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Abstract. Industry 4.0 is revolutionizing the industrial sector with advanced te-
chnologies. In this scenario, process mining - data mining for business and
industrial processes - is essential for optimizing operations by taking advantage
of real-time data on performance, behaviour and trends. However, obtaining
professional data and detailed models to apply process mining techniques is
challenging. CLEMATIS is a discrete event simulation (DES) model that aims
to generate data for this purpose, however, it was not meeting the technical
requirements of process mining. This study therefore improves CLEMATIS to
make it compatible with process mining techniques. The methodology involves
the establishment of requirements, the traceability of production line resources
via tokenization, the development of a visual simulation tool, and the construc-
tion of compatible event logs for commercial and academic use. The results
shows the model’s effectiveness in applying process mining techniques in real
time, meeting the needs of academic research in this area.

1. Introduction

The significant increase in complexity in industrial production lines, along with their
constant mutations, has created challenges in the analytical modeling of these processes,
making it a costly task [Van der Aalst et al. 2004]. As a result, there has been a growing
demand for the application of discrete event simulation (DES) methods to production li-
nes in order to meet the challenges posed by these dynamic and complex changes. In
this scenario, CLEMATIS, a model for generating artificial production lines, has emerged
as a disruptive and interesting tool aimed at obtaining artificial data to encourage further
studies on this topic [Lopes et al. 2024].

A DES model is a computer representation of a system in which events occur at
specific points in time and have an impact on the state of the system [Fishman 2001]. In
this type of simulation, time is divided into discrete intervals and events occur at specific
times. Each event can alter the state of the system, such as changing variables, modifying
queues, updating resources, among others.



In the context of analyzing production lines, the DES model provides a huge theo-
retical advance in a scenario where it is difficult to acquire professional data available for
study as industrial productions lines generate business sensitive data. The synthetic data
generation (SDG) allows advancements in many areas, including generation of data for
AI/ML models. CLEMATIS is therefore a tool that, through DES, generates data from
artificial production lines.

However, in order for a data-driven simulation model to be reliable, the level of
detail that this data offers about the system must be analyzed. In the context of process
mining, there are levels of detail that event records fall into: state data, event data and
monitoring condition data [Friederich et al. 2021].

One understand these levels from the Fig. 1 taken from the original article by
Jonas Friederich, et. al. [Friederich et al. 2021]. But in summary they are defined as:

1. State data: Records the different states of the assets and system of an Intelligent
Manufacturing System (IMS), such as running times, idleness and failure. This
data is a low-level source of information, but requires less effort to provide.

2. Event data: Records discrete events generated by the assets and the system, mar-
king the start and end of activities relevant to the simulation. This data provides
valuable information about the manufacturing system, but requires more effort to
obtain detailed data from the assets.

3. Condition monitoring data: Records relevant data on the health of the IMS, from
sensors embedded in the assets or installed in critical locations. This data increases
the level of detail of reliability and simulation models, allowing for deeper insights
and the generation of detailed failure models.

Figura 1. Requirements for data-driven reliability modeling
[Friederich et al. 2021].

State data records the different states of the assets and system of an Intelligent
Manufacturing System. Event data records discrete events generated by the assets and
the system. In turn, condition monitoring data records relevant information from sensors
embedded in the assets. Taking this information into account, we can see the original
CLEMATIS output in machine status data below in Tab. 1.



Tabela 1. Example of CLEMATIS original output.

Time Vertex State Step
1 0 working 0
1 13 blocked 0
1 24 working 0

Based on this analysis, CLEMATIS has a level of detail in state data that is below
what is necessary to apply all the discovery techniques we have at our disposal.

1.1. Research Challenge and Objectives
Thus, our main objective is to increase this level of detail to event data so that it is possi-
ble to generate artificial production line data compatible with the main known discovery
techniques.

So our objective is to support the field of industrial smart systems through the
generation of datasets that represent production lines. The specific objectives are:

a) Propose a tokenization strategy for an existing production line simulator called
CLEMATIS, to generate event logs in an efficient way;

b) Development of a visual tool to support the scheduling and planning activities
through the representation of dynamic behaviour of the simulated system;

c) Application of process mining techniques to showcase the synthetic data proces-
sing, focused on processes and production lines; and

d) Conformance checking to evaluate the system capabilities.
Therefore, our research challenge involves generating high-quality datasets for

applying data mining techniques and consequently developing smart systems.

