
Privacy-Preserving k-NN Graphs with Autoencoder-Based
Representations for Sensitive Features

Gustavo Lima Oliveira1 , Maria da Graca Campos Pimentel1 ,
Ricardo M. Marcacini1

1Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo (USP)

Caixa Postal 668 – 13560-970 – São Carlos – SP – Brazil

Abstract. Privacy-preserving representation learning has gained significant at-
tention for enabling secure data and model sharing by protecting sensitive infor-
mation while maintaining data utility. In this paper, we present a new approach
to privacy-preserving representation learning with k-NN-based graph models.
This method maps the original feature space to a new space that balances fea-
ture utility, such as classification accuracy, with reducing privacy attack risks,
and constructs a kNN graph from this new space. We evaluate three scenarios
using real datasets to assess privacy-preserving graph representations. Exper-
imental results show that learning a privacy-preserved representation and con-
structing a k-NN graph is a simple, intuitive, and competitive approach com-
pared to other methods in the literature. Thus, this method enables graph data
sharing with a lower risk of sensitive information extraction attacks.

1. Introduction

Numerous studies have highlighted the importance of handling sensitive, private, and
anonymized data in training machine learning models [Al-Rubaie and Chang 2019,
Kong et al. 2020, Nasr et al. 2023]. Consequently, sharing data between organizations for
model training has become a challenge. Simple data anonymization and the removal of
sensitive attributes are not sufficient, as recent studies have shown that attacks can effec-
tively use correlated attributes to identify sensitive information [Backstrom et al. 2007].
Therefore, more advanced methods have been proposed, such as encryption or some
form of internal attribute encoding, especially when integrated with Federated Learn-
ing [Chen et al. 2023, Li et al. 2020b], which allows the sharing of models from different
organizations to create a shared model.

A promising strategy that has been gaining attention is the sharing of graph-based
models [Fu et al. 2023]. In this case, the organization’s local datasets containing sensitive
information are not shared. Instead, only a graph generated from the dataset’s distance
values—i.e., their proximity relationships—is shared . This graph is then used to train
classification models using only the topological relationships and some label information.
We briefly illustrate a simplified version of these approaches in Figure 1, considering
three scenarios. Given a vector-space model X = (x1, . . . , xm) representing m examples,
where each example is characterized by five features (f1, f2, f3, f4, f5). We consider that
features f3 and f5 are private features, containing sensitive information that should not
be extractable through model or graph attacks. The remaining features are referred to
as utility features and do not contain sensitive information. The first scenario represents

a naı̈ve approach, where a graph is constructed solely based on the k-nearest neighbors
(kNN) of X. In the second scenario, a preprocessing step is included to remove the
private features before the graph construction. Finally, in the third scenario, a new data
representation (e1, . . . , em) is obtained using a mechanism that simulates a privacy attack
within the feature learning process, with the expectation that the resulting kNN-based
graph will be robust against privacy attacks.

A simple strategy, such as the one outlined in Scenario 1 of Figure 1, which in-
volves only the construction of the graph, is known to be ineffective in preserving private
attributes f3 and f5 in the example. This is because an attacker could retrieve this informa-
tion merely by observing the adjacency matrix, which represents the principal distances.
We demonstrate in the experimental section of this paper that an attacker with access to
a 10% sample of leaked data can recover the remaining 90% of private information with
an average accuracy of 0.91 in Scenario 1. In Scenario 2, where sensitive attributes are
removed before constructing the graph, attacks are still possible because other charac-
teristics correlated with attributes f3 and f5 are used to calculate the distances between
examples. Thus, even without direct access to sensitive attributes, an attacker possessing
the adjacency matrix could still recover sensitive information.

x1

x2

x3

xn

...

f1 f2 f3 f4 f5
y

kNN-based
Graph Generation

Graph-based
Models

x1

x2

x3

xn

...

f1 f2 f3 f4 f5 y
x1

x2

x3

xn

...

f1 f2 f4 y

Removal of
Private Features

x1

x2

x3

xn

...

f1 f2 f3 f4 f5 y
x1

x2

x3

xn

...

