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Abstract. Although large language models (LLMs) demonstrate strong text
generation capabilities, they struggle in scenarios requiring access to struc-
tured knowledge bases or specific documents, limiting their effectiveness in
knowledge-intensive tasks. To address this limitation, retrieval-augmented ge-
neration (RAG) models have been developed, enabling generative models to
incorporate relevant document fragments into their inputs. In this paper, we
design and evaluate a RAG-based virtual assistant specifically tailored for the
University of São Paulo. Our system architecture comprises two key modules: a
retriever and a generative model. We experiment with different types of models
for both components, adjusting hyperparameters such as chunk size and the
number of retrieved documents. Our optimal retriever model achieves a Top-
5 accuracy of 30%, while our most effective generative model scores 22.04%
against ground truth answers. Notably, when the correct document chunks are
supplied to the LLMs, accuracy significantly improves to 54.02%, an increase of
over 30 percentage points. Conversely, without contextual input, performance
declines to 13.68%. These findings highlight the critical role of database ac-
cess in enhancing LLM performance. They also reveal the limitations of current
semantic search methods in accurately identifying relevant documents and un-
derscore the ongoing challenges LLMs face in generating precise responses.

1. Introduction
Question answering (QA) has long been a central concern in natural language proces-
sing. Traditionally, models have been fine-tuned on question-answering datasets—such
as SQuAD [Rajpurkar et al. 2016] and MS MARCO [Nguyen et al. 2016]—following an
initial phase of language model pretraining. With the advent of large language models
(LLMs), standalone fine-tuning has mostly become obsolete, due to to these models’ im-
pressive in-context learning abilities [Bubeck et al. 2023]. LLMs generally perform sa-
tisfactorily on question-answering tasks, especially for factual questions, since they have
likely encountered relevant information during training. However, LLMs still face a signi-
ficant limitation: they do not have access to external knowledge bases, making it difficult
to ensure they respond according to predefined answers. This limitation is particularly
pressing when answers depend on documents that are private, frequently updated, or dif-
ficult to access.

Retrieval-Augmented Generation (RAG) [Lewis et al. 2020] is an architecture de-
signed to address this problem. It consists of a modular structure where—in its standard



version—two components are coupled together: a retriever module, responsible for fin-
ding relevant chunks of text, and a language generation module, which takes a question
and the retrieved information to create an answer. This complex architecture allows better
control over the information the model uses to answer questions, enables tracing back the
source of answers, and disentangles the different steps in answer generation (retrieval and
generation). More importantly, new documents can be constantly added to the database
without the need for additional retraining.

In this paper, we present and evaluate a RAG-based application tailored for an
educational context: a virtual assistant for the University of São Paulo (USP).1 USP, one
of the largest universities in Brazil, with nearly 100K students and a complex structure
that includes multiple campuses, institutes, and courses, presents unique challenges in
accessing information related to its institutional and regulatory aspects. This environment
provides a valuable opportunity to build and assess a RAG system that can assist students,
faculty, and staff in navigating USP’s extensive bureaucratic framework. Furthermore, it
serves as an ideal scenario to compare the effectiveness of RAG-based systems with pure
LLM approaches.

Our main contributions are as follows:

• Developing a RAG-based QA system specifically designed to address the norma-
tive and institutional aspects of the University of São Paulo.

• Curating a comprehensive database of USP documents and constructing a QA
dataset derived from these materials.

• Analyzing the impact of different system components (e.g., model type, chunk
size) on answer quality.

All data and code are available on our GitHub page.2

2. Related Works
Until recently, question answering was primarily addressed as a fine-tuning task, where
a pretrained language model was adapted to a specific domain dataset, as exempli-
fied by [Rajpurkar et al. 2018]. However, with the rapid evolution of LLMs like GPT-
4 [OpenAI 2024], Llama 2 [Touvron and et al. 2023], and Gemini [Team 2024], this
method has been largely replaced by prompt engineering. However, despite their impres-
sive ability to encode vast amounts of information, LLMs remain prone to hallucinations
[Rawte et al. 2023]. This vulnerability raises concerns about their reliability, particularly
in contexts that require high accuracy or involve sensitive information.

