
Reducing Energy Consumption in Android Devices with User
Profile Analysis and AI-based Feedback

Elian Souza, Edwin Monteiro, Raimundo Barreto, Rosiane de Freitas

Institute of Computing – Federal University of Amazonas (UFAM)
CEP 69067-005 – Manaus – AM – Brazil

{elian.souza, edwin, rbarreto, rosiane}@icomp.ufam.edu.br

Abstract. In recent years, smartphones have greatly expanded in functionality
and capability, incorporating advanced features and AI processing. However,
battery evolution has lagged, creating challenges for usability and efficiency.
Improving battery durability and health remains a critical concern for users.
This study tackles mobile device energy consumption by using AI solutions to
reduce it. The Tucandeira Data Collector (TDC) app was developed to collect
daily data on factors like screen brightness, CPU usage, screen-on time, RAM
usage, and unused features like Bluetooth. This data forms a database for ana-
lyzing consumption patterns and building a personalized user profile. Machine
learning models, including decision trees, random forests, and neural networks,
are trained to identify patterns that impact battery life. The Curica Smart Alert
(CSA) app uses this profile to provide real-time data collection and personal-
ized feedback, predicting potential battery gains in minutes or hours based on
user actions. Accepting these suggestions can extend battery life. The study’s
findings are promising, with the Random Forest (RF) model achieving high ac-
curacy and the Deep Neural Network (DNN) model performing well. Integrated
into CSA, these models offer effective recommendations for optimizing energy
use without affecting smartphone performance or inconveniencing users.

1. Introduction
In recent years, mobile devices, especially smartphones, have significantly advanced in
terms of functionalities and capabilities. They incorporate a wide variety of features, from
high-resolution cameras and advanced sensors to powerful artificial intelligence process-
ing capabilities. However, despite these technological advances, the evolution of batteries
has not improved in the same way. The limited battery capacity remains one of the biggest
challenges faced by smartphone users, directly affecting the usability and efficiency of the
devices.

The need to improve battery health, both in terms of durability and charge cycles,
has led to growing interest in studies focused on optimizing energy consumption. Vari-
ous approaches have been explored to address this issue, with software-based solutions
standing out due to the infeasibility of hardware interventions in modern devices, which
generally have non-removable batteries. This scenario highlights the importance of de-
veloping effective methods to manage energy consumption through software solutions.

One way to address this issue is to collect and analyze device usage data. The
literature points to the common practice of developing mobile applications dedicated to
data collection, allowing the construction of databases for energy consumption analy-
sis. Examples include the works of [Barreto Neto et al. 2020] and [Pereira et al. 2021],



where data collection is essential for creating predictive models that help understand and
optimize the energy consumption of mobile devices.

However, the quality and accessibility of databases are constant challenges. Al-
though the study by [Pereira et al. 2021] makes its databases publicly available, there are
significant limitations. The correlation analysis of [Pereira et al. 2021] data, for example,
revealed that many attributes were not sufficiently robust or relevant for detailed energy
consumption analyses. Additionally, compatibility issues with newer versions of Android
and difficulties in modifying existing databases motivated the need for a newer approach.

This study proposes the creation of a new database using an application specif-
ically developed for this purpose, compatible with the latest versions of Android (11
and above). Additionally, an application was developed to provide specialized feedback
to users, assisting in the recommendation and optimization stages. The creation of this
database alongside with the app aims to allow data modification according to the specific
needs of the research, ensuring flexibility and quality in data collection.

The central problem of this study is to develop an efficient software-based ap-
proach to reduce energy consumption in mobile devices. This involves not only creating
a robust and well-labeled database but also applying advanced machine learning tech-
niques to identify usage patterns that negatively impact battery life. From these patterns,
personalized recommendations will be generated to optimize energy consumption using
algorithms such as decision trees, Random Forest, and neural networks. The public avail-
ability of this new database on Mendeley Data [Monteiro et al. 2024] represents a signifi-
cant contribution, allowing other research to benefit from the collected data and contribute
to this field of study.

