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Abstract. The field of eXplainable Artificial Intelligence (XAI) aims to under-
stand the output of machine learning algorithms. We observed that the literature
faults in proposing the systematic evaluation of XAI metrics and requires human
perception to evaluate. This paper assesses XAI methods using the Forward-
Forward (FF) algorithm from Geoffrey Hinton’s proposal. Through a quantita-
tive and critical analysis of XAI algorithms - mainly SHAP, LIME, and Grad-
CAM - this study assesses the effectiveness of LIME by comparing ground truth
image and LIME mask output using traditional evaluation metrics. Our contri-
butions to this paper are to improve our understanding of the FF output using
XAI and to provide a systematic strategy for evaluating XAI metrics. We demon-
strate that the proposed metrics effectively highlight the features considered by
the FF network when correctly or incorrectly classifying images, allowing for
quantitative distinction.

1. Introduction

Machine Learning (ML) systems have been increasingly integrated into society and
used to take important decisions in sensitive areas, such as healthcare, educational as-
sessment, credit granting, employment, criminal justice, defense, autonomous vehi-
cles [Li et al. 2023]. However, periodic reports highlight flaws in some systems that un-
dermine their trustworthiness [Alzubaidi et al. 2023]. For example, a system that predicts
the chance of recurrence of crimes having a clear bias against black people, among other
cases that have become famous.

The study of Trustworthy Artificial Intelligence (TAI) [Li et al. 2023] is of
paramount importance in the ever-expanding landscape of Artificial Intelligence (AI) re-
search. As ML models become integral to a wide range of applications, ensuring their
trustworthiness is a critical imperative. TAI focuses on the need for ethical, transparent,
interpretable, and accountable AI systems, fostering confidence among users and stake-
holders. As AI continues to permeate various aspects of society, the study of TAI is
essential for developing robust and reliable systems that align with ethical standards and
societal values.

Also known as interpretability, explainability is the principle which states that the
decisions and classifications of AI systems should be interpretable by its end-users, de-
velopers and stakeholders [Li et al. 2023]. This concern has given rise to an entire area of
research called eXplainable AI (XAI) [Saeed and Omlin 2023], which aims to develop al-
gorithms capable of explaining the decisions of various ML models [da Silva et al. 2023,



Holzinger et al. 2022, Das and Rad 2020]. In the context of image classification, typically
these algorithms provide explanations in the form of region-of-interest visualizations, al-
lowing interested parties to understand which parts of the image are most impactful to
a model’s final decision, relying on users to interpret the generated explanations visu-
ally [Ribeiro et al. 2016, Lundberg and Lee 2017, Selvaraju et al. 2017]. However, XAI
frameworks lack a quantitative metric for evaluation, making it difficult to objectively
measure their effectiveness. This highlights the need for developing quantitative methods
to complement human-based assessments and ensure more rigorous validation of XAI
systems.

In this study, we address two main contributions to the field of XAI. First, we
evaluate the results of XAI techniques - SHAP, LIME and Grad-CAM - when adapted to
the Forward-Forward (FF) network [Hinton 2022], a recently learning method proposed
by Geoffrey Hinton to replace Backpropagation (BP). Second, we introduce new evalu-
ation metrics to address the existing gap in XAI frameworks. These metrics assess the
effectiveness of LIME by comparing ground truth images with LIME-generated masks
using traditional machine learning evaluation criteria.

The following sections of this paper are structured to provide a comprehensive
overview of our research. In Related Works, we review the existing literature and high-
light the gaps that our study aims to address. The Methodology section details the ap-
proach, tools, and techniques employed in our experiments. Next, in Results, we present
the outcomes of our experiments, followed by a thorough Discussion, where we interpret
the findings and highlighting the contributions and limitations of our approach. Finally,
the Conclusion summarizes the key contributions of our study and suggests potential di-
rections for future research.