e1 e2 ... y

Privacy-preserving
Representation

Learning

em

Graph Exposure and Model ReleaseInternal and Private Data Transformation

Internal and Private Data Transformation

Internal and Private Data Transformation

Graph-based
Models

Graph Exposure and Model Release

Graph-based
Models

Graph Exposure and Model Release

 S
ce

n
ar

io
 1

 S
ce

n
ar

io
 2

 S
ce

n
ar

io
 3

fi

fj

Utility feature

Private feature

Legend:

kNN-based
Graph Generation

kNN-based
Graph Generation

y

Figure 1. Simplified illustration of three scenarios for privacy-preserving graph-
based models. Scenario 1: A graph is constructed directly from the k-
nearest neighbors (kNN) of the vector-space model X, including sensitive
private features f3 and f5. Scenario 2: A preprocessing step removes pri-
vate features f3 and f5 before constructing the graph. Scenario 3: A new
data representation (e1, . . . , em) is generated using a mechanism that sim-
ulates a privacy attack during the feature learning process, with the aim of
creating a kNN-based graph robust against privacy attacks.

In this paper, we investigate an alternative strategy to address the problem of pri-
vacy preservation in graph-based representations [Ma et al. 2024]. The key idea is to
explore privacy-preserving representation learning methods to learn a new feature space
capable of maintaining the utility of features for a specific task, such as classification,
while reducing the performance of an attack. Although similar strategies have received

significant attention in deep learning-based models, their use in graph-based models has
been less explored. Scenario 3 of Figure 1 illustrates the central proposal of this study
and provides an overview of this strategy. In this approach, the original feature space is
mapped to a new feature space using a representation learning method that simultane-
ously minimizes private features attack metrics and maximizes utility features classifica-
tion metrics. This new space is then used to construct the graph that can be shared and
used for machine learning tasks in relational data. In summary, the main contributions of
this paper are threefold:

• First, we evaluate the three scenarios presented above on three real datasets used
for experiments in the context of privacy-preserving data representation learning
with graph-based representations, involving five classification methods. To the
best of our knowledge, this is the first study to conduct an experimental evaluation
comparing all scenarios. We demonstrate how easy it is to carry out the attack in
Scenario 1. Additionally, we discuss the advantages and limitations of approaches
based on Scenarios 2 and 3.

• Second, we extend privacy-preserving feature learning methods to graphs for Sce-
nario 3. We explore how the method’s weight and simulated attacks affect the
representation learning process. We analyze three approaches: (1) prioritizing
classification utility over attack resistance; (2) focusing on attack resistance and
preserving sensitive features, even if it reduces utility; and (3) balancing both at-
tack minimization and utility in the new representation.

• Third, we developed an open-source tool for k-NN graph-based privacy-
preserving learning1. This tool maps problems from a vector-space model to a
graph representation while preserving sensitive features. We hope it will be useful
for projects that need to share models and data with sensitive information between
organizations.

The remainder of this paper is organized as follows. Section 2 introduces some
basic concepts and related works. The proposal of this paper is presented in more detail
in Section 3, describing the privacy-preserving representation learning method and the
construction of the k-NN graph. Section 4 presents the experimental results, followed by
a discussion of limitations and future work in Section 5.

2. Background and Related Work

Graph-based machine learning methods have made significant improvements in various
fields, including computer vision, natural language processing, recommendation systems,
drug discovery, and fraud detection [Hoang et al. 2023]. However, with the popular-
ization of utilizing graph machine learning techniques to systematically tackle issues
across different application areas, protecting privacy remains a crucial aspect. Privacy-
preserving approaches for graphs aim to share trustworthy generated graph data instead
of the original sensitive data [Fu et al. 2023].

Privacy attackers in graphs can be categorized as active and passive. Active attack-
ers insert structures into the graph before publication to identify targets in the published
version. In contrast, passive attackers rely on observing the published graph and often

1https://github.com/Labic-ICMC-USP/PrivacyPreservingLearning

need minimal external information [Fu et al. 2023]. Protection strategies aim to reduce
the uniqueness of nodes to mitigate two types of graph attacks: (1) Node identity dis-
closure [Hay et al. 2008] aims to reveal a target node, which can be used to determine
whether a node belongs to a graph or to uncover specific properties of a particular node
and (2) Link re-identification focus on review sensitive relationships between nodes.

