.005 0.005 0.015 0.025
class/instances

0.2

0.4

0.6

0.8

1.0

AU
C

IGP
PCA
AE
Ties
All features

Figure 2. Meta-analysis regarding the proportion between the number of classes
and instances, the highlighted IGP refers to binary classification

Analyzing the relationship between the number of classes and the number of fea-
tures, as shown in Figure 3, the proposed IGP method performed better in 6 out of 10
cases when considering the threshold above 0.5. Additionally, in this region only in the
datasets 18-glass (214x9x6) and 21-ecoli (336x7x8) the IGP are not the best method, with
ties in the cases 2-blood (748x4x2) and 22-yeast (1484x8x10).

0.0 0.5 1.0 1.5
class/features

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

IGP
PCA
AE
Ties
All features

0.0 0.5 1.0 1.5
class/features

0.2

0.4

0.6

0.8

1.0

AU
C

IGP
PCA
AE
Ties
All features

Figure 3. Meta-analysis regarding the proportion between the number of classes
and features, the highlighted IGP refers to binary classification

It is noted that datasets 18 (glass) and 21 (ecoli) are multiclass and are among
the six cases with the fewest instances, in addition to having similar numbers of classes
and features. In other cases, no clear pattern is observed, suggesting that other factors
may influence the quality of the generated components. The quantity and methodology of
categorical feature treatment, the statistical distribution of the data, and other factors will
be analyzed in future investigations.

5. Discussion and Conclusion
A method for dimensionality reduction through the creation of components obtained via
linear and non-linear combinations of the original features using Genetic Programming is
proposed. The novelty of the IGP method lies in using an instruction line structure instead
of expression trees, which are commonly implemented in GP.

This work aims to evaluate whether the proposed method performs comparably to
established methodologies in the literature for feature extraction. A comparison is made
with 5 different methods, using 23 diverse datasets for classification tasks, both binary
and multiclass. The datasets contain both categorical and numerical features.

The results indicate that our algorithm performs better in some cases, particularly
for binary classification datasets, when the class-to-instance ratio falls within intermediate
values (between 0.005 and 0.015) and when the class-to-feature ratio exceeds the 0.50
threshold. For binary cases, IGP shows superior/equivalent results in 7 out of 8 cases, and
in multiclass cases, IGP shows superior/equivalent results in 9 out of 15 cases (accuracy)
and in 8 out of 15 cases (AUC).

Given that the proposed method demonstrates good performance for feature ex-
traction tasks, the next steps involve optimizing the hyperparameters of the IGP, testing
different classification algorithms, and exploring variations in the fitness function, which
are already underway. After this stage, it will be possible to compare our method with
established GP frameworks that use expression trees to confirm the hypothesis that the
proposed modeling approach may offer advantages over the usual GP modeling.

References
Cooper, K. D. and Torczon, L. (2023). Chapter 11 - instruction selection. In Cooper,

K. D. and Torczon, L., editors, Engineering a Compiler (Third Edition), pages 575–
616. Morgan Kaufmann, Philadelphia, third edition edition.

Espejo, P. G., Ventura, S., and Herrera, F. (2010). A survey on the application of genetic
programming to classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 40(2):121–144.

Farasat, A., Menhaj, M. B., Mansouri, T., and Moghadam, M. R. S. (2010). Aro: A
new model-free optimization algorithm inspired from asexual reproduction. Applied
Soft Computing, 10(4):1284–1292. Optimisation Methods Applications in Decision-
Making Processes.

Gambella, C., Ghaddar, B., and Naoum-Sawaya, J. (2021). Optimization problems for
machine learning. European Journal of Operational Research, 290(3):807–828.

Ingwer Borg, P. J. F. G. (2005). The Four Purposes of Multidimensional Scaling. Springer
New York, New York, NY.

Jolliffe, I. (2011). Principal component analysis in international encyclopedia of statistical
science. Berlin, Heidelberg: Springer Berlin Heidelberg, pages 1094–1096.

Khanteymoori, A., Alamdar, F., and Ghorbani, F. (2021). Arp: asexual reproduction
programming. Connection Science, 33(2):256–277.

Kishore, J. et al. (2000). Application of genetic programming for multicategory pattern
classification. IEEE Transactions on Evolutionary Computation, 4(3):242–258.

Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative
neural networks. AIChE journal, 37(2):233–243.

Lensen, A. et al. (2019). Can genetic programming do manifold learning too? In Sekan-
ina, L., Hu, T., Lourenço, N., Richter, H., and Garcı́a-Sánchez, P., editors, Genetic
Programming, pages 114–130, Cham. Springer International Publishing.

Lensen, A., Zhang, M., and Xue, B. (2020). Multi-objective genetic programming for
manifold learning: balancing quality and dimensionality. Genetic Programming and
Evolvable Machines, 21(3):399–431.

Ma, J. and Gao, X. (2020). Designing genetic programming classifiers with feature selec-
tion and feature construction. Applied Soft Computing, 97:106826.

Ma, J., Gao, X., and Li, Y. (2023). Multi-generation multi-criteria feature construction
using genetic programming. Swarm and Evolutionary Computation, 78:101285.

Ma, J. and Teng, G. (2019). A hybrid multiple feature construction approach for classifi-
cation using genetic programming. Applied Soft Computing, 80:687–699.

Meng, W. et al. (2024). Ensemble classifiers using multi-objective genetic programming
for unbalanced data. Applied Soft Computing, 158:111554.

Mitchell, R. J. (”1991”). ”Expression Trees”, pages ”219–231”. ”Macmillan Education
UK”, ”London”.

Muni, D., Pal, N., and Das, J. (2004). A novel approach to design classifiers using genetic
programming. IEEE Transactions on Evolutionary Computation, 8(2):183–196.

Pedregosa, F. et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326.

Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., and Mustaqim, M. (2020). Internet of
things (iot) for next-generation smart systems: A review of current challenges, future
trends and prospects for emerging 5g-iot scenarios. IEEE Access, 8:23022–23040.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
machine learning research, 9(11).

Wang, P. et al. (2014). Multiobjective genetic programming for maximizing roc perfor-
mance. Neurocomputing, 125:102–118. Advances in Neural Network Research and
Applications Advances in Bio-Inspired Computing: Techniques and Applications.

Zhan, Z.-H. et al. (2022). A survey on evolutionary computation for complex continuous
optimization. Artificial Intelligence Review, 55(1):59–110.

Zhang, M. and Smart, W. (2006). Using gaussian distribution to construct fitness func-
tions in genetic programming for multiclass object classification. Pattern Recognition
Letters, 27(11):1266–1274. Evolutionary Computer Vision and Image Understanding.

Zhang, Y., Tiňo, P., Leonardis, A., and Tang, K. (2021). A survey on neural network
interpretability. IEEE Transactions on Emerging Topics in Computational Intelligence,
5(5):726–742.

	Introduction
	Background and Related Work
	Functions, Complexity and Optimization
	Fitness Function - Filter and Wrapper Approaches

	Instruction-based Genetic Programming
	Modeling
	Optimization

	Experiments
	Experimental Setup - Comparison with Established Methods
	Experimental Results

	Discussion and Conclusion

