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Abstract. The challenge of developing impartial models that minimize the prop-
agation of unfair predictions is directly linked to optimizing multiple fairness
concepts. Therefore, identifying which model best combines these concepts is
essential for promoting fairness in machine learning. The field of Multi-Criteria
Decision Analysis addresses similar issues by developing techniques for choos-
ing the best alternative in complex problems. One standout method is AHP–
Gaussian, which, through the Gaussian factor, defines the relevance of each
criterion used in decision-making. This eliminates any human factor in weigh-
ing the criteria’s importance, making it an excellent alternative in the fairness-
aware model selection task. To the extent of our knowledge, no study in the
literature has proposed this approach before. This paper handles this gap and
proposes applying AHP–Gaussian to select fairer models in classification tasks
involving people. According to the results, AHP–Gaussian is more effective at
selecting classifiers that balance predictive power and maximization of distinct
fairness concepts than traditional multi-criteria methods.

1. Introduction

Incorporating fairness notions into the machine learning (ML) process has proven to be
adequate in preventing the propagation of discriminatory effects in society through ML-
supported decision-making systems. In classification tasks, a group fairness analysis is
commonly conducted to avoid disproportionate outcomes among different sociodemo-
graphic groups [Barocas et al. 2023, Caton and Haas 2020, Mehrabi et al. 2021].

This type of analysis assesses whether the predictive outcomes among the different
groups satisfy group fairness notions such as demographic parity, equal opportunity, and
equalized odds [Dwork et al. 2012, Hardt et al. 2016]. For example, positive prediction
rates must be the same for all groups analyzed to fulfill demographic parity. This behavior
is desirable, especially in applications like recruiting systems, to avoid disadvantaging a
particular group in the recruiting process [Barocas et al. 2023].

Frequently, it is unclear which fairness notion best aligns with a specific appli-
cation, and at times, various metrics may need to be optimized [Minatel et al. 2023b].
In such cases, a classifier must be evaluated according to different fairness metrics in
addition to predictive performance measures. In this context, the model selection task



becomes much more complex, involving multiple criteria to evaluate and determine the
best classifier [Black et al. 2022].

The field of research in Multi-Criteria Decision Analysis tackles this chal-
lenge by providing decision-makers with methods to make and justify their choices
when faced with complex problems by evaluating different points of view and crite-
ria [Aruldoss et al. 2013]. Therefore, methods developed in this area can be a promis-
ing path for fairness-aware model selection. The well-known Analytic Hierarchy Pro-
cess (AHP) [Saaty 2008] stands out among the methods developed. It is widely ap-
plied in business, management, economics, ecology, and social studies, among many
other areas [Adem Esmail and Geneletti 2018, Aruldoss et al. 2013, Darko et al. 2019,
Podvezko 2009].

In the AHP method, the criteria weights are manually defined by a decision-maker
using the Saaty scale [Saaty 2008]. This approach is well-suited when there is extensive
knowledge of the problem, as it allows for precise assignment of the importance level
to each characteristic selected for evaluation. However, in most cases, these weights are
difficult to assign manually, leading to overestimation or underestimation of the impor-
tance of a specific criterion. This particularity makes AHP less suitable as a multi-criteria
method for model selection.

To address this issue, [Dos Santos et al. 2021] proposed an evolution of the AHP
method, called AHP–Gaussian, which solves the problem of obtaining weights manually.
Specifically, this method defines the weights of the multiple criteria used in decision-
making based on data calculated through a Gaussian factor. With the elimination of hu-
man influence, AHP-Gaussian becomes highly attractive for large-scale applications in
fairness-aware model selection, bringing the expertise of the AHP method in choosing
the best alternative for complex problems within machine learning. To the extent of our
knowledge, this approach has not been explored in the literature before. Therefore, this
paper handles this gap and proposes applying AHP–Gaussian to enhance model selection
based on multiple fairness criteria.

This work contributes twofold. First, it transposes AHP–Gaussian concepts to the
machine learning domain. Second, it introduces a novel model selection method based on
multiple criteria. Our findings suggest that AHP–Gaussian is more effective in selecting
classifiers that combine strong predictive performance with greater fairness in their deci-
sions than the tested methods, as demonstrated by the results of several metrics. Conse-
quently, by applying the AHP–Gaussian to model selection, we can promote fairer results
that help to reduce the spread of discriminatory effects in our society.