We focus on passive attackers in k-NN graphs, where nodes represent instances
and edges indicate connections between the k-nearest neighbors. In this context, the most
common type of attack is node identification disclosure, where attackers observe node
connections, such as degree distribution and neighbor connectivity, and some external
information to infer attributes about node instances and identify those with similar char-
acteristics. Existing privacy protection techniques for graphs include simple anonymiza-
tion strategies. For instance, k-degree anonymization [Liu and Terzi 2008] ensures that
each node in a published graph has at least k1 nodes with the same degree, reducing the
likelihood of identifying the target node even with prior knowledge of degree distribution.

Recently, representation learning methods have been proposed to create more ro-
bust representations against privacy attacks in graphs. For example, [Ma et al. 2024] sep-
arates private and non-private information, allowing for a better balance between privacy
and utility. It uses low-dimensional perturbations to generate anonymized graphs that
protect against various inference attacks, while maintaining the usefulness of non-private
information. However, these methods rely on having an initial graph with features for
each node from the start of the proccess. In our case, where the input is not originally a
graph but only data represented in a vector space model, our goal is to build and share a
kNN graph within the context of privacy-preserving representation.

3. Method
We formally define the problem of graph-based privacy preservation with the goal of
generating a k-nearest neighbors (kNN) graph that is robust to privacy attacks. Let X =
{x1, . . . , xn} be a set of n examples in a vector-space model, represented in an feature
space F = (f1, f2, . . . , fm). We assume that the feature space F can be divided into two
distinct types of features:

Utility Features: denoted as FU = {fu1 , fu2 , . . . , fumu
}, where FU includes features

that do not contain sensitive information and are used for the primary purpose of
model utility and performance, for instance, graph-based classification tasks.

Private Features: denoted as FP = {fp1 , fp2 , . . . , fpmp
}, where FP includes features

that contain sensitive information which should be protected from being extracted
through attacks on the model or the graph. These features require protection from
unauthorized access, model attacks, and data leaks. Examples include health data,
financial information, location data, biometric identifiers, and legal records.

The process of constructing a privacy-preserving kNN-based graph involves two
main steps. First, we preprocess the dataset X to protect sensitive information by
applying a privacy-preserving method M(·), resulting in a transformed dataset X̂ =
M(X,FU ,FP). In the second step, we construct the k-Nearest Neighbors (kNN) graph
using X̂. The kNN graph is built by calculating the distance between each pair of exam-
ples in X̂ and connecting each example to its k nearest neighbors. The resulting graph
is represented as G = (V,E), where V denotes the set of vertices, each corresponding

to an example in X̂, and E denotes the set of edges, where E = {(xi, xj) | xj is one of
the k nearest neighbors of xi in X̂}. At this step, access to the original features from F
is no longer available. Instead, classification tasks is based solely on the graph structure
and the connections between vertices, leveraging the proximity and relational information
captured by the kNN graph and labeled nodes.

3.1. Utility metrics

In the graph-based classification process, the graph G = (V,E), constructed from the
dataset X̂, is employed for classification tasks. The process starts with node representation
learning, where a function Φ(·) is applied to the graph to transform each node vi into a
continuous vector representation (embedding) ei = Φ(vi). These embeddings capture the
topological and relational characteristics of the nodes within the graph. The learning of
embeddings is performed using labeled data, with each node vi associated with a class
label or target attribute.

Once the embeddings are obtained, a classifier C(·) is trained to predict the class
or target attribute for each node based on its embedding. The classifier is tasked with
mapping the embeddings ei to their respective labels or attributes. The effectiveness of
this classification process is assessed using utility metrics, including accuracy, precision,
recall, and F1-score.