To address this problem, we divided the methodology of this work into four main
parts, using the technologies mentioned in the introduction and process mining techni-
ques.

First, we assembled the fundamental requirements to increase the detail level of
the previously structured model, as discussed in the introduction. Next, we structured
the methods needed to implement the traceability of production line resources using the
tokenization technique, which will be discussed in the following subsection. We then
explored the steps to build the event logs of the artificial production line and assessed the
compatibility of this data for commercial and academic uses. Finally, we developed an
extrinsic visual analysis tool developed to run in parallel with CLEMATIS to facilitate the
visualization of the data generated by the model.

2. Theoretical Background
Real data from industrial devices is often sensitive, proprietary, or costly to collect, which
constrains the use of AI/ML techniques to analyze discrete material flow processes. In
Industry 4.0, SDG can enable AI and ML applications. These SDG techniques ensure data
accessibility and authenticity, supporting tasks to optimize manufacturing processes and
evaluate system performance without the need for real data. The next subsections address
the challenges and theoretical background to contextualize the generation of event logs
and traceability data to train AI/ML models, and how process mining can be considered
as a powerful data mining tool for this purpose.



2.1. Synthetic data generation for AI/ML in Industry 4.0

Industrial devices can generate and store real data, but this data is often sensitive, propri-
etary, or requires a high allocation of resources to be collected [Anderson et al. 2014]. To
represent real-world systems properly, the balance between data accessibility and authen-
ticity needs to be ensured [El Emam et al. 2020]. The SDG techniques are an alternative
capable of bridging the gap between real data availability and the demand for data sets
to train some AI and ML models [Libes et al. 2017] The utility of SDG can even extend
to data generation, augmentation, or even knowledge transference from similar systems
through the use of pre-trained meta models [Piga et al. 2024].

Especially in complex production systems, SDG can address challenges of high
product variance, component variety, and different production routes, increasing the infor-
mation available to improve the efficiency of processes in industry [Nguyen et al. 2022].
SDG can also simulate various states of manufacturing parts, facilitating more accu-
rate and efficient AI/ML models applications [Manettas et al. 2021]. Another strategy
for SDG use is to combine synthetic and real data to extend the coverage of scenarios
within the training dataset, addressing class imbalance issues and improving the model’s
ability to generalize from small data sets to real-world scenarios [Gutierrez et al. 2021].
The ability to generate coherent synthetic datasets signifies broader implications to indus-
trial data collection challenges, thus advancing the deployment of AI in manufacturing
environments [Hodapp et al. 2020].

subsectionTraceability Systems and Product Traceability

Traceability is a trending terminology that increased in visibility since its first use
in international industrial standards [22]. Traceability is an umbrella term that refers to the
practice of identifying an object or work item and obtaining all the information about it at
every stage of its life cycle [Schuitemaker and Xu 2020]. Traceability is usually achieved
by using a unique mark or label on the object, recording the data and movements from the
beginning to the end of the production system.

The traceability systems are composed of the principles, practices, and standards
that support product traceability [20]. Initially, traceability systems relied on paper-based
methods until the invention of the bar code in the 1950s, which enabled the beginning of
the digitized traceability era [25]. Nowadays, Industry 4.0 traceability systems are com-
puterized, utilizing ICT systems instead of traditional manual or paper-based methods.
Nevertheless, the practical implementation of traceability remains a significant challenge
for many companies [11]. This challenge constrains the collection of traceability data in
scale and consequently the use of AI/ML algorithms to discrete material flow systems.

The benefits of traceability systems have been already showcased in industrial
case studies [58] and research papers [28]. These benefits can extrapolate quality assu-
rance and claims reduction, for example in inventory management, stock optimization,
and waste recycling [32]. The transfer potential from theory to industries depends on the
user interests and availability of technologies [28]. For example, the availability of da-
tasets and structured ways of generating data can enable AI/ML adoption, serving as a
leading technology in this context.