2. Background and Related Work
This section presents the terminology, fundamental concepts, and related works required
to comprehend our proposed method and the adopted experimental setup.

2.1. Group Fairness Analysis
The primary goal of group fairness analysis is to identify that a model does not produce
asymmetric prediction results for different sociodemographic groups derived from pro-
tected attributes1. In the Fairness in Machine Learning literature, these sociodemographic

1Protected attributes are characteristics that encompass sensitive information, such as gender and race.



groups are commonly divided into two analysis groups: privileged and unprivileged.
The unprivileged group consists of those who have historically received disadvantaged
treatment, and its composition varies according to the case study [Barocas et al. 2023,
Mehrabi et al. 2021].

There are three main group fairness notions adopted in binary classification tasks:
demographic parity, equal opportunity, and equalized odds. A model satisfies the concept
of demographic parity if it has equal positive prediction rates for both privileged and un-
privileged groups [Dwork et al. 2012]. In contrast, equality of opportunity requires parity
for these groups in the recall score [Hardt et al. 2016]. Finally, the classifier must achieve
equivalence in both true positive and false positive rates across the analyzed groups to
satisfy equalized odds [Hardt et al. 2016].

However, satisfying any of these fairness notions is very challenging, and accord-
ing to [Chouldechova 2017], it is impossible to achieve all these concepts simultaneously.
Therefore, a more practical way to assess whether a model is fair or unfair is to convert
these concepts into group fairness measures, with each metric’s score indicating how far
the classifier is from achieving the associated concept.

To perform this conversion, we typically calculate the measure score associated
with a specific fairness notion (e.g., recall in the case of equal opportunity) for both the
privileged and unprivileged groups. Then, we compute the ratio between these scores,
ensuring that the higher score is placed in the denominator so that the result falls between
0 and 1, making it easier to interpret. A value of 1 indicates that the classifier has fully
achieved the evaluated fairness concept, while a score close to 0 means that the model is
further from satisfying this concept. For instance, a classifier with a recall score of 0.80
for the privileged group and 0.60 for the unprivileged has a metric score associated with
equal opportunity equivalent to 0.60

0.80
= 0.75.

A key point is conducting a similar analysis for the metric used to assess the
classifier’s predictive performance. For example, in this work, where we applied the
Macro F1-Score, it is also crucial to calculate the Macro F1-Score for both groups and
then compute the ratio, as aforementioned. Table 1 presents the acronyms of the group
fairness measures applied in this study.

Table 1. Group fairness measures: the ratio is calculated between the scores of
the privileged and unprivileged groups, with the lower score always used as the
denominator.

Acronym Description Value Range Ideal Value

RDP The ratio of scores relative to demographic parity [0, 1] 1
REO The ratio of scores relative to equal opportunity [0, 1] 1
RDO The ratio of scores relative to equalized odds [0, 1] 1
RMF1 The ratio of Macro F1-Score [0, 1] 1

Group fairness analysis is important for achieving more impartial results and must
be integrated into the learning process when the model’s decisions could impact people’s
lives. However, even if fairness concepts are satisfied, this does not guarantee that the
classifier is fair, as contradictory as it may seem. It is equally necessary for the model
to have good predictive power since a model with a high error rate, even if it is equal
for both groups, is considered unfair. Thus, the main difficulty in building a classifier



is to balance good predictive performance with adequate scores in several fairness mea-
sures [Barocas et al. 2023].

2.2. Related Work
In recent years, many studies have proposed different methods to incorporate fairness con-
cepts into the machine learning process [Mavrogiorgos et al. 2024]. In [Celis et al. 2019,
Narasimhan 2018], the authors introduced methods that apply one or more fairness con-
cepts as constraints in optimizing the classification algorithm’s objective function. Other
works [Calmon et al. 2017, Minatel et al. 2023c, Minatel et al. 2023d] have applied pre-
processing techniques to reduce discriminatory bias present in the data. Meanwhile,
studies such as [Hardt et al. 2016, Mishler et al. 2021, Pleiss et al. 2017] presented post-
processing methods that adjust classifier predictions to make them more impartial.