3.2. Privacy Attacks

In practice, attackers may gain access to a portion of private features due to various rea-
sons [Oliveira et al. 2021, Li et al. 2020a]. For instance, data breaches might occur if
an organization’s database is compromised, resulting in unauthorized access to sensitive
information [Al-Rubaie and Chang 2019]. Insider threats could involve employees with
access to private data leaking information maliciously or accidentally [Tran et al. 2024].
Additionally, incomplete or improperly secured data sharing agreements might inadver-
tently expose private features. Even a small fraction of leaked data can be leveraged by
attackers to train a classifier, which could then be used to infer sensitive information about
other data points [Al-Rubaie and Chang 2019, Li et al. 2020a, Tran et al. 2024].

To formalize the privacy attack process, consider that an attacker has access to
a subset of private information that has been leaked. Let FP,leaked denote the subset of
private features from the leaked data, and yP,leaked be the corresponding labels. The pro-
cess begins by training a classifier Cattack(·) using the embeddings of nodes derived from
the shared graph. Each node vi in the graph is mapped to an embedding hi = Φ(vi).
The classifier Cattack(·) is trained with these embeddings and the labels yP,leaked from the
leaked private data. Once trained, the attacker uses the classifier Cattack(·) to predict la-
bels for the remaining nodes in the graph. Thus, for each node vj with embedding hj , the
predicted label ŷj is given by ŷj = Cattack(hj).

If the graph G = (V,E) was not effective in preserving sensitive information,
the kNN graph may still encode sufficient information for Cattack(·) to accurately predict
private labels. The effectiveness of the attack can be measured by the accuracy of the
classifier, as defined in Equation 1.

Accuracyattack =
1

|V |
∑
vj∈V

I(yj = ŷj), (1)

yj denotes the true label, and I(·) is an indicator function that equals 1 if the predicted
label ŷj matches the true label yj , and 0 otherwise.

In this context, ŷj represents the predicted private label associated with the pri-
vate feature FP of node vj , illustrating the direct connection between the private feature
information FP and the predicted labels. High accuracy of Cattack(·) indicates that the
graph’s embeddings do not effectively protect sensitive information, allowing the attacker
to recover private labels with a significant degree of accuracy.

3.3. Privacy-preserving kNN-based Graph

x1

x2

x3

xn

...

f1 f2 f3 f4 f5 y

x1
x2
x3

xn

...

e1 e2 ... yem

Internal and Private Data Transformation

Graph-based
Models

Graph Exposure and Model Release

kNN-based
Graph Generation

Utility Loss

Private Loss
Original Feature Space

Privacy-preserving Learned Space

fi

fj

Utility feature

Private feature

Legend:

^
^
^

^

Autoencoder M

Attacks accuracy
minimization

Classification accuracy
maximization

x1

x2

x3

xn

...

f1 f2 f4 y

Removal of Private Features

Figure 2. Privacy-preserving representation learning with a modified autoen-
coder, which learns representations by optimizing both utility and privacy
loss functions. The encoder produces (hopefully) privacy-preserved latent
representations, which are then used to construct a kNN graph that can be
shared by organizations for classification tasks.

In this section, we present our method for privacy-preserving representation learn-
ing using a modified autoencoder, as described in Figure 2. Our approach incorporates
two distinct loss functions: one designed to maximize the utility of learned embeddings
for classification tasks, and another aimed at minimizing the risk of predict private infor-
mation. These loss functions guide the training process to balance effective classification
with robust privacy protection. The learned autoencoder embeddings are used to construct
a k-nearest neighbors (kNN) graph for subsequent relational classification tasks.