2. Related Works

Despite the growing importance of explainability in AI, research on evaluation meth-
ods for XAI algorithms has been limited, with few robust academic tools available
for comprehensive analysis, as discussed in papers like [Saeed and Omlin 2023] and
[Zhou et al. 2021]. Among the existing XAI methods, LIME (Local Interpretable
Model-agnostic Explanations) [Ribeiro et al. 2016], SHAP (SHapley Additive exPlana-
tions) [Lundberg and Lee 2017] and Grad-CAM (Gradient-weighted Class Activation
Mapping) [Selvaraju et al. 2017] stand out as widely used tools to explain decisions of
ML models.

The paper [Nguyen et al. 2021] analyzes the effectiveness of LIME, SHAP and
CAM in providing clear and comprehensible explanations for image classifications, with-
out interfering in the XAI model or computation time. The authors propose a new method:
Determining the Highest-Impact Segments (DHIS). To calculate the DHIS, the authors
used the intersection of the CAM heatmap and the original image segmentation from
k-means algorithm. They also introduce the Intersection Over Union (IOU) metric, quan-
tifying the accuracy of XAI methods by measuring the overlap between bounding boxes
generated by the methods (LIME, SHAP, CAM) and a human-defined ground truth. Both
metrics improve comparability between LIME, SHAP, and CAM, showing that LIME
aligns most accurately with human interpretations, while CAM is computationally faster
but less precise. DHIS enhances CAM’s segmentation and highlights trade-offs between



accuracy and efficiency across XAI methods.

The study [Bitton et al. 2022] focuses on enhancing the interpretability of expla-
nations generated by SHAP. The research highlights that while methods like SHAP are
effective in explaining complex models, the generated explanations are not always directly
interpretable by humans. To address this, Latent SHAP is proposed as a feature attribution
framework that does not require a fully invertible transformation function, making the ex-
planations more accessible and useful. Similarly, GradCAM is evaluated in the context of
image classification, demonstrating how gradient-weighted activation maps can provide
visual insights into the image regions that most influence the model’s decision. Albeit not
numerous, these cited studies represent some attempts to evaluate XAI methods.

Although [Nguyen et al. 2021] and [Bitton et al. 2022] evaluate XAI methods
(LIME, SHAP, CAM) broadly in image classification, focusing on accuracy and com-
putational efficiency, our study applies XAI techniques to the novel Forward-Forward
neural network architecture [Hinton 2022], employing statistical metrics to quantify the
accuracy of LIME explanations. To the best of our knowdged, no other previous studies
in the literature address XAI methods for Forward-Forward networks, highlighting the
uniqueness of our approach in tackling explainability within this novel architecture.

3. Methodology

We aim to apply three well-known XAI algorithms to evaluate whether a FF
network can withstand the test of explainability: LIME [Ribeiro et al. 2016],
SHAP [Lundberg and Lee 2017] and Grad-CAM [Selvaraju et al. 2017]. We select these
algorithms due to their broad applicability, robustness, and reliability. Additionally, we
propose three methods to quantitatively analyze the results of LIME: the first based on
pixel-comparison between the original binarized image1 and LIME’s explanation; the
second based on the Adjusted Mutual Information (AMI) [Vinh et al. 2010] for similar-
image clustering; and the third based on the Intersection Over Union (IOU), also known
as Jaccard Index. We evaluated all experiments on the MNIST dataset [Lecun et al. 1998]
for its simplicity and because it was the main dataset used in [Hinton 2022]. MNIST con-
sists of images with 28x28 pixels of handwritten digits in grayscale, with 60,000 examples
for training and 10,000 examples for testing.

3.1. Forward-Forward architecture

The FF training algorithm, initially developed and studied by Geoffrey Hin-
ton [Hinton 2022], is a training procedure to be applied to neural networks for weight
updating and task convergence. It is meant to be a more biologically-plausible approach
to training neural networks than the usual backpropagation (BP) algorithm, since, as stated
in [Hinton 2022], the latter remains an implausible model for the learning process of bio-
logical neurons.

While BP makes an entire forward pass in the network to gather activations in
order to update every layer’s weights in respect to the preceding one (and the final error
of that classification), the FF algorithm prioritizes updating each layer individually, “in-
dependently” of the next, until convergence or reaching maximum epochs. It is still in its

1A binarized image is a segmented image consisting of only 1s and 0s.



early stages of study and therefore it does not surpass BP in terms of results or training
time. However, it has a lot of potential concerning memory efficiency, especially with
deep networks, because it does not need to store intermediate gradients to make a full
update.