In the context of fairness-aware model selection, [Minatel et al. 2023e] proposed
a one-criterion method based on Differential Item Functioning. In this method, classifiers
are modeled as test items, and selection is performed using the area method, where the
classifier that produces the smallest ABC (Area delimited Between Classification charac-
teristic curves) is considered the most impartial.

As discussed in Section 2.1, multi-criteria evaluation is often necessary, as
selecting a fair classifier involves considering various fairness measures in addition
to predictive performance metrics, making the model selection process more com-
plex [Black et al. 2022]. The AHP method has been incorporated into a framework
to determine which fairness criteria are most important to evaluate for a specific ma-
chine learning application [Zhang et al. 2020]. However, as discussed in Section 1,
using AHP for model selection is impractical in most cases since the importance of
the criteria is defined manually. In this context, the multi-criteria method proposed
by [Parmezan et al. 2017], called MCPM, has been applied to select more impartial clas-
sifiers [Minatel et al. 2023d, Minatel et al. 2023e].

3. Proposed Method
This section presents our proposal for applying AHP–Gaussian [Dos Santos et al. 2021]
in model selection based on multiple fairness criteria.

The first step in applying AHP–Gaussian to model selection is determining the
decision matrix X. In this paper’s approach, matrix X comprises m trained models eval-
uated on n measures, where each value xij indicates the result of model i on measure j.
This matrix serves as the foundation for choosing the best alternative. Table 2 presents an
example of the decision matrix X.

Table 2. Example of decision matrix X, where the value xij represents the result
of trained model i on measure j.

model measure 1 measure 2 · · · measure n
1 x11 x12 · · · x1n

2 x21 x22 · · · x2n

...
...

...
. . .

...
m xm1 xm2 · · · xmn

The score value for each measure in matrix X must range between 0 and 1. To
ensure that all measures have the same ideal value, a value adjustment to metrics where



the ideal value is 0, such as the false positive rate, is necessary. Therefore, for a measure p
with this characteristic, the adjusted value ∀i is x′

ip = 1−xip. After this step, all measures
in the decision matrix have 1 as the ideal value.

Next, we compute the matrix X̃, which represents the normalized version of ma-
trix X with unit sum, where each value x̃ij is given by Equation 1:

x̃ij =
xij∑m
k=1 xkj

(1)

The Gaussian factor determines the importance of each metric based on the data
from matrix X̃. Thus, we calculate each measure’s Gaussian factor according to Equa-
tion 2, where ¯̃xj and σj are the mean and standard deviation, respectively, of the values of
measure j in X̃.

gj =
σj

¯̃xj

(2)

Finally, after determining the Gaussian factors and the matrix X̃, we calculate the
final score si of each model i using Equation 3.

si =
n∑

k=1

x̃ik × gk (3)

Our proposed method selects the model with the highest si. Probability normal-
ization can be applied to the scores to enhance the selection process interpretability, pro-
viding a better indication of each model’s likelihood of being chosen.

4. Experiments
We designed the experimental protocol to evaluate different multi-criteria methods in
fairness-aware model selection. Figure 1 provides an overview of this protocol. Firstly,
a preprocessed dataset is divided into training and testing sets. Next, for a given clas-
sification algorithm and a range of hyperparameter values (detailed in Section 4.2), we
performed five-fold cross-validation. In this study, we chose k = 5 in cross-validation
because some datasets have few examples (Section 4.1). Moreover, due to the data imbal-
ance, we employed stratified sampling by class and group both in the train-test split and
during cross-validation [Minatel et al. 2023a].

After cross-validation, we computed the average of the following measures:
Macro F1-Score, RMF1, RDP, REO, and RDO. We chose Macro F1-Score to assess clas-
sifier performance and RMF1 to evaluate the disparity in the Macro F1-Score between
privileged and unprivileged groups. RDP, REO, and RDO were selected because they are
the main fairness group metrics. We employed the average values of these five measures
as input for the following multi-criteria methods:

• Sum of All Criteria (SAC): is a simple method used as the baseline for the re-
sults. We calculated the SAC score by summing the values of each input criterion,
ensuring that each criterion has the same weight in the final score;
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Figure 1. Overview of the adopted experimental protocol. For each tuple
{training data, classification algorithm, multi-criteria method}, we retrained the
selected model using the entire training data and evaluated it on the test data.