This approach, inspired by previous literature on autoencoders for privacy preser-
vation [Han et al. 2023, Ma et al. 2024], contains significant adjustments. Unlike those
approaches, we do not use a reconstruction loss, as it tends to preserve the original feature
space, including private features. Moreover, while our approach is somewhat similar to

adversarial attacks, the key difference is that our approach uses a more straightforward
mechanism, focusing directly on minimizing privacy risks rather than generating adver-
sarial examples. The goal is to learn a representation X̂ = M(X,FU ,FP) where M
is the autoencoder model. The encoder maps the input X to a lower-dimensional latent
space representation z, and the decoder reconstructs X from z. Let z = Φ(X) denote
the latent representation learned by the encoder function Φ. To guide the training of the
autoencoder, two loss functions are employed:

• Utility Loss: This loss function aims to maximize the effectiveness of the learned
representation for classification tasks. It is defined as the categorical cross-entropy
loss between the predicted labels from the encoder representation and the true
public labels yU . Formally, if yU represents the true class labels, the loss function
is given by:

LU = CategoricalCrossentropy(yU ,PublicPredictor(z)).

where PublicPredictor(z) refers to the model that predicts the class labels from
the latent representation z.

• Private Loss: This loss function aims to minimize the risk of exposing sensitive
information. It is defined as the negative categorical cross-entropy loss using a
subset of private features yP as labels for the private predictor. The negative sign
in the privacy loss term is used to penalize successful attacks on private features,
thereby encouraging the autoencoder to adjust its weights to learn a latent repre-
sentation that minimizes the risk of sensitive information disclosure.
If yP represents the labels derived from the private features, the loss function is
given by:

LP = −CategoricalCrossentropy(yP ,PrivatePredictor(z)).

PrivatePredictor(z) denotes the model that predicts private features from the latent
representation z.

The total loss function for training the autoencoder is a weighted combination
of the utility and private losses, with weights β and γ, respectively. The combined loss
function is defined in Equation 2 and represents a trade-off between maximizing utility
for classification while minimizing the risk of revealing sensitive information.

L = β · LU + γ · LP . (2)

After training, the learned privacy-preserving representation z is utilized to con-
struct a k-Nearest Neighbors (kNN) graph. Formally, for each node ei, let Nk(i) denote
the set of indices of the k nearest neighbors of ei based on the distance function d. The
kNN graph G = (V,E) is then constructed, where an edge (i, j) ∈ E is included if
j ∈ Nk(i). It is important to note that only the kNN graph G is shared, without the
embeddings obtained from the autoencoder, allowing organizations to use this graph for
training their models while maintaining the privacy of the sensitive information.

4. Experimental Evaluation

4.1. Datasets

To evaluate the approaches discussed in this paper, we use three benchmark datasets2

derived from real-world scenarios:

• COMPAS Dataset: The COMPAS dataset is widely used in criminal justice re-
search to assess the risk of recidivism among criminal defendants. It includes a
range of features related to the defendants’ background and criminal history. For
our study, we use a version of the COMPAS dataset that includes 8 features and
6,907 rows. The dataset is used to predict whether a defendant is likely to re-
offend. In our setup, the private features are sex and race, which are sensitive
attributes that could influence predictions.

• Adult dataset: Also known as the “Census Income” dataset, this dataset is used
to predict whether an individual’s annual income exceeds $50,000. Originally,
it contains 14 features and 32,561 rows. In this study, we performed random
sampling to reduce the dataset to 10,000 rows while preserving the original feature
distributions. For our experiments, the private features are race and sex.

• Student Performance Dataset: This dataset includes information on student per-
formance and contains 395 rows with 30 features. Examples of features in this
dataset are age, sex, address, family size, and various academic-related attributes
such as study time, number of absences, and grades in different subjects. The
target attribute is the student’s grade in the first period, where we predict whether
the student’s grade is greater than or equal to 12. For our experiment, the private
feature is sex.

4.2. Evaluation Criteria

We evaluate the effectiveness of our approach through three different scenarios, each
representing a distinct method for constructing the k-Nearest Neighbors (kNN) graph,
and compare these with a null model.

In Scenario 1, the kNN graph is constructed directly from the original dataset
without any modifications to address private features. This approach serves as a baseline
to understand how well the kNN graph performs when private features are not treated or
removed. In Scenario 2, we construct the kNN graph after directly removing the private
features from the dataset. Although private features are removed, this scenario does not
address the possibility that other features might be correlated with the removed private
features, potentially allowing attackers to infer private information. In Scenario 3, the
kNN graph is built using the latent representations learned from our privacy-preserving
autoencoder. We analyze the impact of the parameter γ on the balance between utility
loss and privacy loss.