Retrieval-augmented generation (RAG) has emerged as an alternative to strictly
parametric models [Lewis et al. 2020]. In this architecture, a retrieval model first gathers
relevant information, which is then fed into a generative model to produce the final
answer. This approach has the advantage of utilizing a knowledge base for information,
allowing the generative model to concentrate on synthesizing the retrieved information
into a coherent response. In the original RAG framework, both components were neural
networks, and the system was trained end-to-end on a question-answering task. While
the results were impressive, the authors noted that the learning process was fragile; the

1https://www5.usp.br/.
2https://github.com/gustavokpc/RetrievalAugmentedGeneration.



generator module could easily learn to ignore the retrieved texts, especially when dealing
with initially random chunks.

A notable variant of RAG system, where components are built independently, has
gained popularity in recent years. This modular approach facilitates the combination of
various retrieval and generation modules. Typically, the embedding network employs
a smaller, pre-trained model, while the generator utilizes an LLM. Over time, several
enhancements to the RAG architecture have been proposed [Gao et al. 2024], including
preprocessing techniques such as query rewriting [Ma et al. 2023], the incorporation of
metadata [ILIN 2023], and the integration of diverse information sources like knowledge
bases [Wang et al. 2023] and tabular data [Chen et al. 2020]. More advanced techniques
include passage reranking to refine the retrieval process [Zhuang et al. 2023] and itera-
tive retrieval to address multihop problems [Shao et al. 2023]. In this paper, we employ
this modular variant of the RAG architecture, testing different components for both the
retrieval and generative modules.

3. Dataset

The University of São Paulo (USP) is one of the largest and most prestigious higher edu-
cation institutions in Brazil. With an annual budget of R$8.6 billion for 2024, it comprises
42 teaching and research units across 8 campuses in 9 cities. The main campus, known
as the Armando de Salles Oliveira University City in São Paulo, covers nearly 3.7 mil-
lion square meters—slightly larger than Central Park. USP offers 246 undergraduate and
229 graduate programs spanning all fields of knowledge, along with community-focused
extension courses. Its personnel include 5K professors, 12K staff members, and 97K
students enrolled in undergraduate and graduate programs. The university’s extensive
infrastructure features a radio station, research institutions like the Butantã Institute, mu-
seums such as the Museum of Ipiranga and the Museum of Modern Art, and hospitals,
including the Hospital das Clı́nicas, the largest hospital complex in Latin America.3

This complex structure required a careful selection of documents. We focused ex-
clusively on normative documents at the university level, excluding regulations specific
to individual institutes, campuses, or departments. This choice was guided by the online
availability of these documents and their broader relevance to our RAG system. We col-
lected 866 documents from USP’s website, covering the period from January 2023 to May
2024. These documents include a variety of norms, such as Historical Norms, the Statute,
General Regulations, Resolutions, Ordinances, Regulations of the Bodies, and other Nor-
matives. Together, they establish the foundational guidelines of USP, addressing topics
like faculty organization and the university charter.

The documents were then divided into chunks to serve as input for the generative
models. We experimented with three different chunk sizes: 2K, 4K, and 8K characters.
Table 1 summarizes the statistics for these datasets. A common issue with chunking is
that a relevant span of text may be split across chunks. To mitigate this, we incorporated
overlapping characters, including small consecutive portions of both the preceding and
following chunks. We used a 1:10 ratio for the overlaps; for instance, with a 2K chunk
size, we added 200 characters from both the preceding and subsequent chunks.

3https://uspdigital.usp.br/anuario/AnuarioControle.



Tabela 1. Statistics for the various databases. Chunk size is given in number of
characters. Min., max., and avg. represent the minimum, maximum, and
average number of words in each database.