This work is organized as follows: Section 2, Theoretical Framework, presents
the concepts and AI techniques used. Section 3, Related Work, discusses and compares
studies related to energy efficiency in Android devices and user profile identification.
Section 4, Proposed Method, describes the architecture of the method, data collection
and preprocessing, model definition, and validation. Section 5, Results and Discussions,
presents the experimental results and data analysis. Finally, Section 6, Conclusions, sum-
marizes the findings and contributions of the research and describes future steps.

2. Theoretical Foundation
2.1. The Problem of Class Definition in AI
The definition of classes in Artificial Intelligence (AI) problems is crucial, especially
when classes are not predefined. In such scenarios, techniques like pseudo-labeling and
binning are used to structure the input data so that they can be effectively processed by
learning algorithms. Pseudo-labeling is a semi-supervised technique that uses models to
assign labels to unlabeled data. An algorithm used for this type of labeling is K-means.

2.2. Dimensionality Reduction
Dimensionality reduction, such as Principal Component Analysis (PCA), is often essen-
tial when using K-means on datasets with many variables. PCA reduces the number of
features while retaining most relevant information, improving efficiency and reducing
overfitting risks. It transforms correlated variables into uncorrelated principal compo-
nents, ordered by the data variation they capture. K-means then partitions the reduced



dataset into k clusters, assigning data points to the nearest centroid and iteratively refin-
ing the clusters until the centroids stabilize.

2.3. Energy Consumption Calculation

An important step in analyzing a device’s energy consumption is defining how to calcu-
late energy. Based on the temporal distribution of the dataset, [Barreto Neto et al. 2020]
describes the calculation of the definite integral to obtain the energy consumption E over
time t from the instantaneous power P . To calculate E(t), we must first obtain P (t) as
illustrated in Equation 2, where I represents the battery current and V the battery voltage.

E(t) =

∫ t

0

P (t) dt (1)

P (t) = I(t)× V (t) (2)

Thus, E(t) = P (t) × t. If t = 1s, then the energy consumption is given by
E(t) = P (t), if t = 1.

Due to the limitations of requiring hardware modifications or privileged access,
system-level tools such as PowerAPI and RAPL are not feasible for use in this testing
environment. The experiments are conducted on consumer-end Android devices, where
such modifications are impractical. Instead, power consumption is calculated using An-
droid’s APIs, which capture voltage and current data. This approach ensures compatibility
across a wide range of devices, allowing for broader experimentation without the need for
specialized hardware or system-level permissions.

3. Related Work
This section discusses related work that addresses the classification and management of
energy consumption in mobile devices, focusing on methodologies, algorithms, and user
recommendations. The analyzed works are compared with the approach of this study,
which aims to create user profiles and provide personalized recommendations for opti-
mizing energy consumption.

3.1. Objectives and Methodologies

The article by [Mehrotra et al. 2021] aims to classify mobile applications based on en-
ergy consumption using multiclass classification techniques. The methodology includes
collecting energy consumption data and applying machine learning algorithms to create
predictive models. In contrast, the work by [Barreto Neto et al. 2020] seeks to build en-
ergy consumption models based on user usage patterns. This work uses data collected
from smartphones and applies machine learning techniques to identify patterns and make
predictions about energy consumption.

3.2. Data Collection and Databases

Data collection in the paper [Mehrotra et al. 2021] is performed through device logs,
while the work by [Barreto Neto et al. 2020] uses similarly collected data but with a spe-
cific focus on user usage patterns. Both works use private databases and do not make



the data publicly available. In comparison, the present study generated a public database,
available at [Monteiro et al. 2024] , collected through the Tucandeira Data Collector app,
which records attributes such as screen brightness, Bluetooth status, GPS usage, among
others. Tucandeira is compatible with the latest versions of Android (11 and above), rep-
resenting a significant advantage over previous works that use outdated applications like
PowerTutor and Trepn.