• Multi-Criteria Performance Measure (MCPM): is the method proposed
by [Parmezan et al. 2017], where each metric represents a distinct axis. MCPM
calculates the area of the triangle formed by each pair of measures, and its final
score is obtained by summing these areas.

• AHP–Gaussian: is our proposed method in Section 3.

The five measures used as input for the multi-criteria methods have an ideal score
of 1. Therefore, the AHP–Gaussian, MCPM, and SAC methods select the classifier with
the highest score in their respective results.

At the end of the model selection stage, we selected one classifier for each tu-
ple {training data, classification algorithm, multi-criteria method} for evaluation on the
test set. The evaluation is conducted individually for each measure incorporated into the
multi-criteria methods. To statistically compare the results, we applied Friedman’s non-
parametric hypothesis test for paired data, followed by multiple comparisons using the
Nemenyi post-hoc test, with a significance level of 5% [Demšar 2006].

We have made the source code for this study in Python, along with benchmark
datasets, results, and analyses, available in a public repository2.

4.1. Datasets

We selected ten relevant benchmark datasets for binary classification, commonly used by
the research community. Table 1 provides a summary of these datasets, including the

2Available at: https://github.com/diegominatel/ahp-gaussian-model-selection



total number of examples (#E), number of attributes (#A), proportion of positive class
examples (#PC), protected attributes, unprivileged groups, and source reference.

Table 3. Dataset information: #E represents the total number of examples, #PC
denotes the proportion of positive class examples, and #A indicates the number
of attributes.

Dataset #E #A #PC Protected Attribute Unprivileged Group Reference

Arrhythmia 452 278 43.57% Sex Female [Kelly et al. 2017]
Bank Marketing 45,211 42 11.69% Age Under 25 [Kelly et al. 2017]
Census Income 48,842 76 24.90% Race and sex Non-white/female [Kelly et al. 2017]
Contraceptive 1,473 10 55.48% Religion Islam [Kelly et al. 2017]
German Credit 1,000 36 70.00% Sex Female [Kelly et al. 2017]
Heart 383 13 46.12% Age Non-middle-aged [Kelly et al. 2017]
Recidivism Female 1,395 176 37.32% Race Non-white [Larson et al. 2016]
Recidivism Male 5,819 375 49.69% Race Non-white [Larson et al. 2016]
Student 480 46 73.84% Sex Female [Amrieh et al. 2015]
Titanic 1,309 6 40.07% Sex Male [Vanschoren et al. 2013]

We used the protected attributes ‘gender’ and ‘age’ to train the models on datasets
Arrhythmia and Heart as they play critical roles in disease prediction. The Recidivism
dataset was divided into Recidivism Female (female examples) and Recidivism Male
(male examples). Finally, we binarized the class labels for datasets Arrhythmia (absence
or presence of cardiac arrhythmia), Contraceptive (use or non-use of contraceptive meth-
ods), and Student (low-performance and medium-high-performance).

4.2. Classification Algorithms and Hyperparameter Settings

In this experiment, we applied the following traditional classification algorithms: De-
cision Tree (DT), k-Nearest Neighbors (k-NN), Multilayer Perceptron (MLP), Random
Forest (RF), Support Vector Machines (SVM), and eXtreme Gradient Boosting (XGB).
In addition, we also used Adversarial Debiasing (AD), a well-known algorithm for mit-
igating discriminatory biases [Zhang et al. 2018]. Table 4 presents each classification
algorithm and the range of numerical values for its hyperparameters3. We tested 32 hy-
perparameter settings per classification algorithm.

Table 4. Algorithms and their hyperparameter value ranges. Numerical variations
in the format (i : f : p) indicate that i and f represent the initial and final values,
respectively, with p denoting the increment used.
Algorithm Hyperparameter Value Variation

Adversarial Debiasing Number of epochs (50 : 330 : 9)

Decision Tree Minimum samples to be at a leaf node (1 : 33 : 2)
Minimum samples to split a node (4 : 5 : 1)

k-Nearest Neighbors Number of neighbors (1 : 33 : 2)
Power parameter for the Minkowski metric (1 : 2 : 1)

Multilayer Perceptron Number of neurons in the hidden layer (5 : 37 : 1)
Random Forest Number of trees (30 : 500 : 15)

Support Vector Machines Gamma (0.0025 : 0.02 : 0.0025)
Regularization (0.98 : 1.01 : 0.01)

XGBoost Number of trees (30 : 500 : 15)

3For hyperparameters not specified, we used the default values provided by the algorithms in the fol-
lowing Python libraries: scikit-learn (DT, k-NN, MLP, RF, and SVM), aif360 (AD), and xgboost (XGB).