2.2. Process Mining and Data Mining (discovery, conformance and enhancement)

Advancements in process mining now allow the discovery, analysis, and improvement
of business processes using event data recorded in event logs. This method reveals the
true nature of processes, often uncovering gaps in understanding and suggesting soluti-
ons, much like an X-ray [Van Der Aalst 2012]. Process mining discovers, monitors, and
enhances real processes by extracting knowledge from event logs, which are abundant in
modern information systems. Traditional data mining methods are not process-centric, le-
ading business process management to rely on handmade models. Process mining bridges
this gap by providing a more accurate, data-driven approach .

Process discovery involves learning models from event logs, often simplifying
attributes to activity names. Beyond discovery, process mining includes conformance
checking and enhancement. Conformance checking compares models to actual behavior
to identify discrepancies, ensuring that processes align with intended workflows. Enhan-
cement focuses on optimizing processes by analyzing event logs from three perspectives:
process, organizational, and case .

The process perspective examines control-flow and activity order, aiming to cha-
racterize all possible paths. The organizational perspective analyzes the originator field
to classify roles and build social networks. The case perspective looks at case properties,
such as paths and data element values, to gain deeper insights into specific instances like
replenishment orders. These analyses help organizations optimize their workflows and
improve overall process performance, making process mining a comprehensive approach
to managing and enhancing business processes [Aalst 2005].

3. Methodology
Product traceability is used to determine the physical location of the item. Process tracea-
bility, on the other hand, aims to identify the type, sequence, and variables of the processes
that affect the product. Indeed, in the context of artificial production lines, such as CLE-
MATIS [Lopes et al. 2024], traceability lies in the act of tracking the exact location of
all the resources inserted into the production cycle. In the next subsections, we describe
our traceability implementation which modifies the data structure used in the simulation
model so that the product ID and time during each resource passage are also taken into
account.

3.1. Requirements for Event Logs Generation

In order for the Event Log to move to the second layer of the level of detail of industrial
monitoring systems, the records generated need to be traceable and the exposure of this
traceability needs to follow a sampling pattern that fits the main process mining methods.
To conform to this standard, the exported data needs to meet database construction requi-
rements.

The requirements for this process are:

1) Each resource is represented by a different id;
2) Each resource goes through all the stages of the production process;
3) The resources available at the entrance to the production line are finite;
4) Each machine has a buffer for storing resources;



5) Each machine has a production time represented by a probability distribution;
6) Each entry in the event log is represented by a passage of resources from one

machine to another at a given time;
7) Data is saved in .csv or .xes1 format.

3.2. Generating Event Logs
In the manufacturing industry, process analysis receives attention from companies be-
cause process optimization is directly linked to a reduction in production costs and overall
time reductions [Yang et al. 2014]. Thus, the proposed modification to CLEMATIS aims
to meet this demand and increase the scope of possible uses for this tool.

During the empirical analysis of process discovery algorithms, generally three re-
quirements regarding the test data must be met. Firstly, one must have full control over
the control flow characteristics of the event data generated. A second requirement is ran-
domness to avoid incorrect generalizations based on non-random event data. Finally, the
final event logs and reference models must be in standard format2 to ensure their com-
patibility with tools that implement process discovery algorithms and evaluation metrics
[Jouck and Depaire 2016].

Originally, CLEMATIS did not meet any of the requirements presented, as we can
see in the Tab. 2, making it difficult to analyze this data using the discovery techniques
implemented in the context of process mining.

Tabela 2. Example of the original CLEMATIS output.

time vertex state state id buffer occup. prod. step
1 0 working 2 0.0 0
1 9 working 2 0.0 0
1 12 working 2 0.0 0
1 13 working 2 0.0 0
1 24 working 2 0.0 0

The first requirement for implementing process discovery is the traceability of
objects on the production line. In order to verify the traceability of the products, we pro-
posed the experiment of calculating the cycle time of the resources that enter the artificial
production line, i.e. the analysis of the times and routes that each resource takes to pass
through the production line.

For the second requirement, it was proposed that the production time of the machi-
nes should follow a probability distribution, with the intention of generalizing the data ge-
neration. The probability function chosen was the Poisson[Fernández and Williams 2010]
function, as it models the frequency of occurrences of operations over time well, suiting
the needs of the problem[Letkowski 2012].