3.3. Clustering Algorithms and Techniques
The K-means algorithm is widely used in the analyzed works to cluster users based on
their usage patterns. In the article [Duan et al. 2017], K-means is used to classify users
into active and inactive, as well as devices into low or high energy consumption. Similarly,
the work by [Pereira et al. 2021] uses clustering techniques to group energy consumption
data from different devices. This study, however, goes beyond simple clustering by ap-
plying decision trees, random forest, and neural networks to extract conditional rules that
identify high energy consumption patterns, followed by a regression approach to estimate
the potential energy savings.

3.4. User Recommendations
The works of [Duan et al. 2017] and [Pereira et al. 2021] highlight the importance of pro-
viding recommendations to users to optimize energy consumption. They use clustering
results to identify anomalous behaviors and suggest adjustments such as turning off un-
used network interfaces and adjusting screen brightness. This study differentiates itself
by offering more detailed and personalized recommendations based on rules extracted
from decision trees and validated by regression algorithms, which estimate the potential
battery life gain in minutes or hours. The feedback construction and delivery to the user
are implemented in the Curica Smart Alert app, which provides personalized feedback to
the user with recommendations for actions to reduce energy consumption.

3.5. Comparison with the Present Study
This study stands out for its approach combining clustering techniques, decision trees,
random forest, and deep neural network (DNN). Unlike previous works that focus on
identifying usage patterns and categorizing users, this study quantifies the impact of rec-
ommendations in terms of energy savings, estimating the battery time gain. For data
collection and generation, the Tucandeira app was developed, compatible with the lat-
est versions of Android. Additionally, the Curica Smart Alert app was created to build
personalized recommendations.

Table 1 presents a comparison between the present work and related works, high-
lighting the public availability of the database and the unique AI-based feedback approach
of this study.

Table 1. Comparison between related works.
Article Database Main Algorithm User Recommendations Publicly Accessible

[Mehrotra et al. 2021] Private Decision Tree No No
[Barreto Neto et al. 2020] Private Neural Network Yes No

[Pereira et al. 2021] Public (GreenHub) Clustering Yes Yes
[Duan et al. 2017] Private K-means Yes No

Present Study Public (Mendeley)
Decision Trees,
Random Forest,

Neural Networks

Yes, with estimated
savings and feedback

via Curica
Yes



4. Proposed Method

The proposed architecture for reducing energy consumption in smartphones, illustrated in
Figure 1, consists of three main modules: Data Collector, AI Model Generator, and Feed-
back Generator. All modules operate directly on the smartphone. The Data Collector
module is responsible for capturing user interaction data with the smartphone. The data
is collected using the Tucandeira Data Collector app, which monitors attributes related to
energy consumption such as screen brightness, CPU usage, screen-on time, current, and
voltage. Data is captured every second, daily, and stored in CSV files both locally and
in the cloud in a private directory. Due to the absence of predefined labels in the dataset,
K-Means clustering was employed to group the data into three clusters representing dif-
ferent energy consumption levels. The elbow method was used to justify the selection of
the optimal number of clusters, ensuring a balance between complexity and interpretabil-
ity. Multiple initializations were applied to guarantee stable results, while 95% of the data
variability was preserved to retain significant information from the original dataset.

The AI Model Generator module is responsible for training Decision Tree, Ran-
dom Forest, and Deep Neural Network (DNN) models based on the collected data. This
task is executed by the Curica Smart Collector app. Once the data is labeled using K-
Means, a Decision Tree classifier is trained to classify user energy consumption profiles
into low, medium, or high categories. The decision tree uses the entropy criterion to mea-
sure the quality of the splits, focusing on reducing uncertainty in the data. A fixed random
seed was used to ensure the model’s reproducibility. Decision trees were chosen for their
interpretability, allowing the extraction of clear rules that link user behavior to energy
consumption patterns.