Chunk Size Documents Min. Size Max. Size Avg. Size
2K 4780 4 372 235.67
4K 2661 5 735 428.78
8K 1635 7 1401 697.25

Figura 1. Example from the QA dataset, with question, answer, and context.

To evaluate this system, we developed a QA dataset based on the documents.
Questions were automatically generated using GPT-4 [OpenAI 2024], accessed through
OpenAI’s API. We started by randomly selecting chunks from the 2K-character database,
as initial experiments indicated that this chunk size provided sufficient context for gene-
rating high-quality, realistic questions. We then prompted GPT-4 to generate a question
based on the input text. The prompt included a brief overview of the University of São
Paulo and specific instructions, such as, “create self-contained questions that can be un-
derstood without direct reference to the text”. The model returned a string containing
three elements: the question, the answer, and the text span where the answer could be
found. We separated these elements using a regex strategy. Finally, all questions were
manually reviewed to ensure that no two chunks in the database could answer a single
question. Although this setup is somewhat artificial, limiting answers to a single chunk
simplifies the evaluation of the retrieval system. The resulting dataset consists of 592
questions. Figure 1 shows an example question from the dataset.

Since the documents served as the basis for question generation, the questions
often shared similar vocabulary with their sources. This created an unrealistic scenario,
where identifying relevant texts and extracting answers became relatively easy due to the
overlapping terms. To address this, we developed a second version of our QA dataset
using GPT-4. In this version, we prompted the model to paraphrase the original questi-
ons. The input included the question, answer, and supporting text, with instructions to
reformulate the question in a manner as different as possible while preserving the relevant
content.

4. Architecture

To build our assistant, we opted for a RAG system, as shown in Figure 2. This choice
was driven by two main factors. First, the knowledge base comprises a dynamic corpus
of documents, with new entries added regularly, which would require constant retraining



Figura 2. Overview of the system’s architecture.

if using an end-to-end model. Second, the questions may address sensitive topics, such
as eligibility for financial aid, where precision in both information retrieval and response
generation is crucial. A modular architecture is better suited for such scenarios, with one
component dedicated to retrieving relevant documents and another focused on generating
accurate responses. This separation of tasks provides greater control and accuracy at each
stage of the process.

The system is composed of two main modules: a retriever and a generative mo-
del. The retriever ranks text chunks based on their similarity to the user’s question. In a
one-time process, the text chunks are first converted into vector representations, or embed-
dings, which are then stored in a static vector database. When a query is made, the system
generates an embedding for the question using the same model. The similarity between
the query and each chunk is then calculated by taking the dot product of their vectors,
following a method similar to DPR [Karpukhin et al. 2020].4 The model subsequently
returns a ranked list of chunks based on their similarity scores.

The generative model is tasked with producing the final answer from the retrieved
chunks. To do this, we construct a prompt that includes the user’s question and the k
most similar chunks, presented in natural language. The prompt also provides relevant
information about the University of São Paulo, along with specific instructions for the
task. Using this input, the model generates a response to the question. To further enrich
the context, metadata such as the document title and date is included with each chunk.

The coordination of all these components was managed using LangChain,5 a
widely-used framework for building applications powered by LLMs. In our system, Lang-
Chain was responsible for: i) loading the LLMs, ii) querying the database, and iii) con-
veying information between the modules. For storing embeddings, we employed FAISS,
a library developed by Meta for efficient similarity search.6

4We also experimented with cosine similarity but observed no significant difference.
5https://www.langchain.com/.
6https://faiss.ai/.