Our implementation of the FF model had 2 layers of dimensions (784, 500) and
(500, 500) respectively. It ran for a total of 250 global epochs, with each layer having
an individual run of 50 epochs2. We used Adam [Kingma and Ba 2015] optimizer with
a 0.03 learning rate, Mean Squared Error loss and Glorot Uniform initialization for the
weights. As for the internal FF goodness threshold, we used a value of 1.5.

3.2. LIME
The LIME (Local Interpretable Model-Agnostic Explanations) [Ribeiro et al. 2016] al-
gorithm is a fundamental tool in the context of ML model interpretability. Developed
as a Python library, LIME is model-agnostic and improves transparency, regardless of
its complexity, providing transparent and interpretable insights into the underlying rea-
sons behind the model’s decisions. Its importance is notable in approaching complex and
opaque AI models as it provides understandable local explanations for humans. It is im-
portant to note that LIME can be used to explain models trained on many different data
domains, but we are focusing solely on image classifiers.

LIME follows a series of steps in order to explain important image regions for a
classification. First, it segments the image according to some predetermined segmenta-
tion function, separating n various mutually exclusive regions of image. Each of these
regions are going to be perturbed k times following some perturbance regimen, resulting
in n × k new images3. Afterwards, the original model being explained is going to infer
some classification for each new region-perturbed image, and this classification is used
by LIME to determine the influence of that region: if, because of that perturbed region,
the model misses the classification by a long shot, then that region positively influences
the model; if, on the contrary, the model has a more confident and correct classification,
then that image negatively influences the model; finally, if the model does not change
its confidence nor classification, then the region barely impacts. Visually, it is possible
to combine LIME’s outputs with the original image in order to highlight the important
regions that influenced the model in arriving at such classification.

3.3. SHAP
The SHapley Additive exPlanation framework, liberally abbreviated as SHAP, is a col-
lection of different explainability algorithms suited for different data modalities and ML
models, all sharing a simple-to-use interface [Lundberg and Lee 2017]. It is possible to
use Tree Classifiers, CNNs, MLPs, and a variety of other models. Its name is due to the
primary method used to derive explanations - the Shapley value -, but many other algo-
rithms are also implemented in this framework. For image data, it generates a discrete,
coarse-grained heatmap of feature importance for a classification. While the Shapley
value is the primary algorithm in this framework, other variations remain to be explored.
Specifically, SHAP is divided into interfaces that work with individual model architec-
tures. Specifically, in this work we utilize two of them: the Shapley value calculation

2For each global epoch, 50 individual epochs are run for each layer.
3n depends on the given segmentation function, while k is a hyperparameter in LIME’s implementation.



and SHAP’s GradientExplainer feature, which implements the Expected Gradients algo-
rithm [Erion et al. 2021].

Adapted from the mathematical field of game theory, the Shapley value computes
the individual impact of certain features in relation to the entire data. In summary, we
assume that the data is divided into N feature, as is typically the case with tabular and
image data. Using an additive approach - starting with an empty set of features and
progressively adding one feature at a time - the output of the ML model is measured
at each step. Each feature’s contribution to the overall classification is then properly
weighted to determine its individual impact.

The Expected Gradients method works a bit differently. Suppose you wish to de-
rive an explanation from a single image. By incrementally taking different images from
your data distribution (e.g. training data), interpolating and combining them with your
original image, while accumulating the gradient of the resulting combined image with
the specific feature you wish to understand, the importance of such feature is calculated.
Now, combining this result multiple times with multiple images taken from your distribu-
tion, multiple interpolations, and proportionally weighting each contribution, the image
that is obtained acts as an explanation of the important features (e.g. pixels) for that
classification.