Finally, the Feedback Generator module captures real-time data and compares
it with values estimated by the DNN, where the inputs are derived from parameter ad-
justments based on predefined rules from the analysis of the attributes in the database,
associated with minimum values extracted from the Decision Tree. The DNN consists
of two hidden layers with 128 and 64 neurons, respectively, both using ReLU activation
functions. The network was compiled with the Adam optimizer, chosen for its efficiency
in handling large datasets, and trained using the mean squared error as the loss function,
which is appropriate for the regression task. The model was trained for 10 epochs, en-
suring convergence without overfitting, and is designed to provide real-time predictions
suitable for mobile devices. The output is the feedback on what can be altered by the user,
along with the estimated time gained if the feedback suggestions are accepted.

4.1. Data Collector Module

In the first module, the Data Collector continuously collects data in the background while
monitoring and recording the user’s daily smartphone usage. The below items highlight
each data collection stage:

• Data Collection: Information based on daily smartphone usage is collected by
Tucandeira.

• Local Storage: The collected data is stored locally on the device in a database.
• Cloud Upload: Daily, the data is uploaded to a private repository on Google

Drive, ensuring that the information is available for later processing.



Figure 1. Architecture of the proposed solution: data collection, model training,
and feedback generation.

4.1.1. The Tucandeira Data Collection App

Within the project SWPERFI , the Tucandeira Data Collector app was developed, as illus-
trated in Figure 2, to capture data on Android devices (versions 11 and above). The col-
lected data are stored locally in ./Secondarystorage/Documents/SWPERFI/
Tucandeira/Logs/, with daily copies sent to Google Drive. The data is organized
into CSV files divided into four groups:

• Dynamic Data: attributes that are constantly changing, such as CPU usage, RAM
usage, and screen-on time.

• Background Data: data related to applications running in the background, such
as codecs and file transfers. Background data is updated throughout the day.

• Static Data: data that rarely change, such as manufacturer, battery capacity, and
kernel version. These are updated when the Tucandeira app is updated or rein-
stalled.

• Application Data: contains information such as the application identifier (id),
package name, and SDK version. These are updated when an application is in-
stalled.

The structuring of the collected data is based on the works of
[Barreto Neto et al. 2020, Pereira et al. 2021] regarding the definition of relevant
attributes to compose the database, such as device identification, screen brightness,
battery level, mobile data networks, and Wi-Fi. Additionally, attributes such as CPU
usage, the identifier of the application running in the foreground and background, energy
consumption in milliampere-hours (mAh), screen-on time, and timestamp are added to
the selected set. Another addition to the data collection configuration is the time interval
in which new data is obtained, set to 1 second, facilitating the calculation of energy



consumption by multiplying voltage by current, as described in Section 2.3. This factor
is important as this paper addresses the problem of using a software approach through a
mobile application, given that new smartphones do not allow battery removal, making
hardware instrumentation difficult. Table 2 presents a sample of the data collected
by the device identified as “70a09b5174d07fff”. This sample includes attributes such
as device identifier (device id), timestamp, screen status (screen status), brightness
level (bright level), brightness mode (bright mode), screen-on time (screen on time),
Bluetooth status (bluetooth), and GPS status (gps status). A detailed description of the
attributes is addressed in [SWPERFI 2024].

Figure 2. Different screens of the Tucandeira interface.

Table 2. Sample data collected by the device “70a09b5174d07fff”.
device id timestamp screen status bright level screen on time bluetooth

70a09b5174d07fff 2023-02-26 00:03:09 1 107 0 4
70a09b5174d07fff 2023-02-26 00:03:10 1 107 0 4
70a09b5174d07fff 2023-02-26 00:03:11 1 107 0 4
70a09b5174d07fff 2023-02-23 02:36:37 2 6 16969 4
70a09b5174d07fff 2023-02-23 02:36:38 2 6 16970 4
70a09b5174d07fff 2023-02-23 02:36:39 2 6 16972 4
70a09b5174d07fff 2023-02-23 02:36:40 2 6 16974 4
70a09b5174d07fff 2023-02-23 02:36:41 2 6 16976 4
70a09b5174d07fff 2023-02-23 02:36:42 2 6 16978 4
70a09b5174d07fff 2023-02-23 02:36:43 2 6 16980 4

4.2. AI Model Generator Module
The second module, the AI Model Generator, processes the collected data to train AI
models that will be used to predict energy consumption. The entire process of training,
classification, and regression is performed on the device using the Curica Smart Alert app.