In both scenarios, we use the constructed kNN graph to train classifiers to assess
both its utility and the for simulating attacks on private features. For each scenario, we
generate node embeddings from the graphs using the DeepWalk algorithm. These embed-
dings are then used to train and evaluate five different classifiers: K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), Decision Tree, Random Forest, and Multilayer

2https://ashryaagr.github.io/Fairness.jl/dev/datasets/

Perceptron (MLP), with hyperparameters optimized using a validation set. In all scenar-
ios, we construct graphs using Euclidean distance with k = 7 nearest neighbors. This
value was selected as it produced the most effective graphs, maximizing the number of
connected components while not significantly increasing the average vertex degree.

We assumed that the attacker had access to 10% of leaked private data to train their
attack models. Although this is an overestimated value, it allows us to experimentally as-
sess whether the privacy-preserving model can effectively handle more challenging attack
scenarios. For training the classifiers and analyzing their utility for the target task, we used
a typical split of 70% training data and 30% testing data.

Finally, As a baseline comparison, we use a DummyClassifier, which estimates
how well an attacker could predict private features based solely on the data distribution of
private features, i.e., the attacker can infer private information without access to sophisti-
cated prediction methods, relying only on probabilistic estimates.

4.3. Experimental Results

We analyzed the experimental results from three aspects. First, we compared the perfor-
mance of the approaches under an optimistic attack scenario. In this setup, we deliberately
selected the best-performing attack models and, correspondingly, the best-performing
utility classification models. This scenario aims to assess the situation where the attacker
achieves significant success, thereby reflecting the highest risk to the organization. In this
case, the experimental results is presented in Table 1, where each row represents the best
results between all classifiers per dataset. The Utility Acc column indicates the accuracy
of the model’s performance, which we aim to maximize. The Attack Acc column shows
the accuracy in predicting private features, which we aim to minimize.

Table 1. Comparison of Utility Acc and Attack Acc across three scenarios, in-
cluding a Dummy Attack baseline.

Scenario 1 Scenario 2 Scenario 3 (ours)

Dataset Utility
Acc ↑

Attack
Acc ↓

Utility
Acc ↑

Attack
Acc ↓

Utility
Acc ↑

Attack
Acc ↓

Dummy
Attack

COMPAS 0.644 0.907 0.630 0.807 0.608 0.807 0.701
Adult 0.807 0.960 0.814 0.763 0.781 0.673 0.644
Student 0.663 0.885 0.638 0.634 0.630 0.601 0.588

It is important to note that in Scenario 1, where no prior treatment of private fea-
tures is conducted before graph construction, the Attack Acc is notably high. An attacker
achieves promising results, with an average accuracy of 0.91 across the three datasets.
This type of attack significantly outperforms a Dummy Attack, which is based solely on
the distribution of private feature values.

The effectiveness of attacks in Scenario 1 shows the necessity for proper treatment
of private features before graph construction. Both in Scenario 2 and Scenario 3 (our
approach), there is a reduction in Attack Acc while maintaining Utility Acc. Our proposed
approach in Scenario 3 showed a slight reduction in Utility Acc for the COMPAS dataset
without improvement in Attack Acc. However, in this scenario, a Dummy Attack already
achieves an accuracy of 0.701, indicating that the distribution of private features alone

could lead to promising attacks. Our proposed approach demonstrated good performance
for the Adult and Student datasets, reducing Attack Acc close to the Dummy Attack.

Tables 2, 3, and 4 show the Utility Acc and Attack Acc results for each classifier
and dataset. This analysis reveals that no single classifier consistently outperforms others
for either the target classification task or for performing an attack. Therefore, classifiers
need to be calibrated based on the specific dataset.

Table 2. Comparison of Utility Acc and Attack Acc on the COMPAS dataset.