Finally, in order to store the data in a more comprehensive format, the .csv and
.xes formats were chosen as the saving mechanisms for the event logs generated. This

1.xes is an extension used to standardize the sending of event data, https://xes-standard.org/https://xes-
standard.org/.

2The standard format for process mining is usually .CSV or .XES, which are the formats supported by
most programs and libraries.



change opens up many options so that the data generated can be used on other platforms
such as the main compliance analysis libraries PM4PY and SIMPY.

In general, the structural update in CLEMATIS logic can be described by the
following pseudo-code:

while producted < production:
update_time()
for node in reversed(sorted_nodes_list):

# if an "in" node is not with
# the buffer full, fill it
node.fill()
# check if any of the elements
# feeded by node has space to receive
o_production = node.check_nexts()
if not node.failed():

node.produce(o_production)
next_node = node.get_next()
pass_tokens(node, next_node)
producted += o_porduction

The logic implemented consists of going through all the layers, from the output
layer to the input layer, checking whether the producers in that layer can produce so-
mething, and if they can, who they can pass that resource on to, statistically calculating
the probability of that node working.

The resource is passed on using the tokenization method presented previously, in
which each resource is marked by a token and its passage through the network is analyzed.

Finally, each resource that leaves the output layer is added to global production
and all the passes that the token for that product has made through the production chain
are added to the event log.

To analyze the improvements made, it is proposed to compare the original model
outputs with the current output and apply 2 process discovery techniques to verify that the
changes really had the expected impact on the model.

3.3. Visual Simulation Tool

For use in industry, the record of events that CLEMATIS artificially generates, with the
improvements presented, already has a very comprehensive use and is in line with the
reality of international industry, in terms of traceability capacity. However, for academic
purposes, the tool as a whole was rather technical and not very didactic. As a result, a
visual tool was also developed to complement CLEMATIS.

This tool was developed in Python with the help of the Pygame library, which ex-
tends the graphics framework of the language used. The pseudo-code of the implemented
tool is shown below:

1) Read the Event Log;
2) Make an abstraction of the shape of the graph from the entries of transitions

between machines;
3) Scroll through the data according to the timestamp and render the status of each

machine;



3.4. Design of experiments and Process Mining

In order to check whether the results of the CLEMATIS improvements have really in-
creased the level of detail of the event log, it was proposed to carry out experiments
using process discovery algorithms, such as Alpha Miner and Directly-Follows Graph,
and compliance analysis algorithms, such as Token-Based Replay.

This analysis is valid due to the fact that the level of detail of the event logs must
be at least at the second level of detail for these process mining techniques to be applied.

In each section of the results and use cases, we’ll delve into each of the algorithms
presented and explain how they work and the motivation for using them.

4. Results and Use Case

With the changes made, it was possible to procedurally generate event logs like the one in
Tab. 3.

Tabela 3. Updated CLEMATIS output example.

case activity time stamp time stamp out product
1 16 2023-09-24 09:31:35 2023-09-24 09:53:35 1
1 6 2023-09-24 09:53:35 2023-09-24 10:32:35 1
1 2 2023-09-24 10:32:35 2023-09-24 11:10:35 1
1 10 2023-09-24 11:10:35 2023-09-24 11:35:35 1
1 4 2023-09-24 11:35:35 2023-09-24 12:01:35 1
2 16 2023-09-24 09:31:35 2023-09-24 10:05:35 2

The data obtained is visually at the event data level of detail, as we can see the
activity, entry time and exit time for each case. But to prove that the model really does
meet this level of detail, process discovery was carried out using the two main process mi-
ning methods: Alpha Miner and Directly-Follows Graph, both using the PM4PY library
in Python. This discovery was made using as parameters a network of 20 nodes, 5 steps
and a random seed of value 2 so that the data obtained can be reproduced.

4.1. Graphical Tool

The algorithm developed allows users to have a broader and deeper view of how the
CLEMATIS simulation works, as seen in the Fig. 2.

Figura 2. Visual tool example



With this tool it is possible to visualize for each production time the current status
of each machine (green: working, red: blocked, yellow: failed to produce, grey: no
resources), which resources are on each machine, and the production progress of each
machine. It also gives a general idea of the distribution of the production line graph.