3.4. Grad-CAM

Another highly-used explainability algorithm for Convolutional Neural Net-
works (CNNs), the Gradient Class Activation Mapping (Grad-CAM) algo-
rithm [Selvaraju et al. 2017], was applied to understand its potential in explaining
classifications with the FF architecture. The class activation mappings that Grad-CAM
produces function like a heatmap, which evaluates areas in the image where, for a given
predetermined layer, the most activations occurred. These activations, together with the
principle that areas with the most activation impact the most in the final activation of
the model and, therefore, in the final classification, show us regions in the image that
the model (through that predetermined layer) is “focusing” more, i.e. more important
regions.

This is achieved by a rather simple, two-step calculation. Let Ak be the feature
map activations of the given predetermined layer A, with dimensions (i, j, k) for height,
width and depth (number of feature maps) respectively, and yc be the activation score for
class c, taken directly from the final activation, y. Therefore, the equations 1 and 2 are
applied in sequential order, and the result is the class activation mapping for that image,
layer and classification.
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3.5. Pixel-comparison evaluation

LIME works by creating a mask for the image, based on the most and least important
pixels for the model’s prediction for that sample. This mask represents the presence or
absence of influential superpixels (contiguous sets of similar pixels), taking into account
the segmentation generated for the image. Therefore, our approach consists of calculating



the similarity between the binary masking of the results generated by LIME and the orig-
inal binarized image, in order to output its accuracy. We assume that LIME’s influential
superpixels should, within some degree, resemble the binarized image since they are the
only ones containing positive information that can guide a model’s decision.To evaluate
quantitatively the LIME results, we compute the pixel similarity using the following met-
rics: F-Score, Adjusted Mutual Information (AMI) and Intersection Over Union (IOU).

Initially, the pixel-comparison evaluation was inspired by the methods of statisti-
cal analysis: precision, recall and F-score. Precision (P) measures the proportion of pixels
that were correctly classified as similar between the two images. Recall (R) measures the
proportion of pixels that are similar between the two images and that were correctly clas-
sified as similar. The F-score (F) is a metric that combines precision and recall in a single
measurement, in order to understand the general performance of the results. Therefore,
considering the statistical variables TP - the amount of pixels correctly classified -, FP -
the amount of pixels incorrectly classified as influential - and FN - the amount of pixels
incorrectly classified as not influential -, our metrics are calculated as follows:

P =
TP

TP + FP
(3) R =

TP

TP + FN
(4) F =

2PR
P +R

(5)

AMI measures the similarity between two clusters through mutual informa-
tion [Vinh et al. 2010]. Two clusters are similar when presenting high adjusted mutual
information score, i.e. score closer to 1.0, and a score close to 0 on average means that
clusters are different. IOU is the traditional evaluation metric for measuring the perfor-
mance of object detection algorithms. Object detection task finds the bounding box that
corresponds to the position of a specific object. This metric measures the match between
bounding box of ground truth and detected object. We employed AMI and IOU due to
their possible use as measurements of similarity: IOU begin a spatial-similarity measure,
specially when used in the context of object-detection tasks, and AMI being a numerical-
similarity measure, since it derives from cluster analysis. In essence, for both metrics, we
clustered the ground-truth (original MNIST images) and compared them to the cluster of
”predicted” values (the LIME masking). Therefore, similarly to F-Score metric, we as-
sume that LIME’s masks should be relatively similar to the binarized ground-truth image,
and this metric can precisely measure how much that is the case.

4. Results
In this section, we describe the results obtained by using LIME, SHAP and GRADCAM
frameworks to explain the classification of FF model in the MNIST dataset and the re-
sults achieved by performing a quantitative evaluation on LIME outputs. The last set of
experiments served as a preliminary study to automate the evaluation of LIME and other
framework results using various image similarity metris.

Figure 1 shows examples of the classification of MNIST digits by a FF network,
all explained through LIME. The yellow boundaries indicate influential regions for the
models classifications. We do not distinguish between positive and negative influence
in this case, and therefore all yellow-bounded regions are to be interpreted as simply
impactful. As can be seen, these influential regions greatly match with positive areas of
the image, implying that the FF architecture was able to sustain LIME’s explanation.