4.3. Experimental Results
This section presents the experimental results according to the previously described ex-
perimental setup.

Table 5 shows the average scores for metrics Macro F1-Score, RMF1, RDP, REO,
and RDO calculated on the test set. We organized the results by classification algorithms
and multi-criteria methods. The values in bold indicate the best average score per classifi-
cation algorithm, and gray cells highlight the top average result for each metric analyzed.

Table 5. Average classification algorithm results (%), with standard deviation in
parentheses. Bold values indicate the best average result per algorithm, and gray
cells highlight the top average result for each metric analyzed.

Algorithm Selection Macro F1 RMF1 RDP REO RDO

AD
SAC 71.66 (7.96) 89.20 (12.98) 75.78 (18.21) 84.04 (17.74) 73.94 (14.57)
MCPM 71.45 (8.07) 88.92 (12.75) 75.45 (17.97) 83.58 (17.51) 73.71 (14.28)
AHP–Gaussian 71.85 (7.60) 89.31 (11.64) 76.48 (18.80) 84.58 (15.90) 74.88 (13.82)

DT
SAC 69.88 (9.07) 90.08 (7.23) 68.58 (25.87) 84.04 (14.05) 69.83 (14.76)
MCPM 70.41 (8.55) 90.52 (7.18) 67.67 (25.18) 83.16 (13.33) 68.91 (13.81)
AHP–Gaussian 69.89 (9.08) 90.22 (7.24) 69.08 (25.63) 83.99 (14.07) 70.28 (14.58)

k-NN
SAC 66.92 (10.06) 94.04 (6.32) 68.31 (21.81) 85.50 (10.69) 70.81 (15.15)
MCPM 66.92 (10.06) 94.04 (6.32) 68.31 (21.81) 85.50 (10.69) 70.81 (15.15)
AHP–Gaussian 67.03 (10.02) 94.22 (6.40) 68.19 (21.75) 85.46 (10.55) 70.69 (15.02)

MLP
SAC 73.61 (8.12) 92.93 (4.67) 66.44 (28.74) 83.86 (16.61) 67.02 (19.94)
MCPM 73.61 (8.12) 92.89 (4.69) 65.06 (27.70) 84.66 (16.75) 68.12 (21.20)
AHP–Gaussian 73.50 (8.01) 93.05 (5.08) 65.17 (27.37) 84.96 (17.48) 68.48 (21.01)

RF
SAC 74.61 (8.81) 92.79 (4.12) 61.45 (24.88) 85.07 (17.01) 67.02 (17.17)
MCPM 74.61 (8.81) 92.79 (4.12) 61.45 (24.88) 85.07 (17.01) 67.02 (17.17)
AHP–Gaussian 74.62 (8.92) 93.71 (3.64) 62.32 (24.97) 86.40 (14.61) 68.63 (16.67)

SVM
SAC 67.88 (14.21) 93.89 (4.90) 63.56 (31.21) 79.27 (29.18) 65.40 (29.09)
MCPM 67.88 (14.21) 93.89 (4.90) 63.56 (31.21) 79.27 (29.18) 65.40 (29.09)
AHP–Gaussian 68.88 (11.60) 94.19 (4.29) 65.13 (30.66) 77.89 (28.70) 68.06 (28.41)

XGB
SAC 75.32 (8.37) 94.31 (3.79) 62.59 (25.29) 85.80 (11.25) 71.09 (18.52)
MCPM 75.37 (8.40) 94.19 (3.63) 62.48 (25.47) 85.80 (11.25) 70.99 (18.71)
AHP–Gaussian 75.16 (8.24) 94.67 (3.72) 62.81 (25.87) 86.59 (11.66) 69.90 (17.32)

As shown in Table 5, the AHP–Gaussian method achieved the best average for all
metrics in AD and RF and had the best average in at least three of the five metrics for MLP,
SVM, and XGB. Performing the best average results in AD is highly significant, as it is a
classification algorithm specifically designed to reduce prediction biases. In contrast, the
MCPM and SAC methods obtained the best averages for k-NN, while no method stood
out over the others in DT. Additionally, AHP–Gaussian had the best overall average in
four of the five analyzed metrics.