Scenario 1 Scenario 2 Scenario 3 (ours)

Classifier Utility
Acc ↑

Attack
Acc ↓

Utility
Acc ↑

Attack
Acc ↓

Utility
Acc ↑

Attack
Acc ↓

Decision Tree 0.549 0.801 0.535 0.776 0.527 0.799
KNN 0.644 0.899 0.630 0.764 0.607 0.768
MLP 0.639 0.907 0.618 0.752 0.608 0.807
Random Forest 0.555 0.807 0.536 0.807 0.534 0.807
SVM 0.570 0.810 0.557 0.807 0.557 0.807

Table 3. Comparison of Utility Acc and Attack Acc on the Adult dataset.

Scenario 1 Scenario 2 Scenario 3 (ours)

Classifier Utility
Acc ↑

Attack
Acc ↓

Utility
Acc ↑

Attack
Acc ↓

Utility
Acc ↑

Attack
Acc ↓

Decision Tree 0.748 0.745 0.759 0.665 0.750 0.665
KNN 0.796 0.960 0.793 0.763 0.776 0.633
MLP 0.807 0.929 0.814 0.760 0.781 0.633
Random Forest 0.750 0.726 0.749 0.686 0.749 0.673
SVM 0.749 0.802 0.749 0.704 0.750 0.673

Table 4. Comparison of Utility Acc and Attack Acc on the Student dataset.

Scenario 1 Scenario 2 Scenario 3 (ours)

Classifier Utility
Acc ↑

Attack
Acc ↓

Utility
Acc ↑

Attack
Acc ↓

Utility
Acc ↑

Attack
Acc ↓

Decision Tree 0.605 0.750 0.504 0.531 0.630 0.587
KNN 0.663 0.837 0.597 0.559 0.613 0.587
MLP 0.597 0.885 0.563 0.634 0.597 0.556
Random Forest 0.647 0.750 0.597 0.545 0.605 0.567
SVM 0.580 0.874 0.638 0.607 0.630 0.601

In Table 5, we analyze the effect of varying γ (0, 0.5, and 1) on Utility Acc and
Attack Acc, with β = 1. This analysis examines how changing the penalty for attacks on
private features influences performance, while keeping utility feature performance con-
stant. As expected, Utility Acc generally increases when γ is set to 0, since the model
learns a representation optimized solely for classification, making it more susceptible to
attacks. On the other hand, tuning γ presents a more complex challenge. Overall, a
γ value of 0.5 shows a good trade-off between Utility Acc and Attack Acc, providing a
balanced performance across different classifiers and datasets.

Table 5. Comparison of Utility Acc and Attack Acc varying the privacy loss
weight.

Utility Acc↑ Attack Acc↓

Dataset γ = 0 γ = 0.5 γ = 1 γ = 0 γ = 0.5 γ = 1

COMPAS 0.609 0.581 0.568 0.789 0.786 0.791
Adult 0.781 0.768 0.770 0.645 0.636 0.639
Student 0.664 0.639 0.630 0.533 0.524 0.529

We highlight the results obtained on the Adult dataset, where the attack accuracy
was reduced from 0.960 to 0.763 with the second scenario and to 0.673 with our approach,
which is very close to the minimum (dummy classifier) accuracy of 0.644 (Table 1). This
scenario represents a situation in which Scenario 2, involving the simple removal of the
private feature, fails to limit the attack because there is a correlated feature that is used to
conduct the attack. In this case, Table 6 shows the correlation values between the private
feature ”sex” and the other attributes. Note that there are significant correlations, partic-
ularly between ”relationship” and ”sex”. In contrast, our method, detailed in Scenario
3, limits this type of attack because, in addition to removing the private features, it also
learns a representation that obfuscates public features correlated with the private features
through an internal attack strategy during training.

Table 6. Correlation values between private feature “sex” and the other attributes
from Adult Dataset.

Feature Relationship Marital-status Occupation Income
Correlation 0.64 0.46 0.42 0.21

5. Concluding Remarks

In this paper, we explored the effectiveness of autoencoder-based approaches for privacy
preservation in k-NN graph data. We examined three distinct experimental scenarios: (1)
building k-NN graphs without any treatment of private features, (2) directly removing
private features, and (3) utilizing a privacy-preserving representation space.