Digit 0 Digit 1 Digit 2 Digit 3 Digit 4

Digit 5 Digit 6 Digit 7 Digit 8 Digit 9

Figure 1. Examples of LIME results on FF architecture

To apply SHAP’s Expected Gradients computation to a FF network, some minor
changes to the architecture had to be made, specially concerning batch-handling. We
exhibit both approaches with SHAP concomitantly to better indicate their similarities
and differences. Figure 2 presentes the SHAP results where red markers indicate positive
influence on the final classification in the mathematical sense, i.e. it contributed positively
to the output of the model. In a complimentary sense, blue markers indicate negative
influence. This mathematical representation of SHAP’s results makes it inappropriate
to interpret red markers as ”good” and blue markers as ”bad”. The presence of both is
indicative of the FF network’s understanding of the digit, and one is not necessarily more
valuable than the other.

Since Grad-CAM was designed for Convolutional Neural Networks (CNNs)
[Selvaraju et al. 2017], adapting it to the FF architecture proved to be a significant chal-
lenge. Our initial attempt involved modifying the Grad-CAM algorithm to work with
dense layers by introducing new operations into the network’s activations while trying
to retain the characteristics of the original implementation. Specifically, global poolings
were changed to averages, while matrix multiplications were converted to vector prod-
ucts. Albeit maintaining the data-transformation logic of Grad-CAM, these alterations
significantly changed the algorithm’s nature. The second approach was to adapt the FF
architecture to be compatible with Grad-CAM by replacing its internal dense layers with
convolutional layers, thereby aligning it with the explainability algorithm. Unfortunately,
neither approach was successful. The results consisted of scattered pixels across images
that failed to provide meaningful insights into the model, as can be seen in Figure 3. A
detailed explanation of why these approaches did not work is presented in Section 5.

To evaluate the LIME results considering the pixel-comparison, we calculated the
F-Score, AMI and IOU metrics 10 times for each digit from the MNIST dataset. This
approach ensures that the reported metrics reflect consistent performance across multiple
trials, providing a robust evaluation of the system’s accuracy and reliability. The use
of multiple executions and the calculation of each metric for each digit image help to
mitigate the impact of outliers and variations, leading to more reliable and generalizable
conclusions about the model’s performance. The results shown in Figure 4 represent the
average and standard deviation of 10 executions, each of which is the mean of F-score for
every individual digit image.

Figures 5 and 6 show the average and standard deviation of the 10 executions of



Digit 0 Digit 1 Digit 2 Digit 3 Digit 4

Digit 5 Digit 6 Digit 7 Digit 8 Digit 9

(a) Shapley value method

Digit 0 Digit 1 Digit 2 Digit 3 Digit 4

Digit 5 Digit 6 Digit 7 Digit 8 Digit 9

(b) Expected Gradients method

Figure 2. Results obtained with SHAP. Red indicates positive influence, while
blue indicates negative influence.

AMI and IOU metrics for each digit in the MNIST test set. An AMI score close to 1.0
indicates that the model accurately considers all image features, while a score less than
1.0 suggests that the model is considering fewer features. Similarly, for the IOU metric, a
perfect match (IOU = 1) shows that the area of the ground truth object intersects perfectly
with the detected object, indicating successful object detection. An IOU value less than
1 indicates an imperfect match, which can suggest incorrect detection depending on the
required accuracy of the application.

5. Discussion

The application of LIME was easily adapted to the FF architecture. Due to LIME’s
“black-box” approach, it is compatible with any model, regardless of whether the net-
work performs BP, is differentiable, or even if it is a ML model [Ribeiro et al. 2016]. The
only requirement is that the network accepts an image as input and returns a probability
vector as output. With minor adjustments to our original FF architecture implementation,
we achieved this compatibility seamlessly. Furthermore, it is notable that LIME attributes
influence, be it positive or negative, mostly on the positive digit information, i.e. the pix-
els actually comprising the digit. Our assumption concerning the pixel-wise and AMI
metrics, presented in section 3.5, is based on this observed behavior from LIME’s expla-
nations.



(a) Original MNIST images

(b) Grad-CAM results

Figure 3. Examples of results obtained with Grad-CAM.