4.2. Alpha Miner

Alpha Miner is one of the most widely used algorithms for discovering process models
from event logs. It was introduced by Wil van der Aalst in his research work on process
discovery, one of the guiding works of the whole process mining area. This algorithm
initially works by generating a Petri net, which is a graphical representation that describes
the interactions between the activities of a process, as well as the conditions that must be
met for the process to proceed. It consists of places, transitions, directed arcs and tokens.

Figura 3. Graphical representation of process discovery using Alpha Miner.

In order to use the algorithm, the event log must have a level of detail in event
data. Thus, when we apply the algorithm to the generated Event Log, we get the result
shown in Figure 3, an uncovered Petri net with the transition edges showing the number
of products that pass through them throughout the process. This shows that the proposed
modifications have achieved their aim of improving the initial model.

4.3. Directly-Follows Graph (DFG)

Another important advance done in the improved model was that the execution frequency
of each process on each node was constant, but to get closer to reality, a stochastic fre-
quency was implemented, based on Poison variables. To evaluate this change, the DFG
can be used, which is a process discovery method that evaluates the frequency of process
transitions.

Using the Event Log generated, the DFG result shown in Fig. 4 was obtained,
showing an uneven distribution of production times, reflecting the action of bottlenecks
and demonstrating that the changes make the model closer to real data.

4.4. Token-Based Replay

For conformance analysis, the token-based replay was performed on the event log shown
in the Tab. 3 for the case 1. Token based replay is a classic approach of evaluating the
process discovery technique by its generated Petri-net. Through the placement of tokens
after the recent activity in the neighbouring node and consumption of necessary tokens
to execute the following activity, it is possible, by the end of simulation, to know the
places where tokens are remaining or missing, which indicates the transitions where these



Figura 4. Graphical representation of process discovery using the DFG.

problems occurred. However, in this case study, the process evaluation is done over the
event log generated by CLEMATIS rather than the process discovery technique, which is
Alpha Miner.

Tabela 4. Token-Based Replay for Case 1.

Evaluation Result
Trace Fitness 0.875

Trace is fit False
Missing Tokens 2

Consumed Tokens 8
Remaining Tokens 0
Produced Tokens 6

Transitions with problems 16-6, 2-10

The results of the Tab. 4 is obtained through the token-based replay of the Case 1,
using the Petri-net from Fig. 3 discovered by Alpha Miner. This is a sole example from
100 traces contained in event log. Initially, the results returned by this particular example
shows the fitness of the event-log with the discovered Petri-net with no remarkable devi-
ations. For the average result of 100 examples, the Tab. 5 summarizes the information
regarding fitness, remaining and missing tokens:

Tabela 5. Token-Based Replay for all 100 cases.

Evaluation Average Result
Trace Fitness 0.939

Trace is fit 0.25
Missing Tokens 0.69

Consumed Tokens 7.75
Remaining Tokens 0.25
Produced Tokens 7.31

The average fitness for the traces is 0.939, which express that the event log ge-
nerator is capable of producing data which are sound and robust upon process discovery.
The trace is only fit once the fitness equals 1, which are 25 % of the cases. Finally, the



average quantity of missing and remaining tokens for each process case is lesser than 1,
indicating that the application of process discovery techniques on the generated event log
yields coherent results. These observations reinforce the replicability of event log gene-
ration by CLEMATIS and the adequacy of the model in generating data which are close
to real world data.

5. Conclusion
The enhancements implemented in the CLEMATIS model significantly improve its ap-
plicability for both commercial and academic purposes. By increasing the granularity
of data generated and integrating advanced process mining techniques, CLEMATIS now
offers a more robust tool for analyzing production lines in the context of Industry 4.0.
The successful incorporation of event data into the model allows for detailed and accurate
process mining, enabling the identification of bottlenecks and optimization opportunities
in manufacturing processes. Furthermore, the development of a visual simulation tool
enhances user interaction, making the model more accessible and insightful, especially
for educational purposes. Overall, this study not only enhances the technical capabilities
of CLEMATIS but also broadens its scope of application, making it a valuable asset for
the ongoing advancement of smart manufacturing systems.
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