• Data Reading: The data stored in the cloud by the Tucandeira app is read and
prepared for analysis.

• Preprocessing: This includes steps such as data cleaning, relevant attribute selec-
tion, sampling, and temporal organization of the data. The processed data is then
structured for subsequent machine learning tasks, ensuring that the attributes are
ready for both classification and regression models.



• Model Training: Various AI models are trained with the processed data directly in
the Curica Smart Alert app, seeking to identify the one that best fits the data. This
process includes validating the models to ensure their accuracy and reliability.

• Classification and Regression: The generated AI model is used to classify the
user’s energy consumption profile (high, medium, or low). Additionally, regres-
sion models are used to estimate energy consumption based on current data.

4.2.1. The Curica Smart Alert

The Curica app, see Figure 3, is structured into three main screens, each designed to pro-
vide detailed information and suggestions for optimizing energy consumption on Android
devices.

(a) Main screen (b) Feedback list (c) Stats summary

Figure 3. The three main screens of Curica.

The first screen, Figure 3(a), displays general device information, such as battery
level, Wi-Fi signal strength, Bluetooth and mobile network status, screen brightness level,
and screen-on time. Additionally, it shows energy consumption data, including RAM and
CPU usage percentages. This screen offers a comprehensive overview of the system’s
status and key energy consumption indicators.

The second screen, Figure 3(b), is dedicated to notifications. For each attribute
monitored by the app, there is an associated legend indicating whether the suggestion
for that attribute was accepted and resulted in performance improvement, if there was no
change, or if the suggestion was not accepted. As the app detects the need for adjustments
in any attribute, new notifications are generated, providing detailed suggestions on how
to optimize energy consumption.



The third screen, Figure 3(c), provides a general summary of the user’s interac-
tions with the app. This screen displays the device identifier, the total number of days
of data collection, the total number of suggestions provided by the app, and the user’s
engagement with the recommendations, including feedback generated. This summary al-
lows the user to track usage history and the effectiveness of the suggestions offered by
Curica.

4.3. Feedback Generator Module

The third module, called Feedback Generator, applies the trained model in real time to
provide user recommendations aimed at optimizing energy consumption.

• Model Integration into the Curica App: The AI model is integrated into the
Curica Smart Alert app, which classifies energy consumption in real time.

• Analysis and Adjustments: If energy consumption is classified as high, the
Curica app analyzes the current rules and settings of the smartphone’s attributes. It
then provides recommendations for adjustments, such as reducing screen bright-
ness, closing background apps, or restarting the device to free up memory.

• Energy Consumption and Time Gain Estimation: Along with the adjustments,
a regression process estimates the energy consumption. This value is converted
into additional battery life, allowing Curica to inform the user how much time can
be gained by following the provided recommendations.

5. Results and Discussions

Experiments were conducted to generate feedback on energy consumption in mobile de-
vices using the proposed method, structured in two distinct phases: Rule Generation and
Feedback Generation. The first phase was based on a classification approach, where a
decision tree was trained to identify the user’s profile from daily collected data. Subse-
quently, the second phase used a regression approach to estimate energy consumption,
adjusting the values of the attributes collected in real time to optimize energy usage. The
experimentation was conducted on a Motorola Moto G60 smartphone with Android 12. It
involved the use of the Tucandeira Data Collector app for data collection and the Curica
Smart Alert app to execute the phases. The data was collected from multiple devices and
users to capture diverse usage patterns. However, the model is trained per user to reflect
individual consumption profiles and provide personalized recommendations. While this
supports generalization, future work could expand the dataset to include more devices and
scenarios for finer personalization.