5. Experiments
Based on the modular aspect of our system, evaluations were conducted separately for
each module.

5.1. Retrieval

Working with documents in Portuguese posed a challenge due to the limited avai-
lability of embedding models. To address this, we opted for multilingual models
that support Portuguese. These text embedding models are all based on Sentence-
BERT [Reimers and Gurevych 2019], which employs siamese BERT networks to ge-
nerate semantic representations of documents.7 Four models were used: paraphrase-
multilingual-MiniLM-L12-v2, paraphrase-multilingual-mpnet-base-v2, distiluse-base-
multilingual-cased-v1, and distiluse-base-multilingual-cased-v2. Additionally, we tested
BM25 [Robertson et al. 2009], a keyword-based retriever, as a baseline. BM25 is a ran-
king function estimates document relevance to a search query based on word occurrences.
It improves upon the traditional TF-IDF (term frequency-inverse document frequency) ap-
proach by incorporating document length normalization, which favors shorter documents.
Lastly, we included a random baseline, calculated as k

C
, where k is the number of chunks

selected as relevant, and C is the total number of chunks in the database.

Tabela 2. Top-1 and Top-5 accuracy for different models in the retrieval task. The
top rows display the accuracy for the original questions, while the bottom
rows present the accuracy for the paraphrased questions. The best results
for each case are highlighted in bold.

2K 4K 8K
Model Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
MiniLM-L12-v2 0.23 0.40 0.10 0.19 0.05 0.11
Mpnet-base-v2 0.23 0.36 0.10 0.19 0.07 0.12
Distiluse-v1 0.18 0.36 0.11 0.22 0.08 0.16
Distiluse-v2 0.12 0.21 0.07 0.14 0.05 0.10
BM25 0.31 0.51 0.31 0.54 0.35 0.57
Random 0.00 0.00 0.00 0.00 0.00 0.00
MiniLM-L12-v2 0.13 0.27 0.06 0.13 0.05 0.11
Mpnet-base-v2 0.16 0.30 0.07 0.14 0.06 0.10
Distiluse-v1 0.13 0.27 0.08 0.17 0.07 0.13
Distiluse-v2 0.08 0.15 0.05 0.11 0.03 0.08
BM25 0.15 0.30 0.17 0.32 0.19 0.37
Random 0.00 0.00 0.00 0.00 0.00 0.00

To identify the best retriever, we varied two hyperparameters: the model type and
chunk size. Our primary evaluation metric was top-k, which measures the percentage of
cases where the correct chunk is within the top k ranked results. The top rows in Table 2
present the Top-1 and Top-5 values using the original questions. Figure 3 illustrates the
performance of different models across 1 to 100 retrieved documents, according to chunk
size. BM25 significantly outperformed the neural models, showing consistent results

7https://www.sbert.net/docs/sentence\_transformer/pretrained\_models.
html.



across all chunk sizes. For the neural models, smaller chunk sizes were easier to retrieve,
possibly because larger documents were more challenging to encode effectively. The
random retriever’s performance was approximately zero.

Figura 3. Top-k accuracy for retriever models using the original questions. Dif-
ferent models are represented by color, and chunk sizes are distinguished
by line type.

BM25’s success can be partly attributed to the fact that the questions in our dataset
were generated from the same texts used in the retrieval process. As a result, the questi-
ons naturally shared vocabulary with the supporting documents, giving BM25 an inherent
advantage. More importantly, this setup fails to capture the linguistic variability present
in real-world applications, where users’ queries often differ in phrasing from the refe-
rence documents. To provide a more balanced evaluation, we tested the same models on
our dataset of paraphrased questions. The bottom rows of Table 2 present the Top-1 and
Top-5 accuracy for the different models and chunk sizes using the paraphrased questions.
Performance dropped in all cases, but the decrease was less pronounced for embedding
models. Interestingly, for the smallest chunk size, Mpnet slightly outperformed BM25,
suggesting that while semantic search may be limited in environments with minimal lexi-
cal and syntactic variation, it becomes advantageous in more realistic scenarios. Figure 4
presents the results for the different models across 1 to 100 retrieved documents, separated
by chunk size.

5.2. Generation
The second experiment aimed to assess the quality of answers produced by different
LLMs. For each question, we retrieved the most relevant text chunks and provided them
to the LLMs, along with the question and specific instructions.