In our study, Scenario 2 and Scenario 3 yielded similar overall results. However,
when utility features are correlated with private features, Scenario 2 tends to exhibit lower
performance. This is due to the fact that correlated features can produce similar distances
to the removed attributes, enabling attack models to exploit this information and retrieve
sensitive data. In contrast, Scenario 3, which employs our proposed privacy-preserving
representation approach, has the potential to learn a representation that indirectly penal-
izes such correlated features. This approach enhances resilience against privacy breaches
while maintaining data utility, as the attack is mitigated during the representation learning.

Future work should address some limitations of this study. First, we plan to
evaluate the proposed approach on a broader range of datasets, encompassing diverse
characteristics and sizes. Second, we aim to integrate this privacy-preserving representa-
tion method with federated learning frameworks for graph-based methods to enhance the
model’s robustness and applicability in distributed environments.

References
Al-Rubaie, M. and Chang, J. M. (2019). Privacy-preserving machine learning: Threats

and solutions. IEEE Security & Privacy, 17(2):49–58.

Backstrom, L., Dwork, C., and Kleinberg, J. (2007). Wherefore art thou r3579x?
anonymized social networks, hidden patterns, and structural steganography. In Pro-
ceedings of the 16th International Conference on World Wide Web, WWW ’07, page
181–190, New York, NY, USA. Association for Computing Machinery.

Chen, H., Zhu, T., Zhang, T., Zhou, W., and Yu, P. S. (2023). Privacy and fairness in
federated learning: perspective of tradeoff. ACM Computing Surveys, 56(2):1–37.

Fu, D., Bao, W., Maciejewski, R., Tong, H., and He, J. (2023). Privacy-preserving
graph machine learning from data to computation: A survey. SIGKDD Explor. Newsl.,
25(1):54–72.

Han, X., Yang, Y., Wang, L., and Wu, J. (2023). Privacy-preserving network embedding
against private link inference attacks. IEEE Transactions on Dependable and Secure
Computing.

Hay, M., Miklau, G., Jensen, D., Towsley, D., and Weis, P. (2008). Resisting structural
re-identification in anonymized social networks. Proc. VLDB Endow., 1(1):102–114.

Hoang, V. T., Jeon, H.-J., You, E.-S., Yoon, Y., Jung, S., and Lee, O.-J. (2023). Graph
representation learning and its applications: a survey. Sensors, 23(8):4168.

Kong, C., Chen, B., Li, S., Chen, Y., Chen, J., Zhou, Q., Wang, D., and Zhang, L. (2020).
Privacy attack and defense in network embedding. In International Conference on
Computational Data and Social Networks, pages 231–242. Springer.

Li, K., Luo, G., Ye, Y., Li, W., Ji, S., and Cai, Z. (2020a). Adversarial privacy-
preserving graph embedding against inference attack. IEEE Internet of Things Journal,
8(8):6904–6915.

Li, L., Fan, Y., Tse, M., and Lin, K.-Y. (2020b). A review of applications in federated
learning. Computers Industrial Engineering, 149:106854.

Liu, K. and Terzi, E. (2008). Towards identity anonymization on graphs. In Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, page 93–106, New York, NY, USA. Association for Computing Machinery.

Ma, L., Li, C., Sun, S., Guo, S., Wang, L., and Li, J. (2024). Privacy-preserving graph pub-
lishing with disentangled variational information bottleneck. Concurrency and Com-
putation: Practice and Experience, 36(10):e7963.

Nasr, M., Mahloujifar, S., Tang, X., Mittal, P., and Houmansadr, A. (2023). Effectively
using public data in privacy preserving machine learning. In International Conference
on Machine Learning, pages 25718–25732. PMLR.

Oliveira, G. L., Marcacini, R. M., and Pimentel, M. d. G. C. (2021). Privacy-preserving on
heterogeneous network embedding for clinical events. Proceedings of the First MLSys
Workshop on Graph Neural Net-works and Systems (GNNSys’21).

Tran, A.-T., Luong, T.-D., and Huynh, V.-N. (2024). A comprehensive survey and taxon-
omy on privacy-preserving deep learning. Neurocomputing, page 127345.