Figure 4. F-score results for each digit

It is possible to observe that SHAP does not focus exactly on the digit shapes or
their general topology, but rather on the important features that define each digit’s shape.
For example, in Figure 2(a), SHAP identifies the most important regions of the digit 3
as the crevices on the left and right, which define its shape. Similarly, for the digit 0, it
highlights the central hole; for the digit 2, the middle crevice; and for the digit 5, the two
opposite crevices. The presence of red markers in these crevices - which are, by defini-
tion, absences of positive digit information - informs us that the lack of pixels in there is
positively influencing our model in classifying that image as a representative of 5. This
behavior of SHAP implies our previous observation, namely that it focuses more on spe-
cific topological features of each digit that, without such features, the digit would not be
the same. This pattern is observed across many other digits, as can be seen in Figure 2(a).
The second algorithm we experimented with was SHAP’s implementation of Expected
Gradients, designed specifically for use with differentiable models, i.e. models capable
of gradient calculation. The explanations derived follow the same patterns as SHAP’s
Shapley Value calculation, attributing importance to specific topological contexts of the
digits, such as the crevices in digit 3 (see Figure 2(b)). Moreover, we considered Expected
Gradients better than the Shapley Value calculation, at least in terms of visualization and



Figure 5. AMI results for each digit

Figure 6. IOU results for each digit

understanding, because it provides more fine-grained markers.

Regarding Grad-CAM, considering that it was developed with CNNs in mind, and
since the FF architecture consists solely of fully-connected layers and lacks convolutional
ones, it was no surprise that Grad-CAM did not work. This prompted us to experiment
with adapting the FF architecture to include convolutional layers. Our motivation came
from the fact that the FF implementation we used internally depended on regular dense
layers that could apply BP, but did not do so manually. We speculated that regular convo-
lutional layers might also be applied without the BP step.

Indeed, Hinton’s [Hinton 2022] warning that the FF architecture is not viable with
layers that have weight-sharing was empirically confirmed. However, it is possible to
design convolutional layers without weight-sharing, as demonstrated in Keras’ imple-
mentation of Locally-connected convolutional layers. Nonetheless, when we attempted
this experiment, the network failed to train properly, achieving accuracies around the 20%
mark, which indicated that more time and resources were needed to conduct this experi-
ment effectively.

As we expected, the F-score metric showed positive results for most of the digits.
Higher F-score averages indicate a greater similarity between the LIME mask and the
ground-truth (original MNIST image) pixels. Conversely, lower F-score averages indicate



less similarity between the LIME mask and the ground-truth pixels, and such imagens
were usually incorrectly classified. It is important to note that the standard deviation for
incorrectly classified images is higher than for correctly classified ones. This is due to the
variations in the masks’ topologies generated by LIME. Similar to the IOU metric, digits
2 and 5 showed low F-score averages for correctly classified images. This suggests that
while this quantitative evaluation would benefit from further refinement and research, it
is still capable of differentiating between correct and incorrectly classified examples.

The IOU and AMI metrics showed high performance for correct classifications
and low IOU for incorrect classification. The standard deviation for AMI indicates low
variability, around 0.02, except for digit 2, which shows a higher variability of about 0.12.
Correct classifications have high IOU and AMI scores, indicating that the FF network
considers several features of the digits used.

6. Conclusion
In this work, we presented experiments concerning the application of traditional XAI
algorithms, such as LIME, SHAP and Grad-CAM, applied to the novel FF architecture
proposed in [Hinton 2022]. We demonstrated successful outcomes for the first two algo-
rithms and provided an explanation for the failure of Grad-CAM. Additionally, we eval-
uated three quantitative metrics for assessing XAI results, demonstrating their utility in
understanding model predictions. Each experiment was discussed in detail, highlighting
both the successes and limitations encountered.

For future work, we plan to refine the quantitative evaluation methods for XAI
algorithms, incorporating advanced statistical analyses to enhance their effectiveness in
explaining large sets of XAI outputs. Furthermore, a more in-depth investigation into the
FF architecture’s challanges with convolutional layers will be undertaken.
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