In all cases, we used the same retriever, Mpnet, with a chunk size of 2K tokens,
as this model achieved the highest score in the 2K database. This choice was driven



Figura 4. Top-k accuracy for retriever models using the paraphrased questi-
ons. Different models are represented by color, and chunk sizes are dis-
tinguished by line type.

by several factors. First, there is an inherent trade-off between the number and size of
chunks: larger chunk sizes reduce the number of chunks that can be provided to the
model. Second, all retriever models performed best on the 2K database in terms of top-k
accuracy. Additionally, evidence suggests that LLMs are not robust to long input contexts
[Liu et al. 2024, Li et al. 2024].

In this experiment, we varied two hyperparameters: the model type and the num-
ber of chunks passed to the model. We evaluated both open-source and proprietary LLMs,
including GPT-3.5-turbo (ChatGPT) [OpenAI 2024], Llama-3-8B-Instruct,8 Mixtral-
8x7B-Instruct [Jiang et al. 2023], and Sabia-2-medium [Sales Almeida et al. 2024]. At
this stage, we opted to use GPT-3.5, reserving GPT-4 for dataset creation and the qua-
litative evaluation described later. For the number of chunks, we experimented with
k = [3, 5, 8].

Evaluating generative text is inherently challenging, so we utilized multiple me-
trics to provide a comprehensive assessment of the system’s performance. The first metric
was the F1-score, which combines precision and recall to measure the accuracy of the ge-
nerated answers. In this context, precision and recall were calculated based on the number
of shared words between the predicted and reference answers, focusing on word simila-
rity. The second metric was the cosine similarity between the embeddings of the predicted
and reference answers, using Mpnet as the embedding model. This approach allowed us
to assess semantic similarity, even when the answers were phrased differently. Lastly, we
conducted a qualitative evaluation by prompting GPT-4 to rate the generated answers on
a predefined scale: Totally correct for answers that completly match the correct

8https://ai.meta.com/blog/meta-llama-3/.



response and appropriately address the question based on the supporting text; Mostly
correct for answers that are largely accurate but contain minor errors or omissions;
and Incorrect for answers that are wrong or fail to adequately address the question.
All metrics were then rescaled to a 0-100 range.

The results for the various models are summarized in Table 3. The top rows dis-
play the performance metrics for all generated answers, irrespective of whether the correct
chunk was included among the prompts. Among the evaluated models, GPT-3.5 demons-
trated the best overall performance across all metrics. Additionally, a slight improvement
was observed when more data chunks were provided, suggesting that increased context
can enhance the accuracy of the generated outputs.

Tabela 3. F1-score, cosine similarity, and LLM scores for various language mo-
dels across different numbers of retrieved documents (k). The top rows
display performance metrics for all responses, including those without the
correct chunk in the prompt. The middle rows focus on cases where the
correct chunk was included in the prompt. The bottom rows show perfor-
mance when no context is provided (k = 0). The best results are highligh-
ted in bold.

k=3 k=5 k=8
Model F1 Cos. LLM F1 Cos. LLM F1 Cos. LLM
GPT-3.5 34.71 89.18 19.25 36.31 89.43 21.03 36.24 89.56 22.04
Llama-3 17.96 85.44 15.03 19.05 87.61 16.55 19.85 88.10 17.56
Mixtral 29.85 88.35 15.54 30.97 88.48 16.21 32.83 88.96 20.43
Sabia-2 28.48 88.18 15.03 29.76 88.44 18.91 30.93 88.49 21.11
GPT-3.5 47.50 92.99 54.02 48.87 92.93 51.96 47.08 92.61 50.24
Llama-3 23.61 89.94 46.30 24.61 90.66 42.97 24.18 90.96 40.19
Mixtral 41.76 92.25 45.97 41.82 91.82 43.53 42.28 91.85 48.28
Sabia-2 38.30 91.23 44.96 39.19 91.10 47.19 39.11 91.07 47.54
GPT-3.5 35.08 88.90 13.68
Llama-3 15.36 87.32 3.04
Mixtral 25.41 87.20 4.89
Sabia-2 27.02 87.36 6.58