The main characteristic to be evaluated in these multi-criteria methods applied to
model selection is their ability to identify which classifier excels across all or most of its
input criteria. In this regard, AHP–Gaussian stands out, as it achieved the best average
results in five of the seven classification algorithms, demonstrating balanced performance
in all the analyzed measures, whether performance or fairness metrics.

Table 6 presents the average scores obtained using the multi-criteria method ap-
plied to model selection. Each result is calculated as the average of the 70 models (7
classification algorithms × 10 datasets) selected by each method. Bold results indicate
the best average score for each metric.



Table 6. Average results (%) on the test set, with the standard deviation in paren-
theses. The best result for each measure is highlighted in bold.

Multi-criteria Macro F1 RMF1 RDP REO RDO

SAC 71.41 (9.79) 92.46 (6.90) 66.67 (24.74) 83.94 (16.94) 69.30 (18.41)
MCPM 71.46 (9.73) 92.46 (6.82) 66.28 (24.47) 83.86 (16.86) 69.27 (18.47)
AHP–Gaussian 71.56 (9.20) 92.76 (6.56) 67.02 (24.55) 84.26 (16.54) 70.13 (18.02)

The AHP–Gaussian method had the best overall average in all five measures used
as selection criteria and the lowest standard deviation values. Despite having different se-
lection strategies, the SAC and MCPM methods yielded similar results, both in the overall
average and in algorithms analysis, as seen in the case of k-NN, where both selected the
same classifiers.

To complement the analysis, Figures 2, 3, 4, 5, and 6 show the CD diagram derived
from the Nemenyi post-hoc test for the results of Macro F1-Score, RMF1, RDP, REO, and
RDO, respectively. We considered each tuple {dataset, classification algorithm, multi-
criteria method} in the Nemenyi post-hoc test. At the top of each diagram, we can observe
the Critical Difference (CD), and the horizontal axis represents the average ranks of the
model selection strategies, with the best-ranked data stratification criterion on the left. A
black line connects criteria when no significant difference is detected between them.

1 2 3

MCPM
AHP-G.

SAC

CD

Figure 2. Macro F1

1 2 3
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Figure 3. RMF1
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Figure 4. RDP
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Figure 5. REO
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Figure 6. RDO

None of the CD diagrams showed statistically significant differences, but the re-
sults were consistent with those in Table 6. Specifically, AHP–Gaussian was ranked first
in four of five measures. Only in Macro F1-Score was MCPM ranked first, with AHP in
second place. However, MCPM was ranked last in all other measures.

The results presented in Tables 5 and 6, along with the CD diagrams, demonstrate
the superior ability of the AHP–Gaussian method in selecting classifiers that combine
good predictive performance with optimization across various group fairness measures
compared to the multi-criteria methods tested in this experiment. These findings suggest
that AHP–Gaussian is a simple but promising approach for scenarios where balancing
predictive performance and fairness criteria is crucial.



5. Concluding Remarks
This paper introduced the application of the AHP–Gaussian method for selecting fairer
models considering multiple evaluation criteria. This method’s advantage is that it calcu-
lates a Gaussian factor based on the data, which determines the importance of each input
criterion in selecting the best classifier. Our experimental results indicate that AHP–
Gaussian is the most effective at selecting classifiers that combine high predictive power
with fairness-awareness among the multi-criteria methods tested, especially for the Ad-
versarial Debiasing, Random Forest, and Support Vector Machines classification algo-
rithms.

Although we designed the experimental setup to focus on binary classification
and group fairness analysis, AHP–Gaussian is not limited to this type of analysis. We
can apply it to select multiclass classifiers and tasks that assume other selection criteria.
In future work, we intend to expand the experimental setup by increasing the number of
classification algorithms, hyperparameter values, datasets, and metrics analyzed and ap-
plying AHP–Gaussian to multiclass classification. We also intend to apply other methods
from the Multi-Criteria Decision Analysis field, such as Promethee and Thor.
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