5.1. Rule Generation

Based on the methodology described in [Mehrotra et al. 2021], the data was preprocessed
and treated using feature selection. The data was also subjected to the PCA algorithm for
dimensionality reduction and subsequent application of the K-Means algorithm, which
defines the clusters. This cluster definition is essential for rule generation as it allows
the database to be labeled in terms of energy consumption levels: low, medium, or high.
Therefore, PCA was configured to identify the principal components with K = 3, con-
sidering this value ideal for clusters based on the elbow method estimation. The labeling
is used as the target attribute to train the decision tree.



It is worth noting that, unlike [Mehrotra et al. 2021], the definition of consump-
tion labels in this study is done automatically. The automatic definition of each cluster’s
energy consumption level is based on the collected data’s statistics. Initially, dictionar-
ies are created to store the scores of each relevant attribute for each cluster. Then, for
each cluster and each feature, the median value is calculated. Specifically, for the features
battery power and battery current, the values are inverted (considering the device’s dis-
charge, resulting in negative values) to align the scoring, and these scores are then stored.
The scores of each attribute are then normalized concerning the maximum and minimum
values found for that attribute across all clusters, ensuring that the scores are within a
common scale (0 to 1), facilitating comparison between clusters. After normalization,
the normalized scores of each attribute are aggregated to calculate a total score for each
cluster, representing the sum of the normalized scores of all relevant attributes. The clus-
ters are then ordered based on the total scores in descending order, and the labels “High”,
“Medium”, and “Low” are assigned to the clusters.

After labeling the data, the user’s profile was identified using a decision tree. This
tree was used to predict the energy consumption class and extract conditional rules that al-
low optimizing the collected parameters if energy consumption is high, using values from
low or medium consumption classes. For example, if consumption is high, then low or
medium consumption values are extracted from the tree to replace the high consumption,
to predict later if there is any gain with this change. It is worth noting that a completely
different tree can be generated for data collected on different days from the same user.

Some of the rules extracted from the decision tree include:

• If the brightness level (bright level) is greater than 80, the brightness level is re-
duced to 60. Rule extracted from the tree generated for the smartphone during
experimentation.

• If Bluetooth (bluetooth) is in one of the states 1 (connecting), 3 (disconnecting),
or 4 (disconnected) without change, it is suggested to turn it off (bluetooth = 0).
Example of feedback: ”It is advisable to turn off Bluetooth when not in use to
save energy.”

• If the network mode (network mode), Wi-Fi status (wifi status), and Wi-Fi inten-
sity (wifi intensity) indicate a weak connection, the Wi-Fi value is set to 0, and it
is suggested to activate mobile data.

• In low battery scenarios, if the battery level (battery level) is less than or equal to
20, the power-saving mode attribute is set to 1 (enabled), and the screen brightness
attribute is reduced (the value is extracted from the decision tree).

• If RAM usage (ram usage) is greater than 4 GB, it is suggested to close back-
ground applications or even restart the smartphone.

• Specific rules for GPS include turning off GPS if the GPS activity (gps activity)
is 0 or turning off GPS if the activity is 1, but the battery level is less than or equal
to 20%.

5.2. Feedback Generation
Proceeding with the feedback generation phase for the user, regression is used to estimate
energy consumption based on the rules established in the previous phase. The results
of the estimates are used to calculate the battery life that can be saved. The feedback
phase aims to calculate and communicate the estimated battery life gain resulting from



the applied optimizations. The steps performed in this phase are described below:

Training the Regressor Model First, a real-time collection of attributes related to energy
consumption is performed, such as Bluetooth status, screen brightness level, screen-on
time, and Wi-Fi transmission rate, among others, as described in [Monteiro et al. 2024].
This phase uses a regression approach, where the target is the energy consumption,
calculated as the product of current and voltage. Data collection is performed by the
Curica Smart Alert app using two models: Random Forest (RF) and Deep Neural
Networks (DNN). While Random Forest initially showed strong performance, the DNN
was preferred for handling complex data and faster predictions. Both models require
retraining for new data as they do not support incremental learning. Once energy
consumption is predicted, it is compared with real-time data to determine battery life
gain, and rules are generated to guide the user in achieving energy savings.
Calculation of Time Gain in Minutes For each model, Curica calculates the estimated
battery life gain in minutes. This gain is obtained by subtracting the current battery life
(before optimizations) from the optimized battery life (after optimizations).
Conversion of Minutes to Hours (if applicable) If the estimated battery life gain is
greater than 60 minutes, Curica converts this value to hours. This conversion facilitates
communication of the time gain, making the information more understandable to the
user.
Feedback Generation Based on the calculated gains, Curica Smart Alert generates
feedback messages for the user. These messages are formatted to indicate the increase
in battery life provided by the optimizations, specifying whether the gain is in minutes
or hours. For example, if the estimated gain for the model is more than 60 minutes, the
feedback message will indicate an increase in hours. Otherwise, the increase will be
indicated in minutes.
Accumulation of Feedback Messages Curica accumulates feedback messages in a list,
which is subsequently used to notify the user about improvements in energy consumption
and the corresponding extension in battery life. The Curica Smart Alert app’s feedback
method offers users suggestions, see Figure 3(b) for adjusting settings. It then calculates
the potential energy savings if the recommendation is followed and provides an estimate
of the increase in battery life, displayed in minutes or hours, to guide the user in making
informed decisions.

6. Conclusions
The construction of a database was a crucial challenge, overcome with the development
of the Tucandeira app for data collection on Android devices. After collection, data anal-
ysis and preprocessing were performed using techniques such as PCA and K-means to
identify consumption clusters and label consumption levels. Several models were built
and evaluated, with decision trees standing out for representing the user profile and ex-
tracting consumption rules. Random Forest and Deep Neural Network (DNN) models
were used to estimate the battery time gain with adjustments according to the extracted
rules. The DNN, executed on TensorFlow Lite, enabled real-time estimation of battery
gain. The results include a public database on Mendeley Data, and the Tucandeira and
Curica apps, developed for data collection and energy consumption optimization notifica-
tions, respectively. Future steps include using incremental machine learning algorithms,
allowing models to adapt in real time, and investigating explainable learning techniques



such as the SHAP model. Additionally, Long Short-Term Memory (LSTM) networks will
be explored to capture temporal dependencies and reinforcement learning techniques to
optimize energy consumption based on user behavior.

References
Barreto Neto, A. C. S., Farias, F., Mialaret, M. A. T., Cartaxo, B., Lima, P. A., e Maciel, P.

R. M. (2020). Building energy consumption models based on smartphone user’s usage
patterns. CoRR, abs/2012.10246. https://arxiv.org/pdf/2012.10246.

Duan, L.-T., Lawo, M., Rügge, I., e Yu, X. (2017). Power management of smartphones
based on device usage patterns. In Dynamics in Logistics: Proceedings of the 5th
International Conference LDIC, 2016 Bremen, Germany, pages 197–207. Springer.

Mehrotra, D., Srivastava, R., Nagpal, R., e Nagpal, D. (2021). Multiclass classification
of mobile applications as per energy consumption. Journal of King Saud University -
Computer and Information Sciences, 33(6):719–727.

Monteiro, E., Souza, E., José, R., Balico, L., Barreto, R., e de Freitas, R. (2024). A dataset
from the daily use of features in android devices. Mendeley Data.

Pereira, R., Matalonga, H., Couto, M., Castor, F., Cabral, B., Carvalho, P., Sousa, S.,
e Fernandes, J. (2021). Greenhub: a large-scale collaborative dataset to battery con-
sumption analysis of android devices. Empirical Software Engineering, 26.

SWPERFI (2024). Tucandeira data collector app. https://swperfi-project.
github.io/Pages-dev/TucdAndroidDataCollector-app/. Accessed:
2024-06-30.