The results change considerably when we focus solely on questions where the
correct text is included among the provided chunks (194, 178, and 204 answers for k =
3, 5, and 8, respectively). The middle block of rows in Table 3 presents the performance
metrics for these specific cases. All metrics show substantial improvement, most notably
in the LLM evaluation. On average, the answers improved by approximately 30 points
according to this metric and around 10 points for the F1-score. However, the cosine
similarity remained relatively unchanged, indicating that it may not be an ideal metric for
this type of generative evaluation. As expected, when the correct chunk is included in
the prompt, providing more irrelevant chunks tends to decrease the model’s performance.
Despite these gains, even our best model, GPT-3.5, still exhibits significant room for
improvement.

To assess the adequacy of the metrics, we performed a manual evaluation of the
answers generated by Llama-3 in the k = 5 database. Only questions where the prompt



included the correct chunk were considered. Using the same criteria as those applied to
the GPT-4 model, the manual evaluation resulted in a score of 88.20%. Despite this high
score, we observed several issues in the responses. The model occasionally mixed Portu-
guese and English, leading to inconsistencies in language use. For questions containing
multiple queries, it sometimes failed to address all parts. In a few instances, it provided
random responses, completely ignoring the context texts. In two cases, the model did not
produce any response. Figure 5 illustrates the correlation between the different evaluation
metrics.

Figura 5. Correlation matrix showing the relationships between different evalua-
tion metrics (F1, cosine similarity, LLM, and human assessment).

Finally, we evaluated the performance of the LLMs without retrieving any chunks
from an external database. This comparison aimed to quantify the benefits of using a RAG
architecture versus relying solely on direct prompting of an LLM. The results of these
evaluations are shown in the bottom rows of Tabl 3.9 The findings clearly demonstrate that
all models perform better when they have access to a structured database. According to the
GPT-4 evaluations, model performance drops by 7.35 (GPT-3.5) to 13.51 points (Llama3)
when no context is provided, considering all questions; and by approximately 40 points
when focusing only on questions with correctly retrieved chunks. These results highlight
the significant contribution of the RAG architecture to the system’s overall effectiveness.

6. Interface

To facilitate the use of our RAG-based virtual assistant, we developed a web application
using Streamlit, an open-source Python framework for building interactive web applicati-
ons.10 Additionally, to enhance the user experience, we implemented a select box feature
that allows users to switch between different “Chat Sessions”, each maintaining its own
history of messages and interactions. For message storage, we utilized Python’s shelve
library, which provides a dictionary-like object where keys are strings and values are
Python objects, all stored locally on the system.

9Only one set of results is provided, as there is no variation in context size (i.e., k = 0).
10https://streamlit.io/



7. Conclusion
We developed and analyzed a virtual assistant designed to answer questions about the
University of São Paulo, using a modular, RAG-based architecture that combines a re-
triever and a generative model. Alongside compiling a corpus of official documents and
creating a QA dataset, we conducted extensive experiments with various retrieval and ge-
nerative models, exploring different hyperparameters such as chunk size and the number
of chunks provided. The results indicate that our system’s performance is significantly
hampered by retrieval failures, primarily due to the limitations of multilingual embedding
models, as well as inherent challenges within current LLMs.

8. Limitations
While our RAG-based system for question answering has demonstrated promising re-
sults, several enhancements could further improve its robustness and reliability. The most
immediate step would be to expand our database by incorporating documents from a wi-
der range of sources, including various institutes and departments within the University
of São Paulo. For the QA dataset, integrating questions posed by actual users and in-
cluding multi-hop questions—those that require linking information across different text
segments—would greatly enhance the system’s ability to handle more complex queries.
Another key area for improvement involves systematic evaluations by experts, particularly
academic staff, whose feedback would provide a more rigorous assessment of the model’s
accuracy and reliability. Finally, testing the system with real users—including students,
faculty, and non-affiliated individuals—will be essential for evaluating its practical utility
and overall effectiveness.
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