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Abstract. This paper presents an extension of Retrieval Augmented Generation
workflow for Large Language Models executing in a local processor with
limited resources. The novelty presented is an improvement on such workflows
to consider limitations in the total budget of token usage and privacy of data
using local storage of data. This has the potential to leverage applications
without the necessity of online services that can have a high cost and latency
due the Chain of Thought used in most data retrieval cases. The presented
workflow has a lightweight usage of computing and can be fully implemented
in a low-resource compute environment.

Resumo. Este artigo apresenta uma extensão do fluxo de trabalho de geração
aumentada de recuperação para Modelos de Linguagem Massivos executados
em um processador local com recursos limitados. A novidade apresentada é
uma melhoria em tais fluxos de trabalho para considerar limitações no
orçamento total de uso de tokens e privacidade de dados utilizando
armazenamento local de dados. Isto tem o potencial de alavancar aplicações
sem necessidade de serviços online que podem ter alto custo e latência devido
à Cadeia de Pensamento utilizada nos casos mais comuns de recuperação de
dados. O fluxo de trabalho apresentado tem um uso leve de computação e
pode ser totalmente implementado em um ambiente de computação com
poucos recursos.

1. Introduction

The field of Artificial Intelligence (AI) has been overflowing with new technology and
heuristics in the past 5 years since the popularization and major adoption of the
Transformer architecture for Generative AI. (GenAI). Although the overall success of
GenAI as a frontier technology, in essence its major advantage is to produce content and
emergency capabilities, as mentioned by Wei et al. (2022) and Bubeck, 2023, and can
learn long-horizon behaviors by latent imagination from dream-like representation in
the latent layers, Ha and Schmidhuber (2018). Nevertheless, this is an adversary
behavior for generating factual outpurs, and there is such a case, the term
“hallucination” has been used to describe it. Although a lot of improvements with Large
Language Models (LLM) has been archived with LLM such as GPT-4o, from OpenAI,
hallucination is a natural characteristic as mentioned by one of its founders in social
media, Karpathy, A. (2023, August 1): “I always struggle a bit with I'm asked about the
"hallucination problem" in LLMs. Because, in some sense, hallucination is all LLMs do.
They are dream machines. It's only when the dreams go into deemed factually incorrect



territory that we label it a "hallucination". It looks like a bug, but it's just the LLM doing
what it always does. (...)”.

If the previous citation is continued it is possible to understand the need for
better guidance of LLMs: “(...) We direct their dreams with prompts. The prompts start
the dream, and based on the LLM's hazy recollection of its training documents, most of
the time the result goes someplace useful.”. Some applications cannot suffer from
hallucination as part of the process and, although some guidance can be done using
model refinement, or by using In Context Learning (ICL), Radford et al. (2019), such as
one-shot or few-shot, neither can prevent cases of hallucination. Another usage for the
latter is to provide new content to the LLM that has not been trained in its base model.
Many techniques have been proposed to iterate in cycles to align prompts and outputs,
such Chain Of Thoughts (CoT), as in Wei et al. (2022), but they do not use any
information that is already in the prompt or in the latent space of the LLM. Retrieval
Augmentation Generation (RAG) has been proposed in Lewis et al. (2020) to gather
additional information to improve the generation, in a single-shot manner, provided as
context to the prompt. Because of the limited size of the context window in the
Transformer architecture, the information needs to be splitted in smaller chunks to fit
the context window of the LLM, or summarized, or encoded such in a way that can be
used in a caching system.

2. Proposed work and Motivation

This paper presents a new workflow that specifically tries to address some
limitations in RAG systems: hallucinations due the prompt engineering does not align
with the expected answer. Such workflows are not new, and are being used with much
deeper and greater in number of parameters available on online services such GTP-4o,
Claude Opus, and others. LLMs available for public use can have up to 405 billions of
parameters, such as the latest Llama and its variants, and if the process uses surge large
LLM, the penalty comes with latency and expensive hardware. While not mandatory, for
practical use it is advisable to use the LLM in an accelerated computing environment,
usually with GPUs with large dedicated RAM space to fit the model and compute
artifacts to mitigate latency. Also, not all LLMs have the same capabilities, some more
suitable for using external tools that can fetch data during the autoregressive process,
and adding custom context on-demand for a better inference, This has been the reason
for dedicated online services that can provide some functionality with tools and
reasoning the output for a better prompt. This comes with a total cost as the number of
tokens increases exponentially, because now each part of the prompt has to be reflected
in one or more steps, branching in sub-tasks that are later aggregated to create a prompt
with the necessary, and factual, context.

While hallucination is part of what a LLM usually does as mentioned before, it
has to be steered to focus on the task at hand, hedging the risks of wrong interpretability
of intention with the usage of correct references to base its answers. While basic RAG
workflows are more concerned with the retrieval and storage of documents, more
advanced techniques incorporate CoT on the retrieval loop to fetch better context. For
the generation of better reasoning CoT, online services with top-level LLMs are used.



This is a major problem for the unprivileged majority with modest computing resources
and short budget limitations. For those that do not have access to such resources, the
usage of smaller, quantized, but yet capable, LLMs renders another possibility to use
such workflows within such limited budget cost. While with the restriction to fit and run
in local computer hardware has been lifted for practitioners and researchers that are
developing possible workflows for dedicated problems.

The result of this work is a workflow that can be customized for dedicated
problems without losing its generalizability. It combines a couple of RAG strategies
(Gao, et al. (2023) to create an advanced RAG that can answer a question, or just avoid
the hallucinations when not possible, returning a message to the user that is not
possible to answer based on the factual information available that has been given or
fetched with tools.

3. Related work

This section presents an overview of key works that have shaped the understanding and
development of Generative AI, with a focus on Transformers, emergent capabilities, and
techniques to mitigate issues like hallucination. Each reference contributes to a specific
aspect of the challenges and advancements in the field. Below are the key topics
mentioned and the corresponding references:

1. Transformers and Generative AI: The transformative impact of the Transformer
architecture has been well-documented since its introduction by Vaswani et al. (2017),
which paved the way for Generative AI models such as GPT-3, discussed extensively by
Brown et al. (2020).

2 Emergent Capabilities in AI: The unexpected emergent capabilities of large language
models were thoroughly investigated by Wei et al. (2022), demonstrating that as model
sizes increase, novel behaviors and capabilities emerge. Also the pape

3. Dream-like Representations and Latent Imagination: The concept of models
"dreaming" or imagining scenarios within a latent space is explored by Ha and
Schmidhuber (2018) in their work on World Models.

4. Hallucinations in LLMs: The issue of hallucinations in language models, where the
model generates factually incorrect or nonsensical outputs, is discussed
comprehensively by Ji et al. (2023). Additionally, Andrej Karpathy's commentary on X,
Karpathy, A. (2023, August 1), provides a more personal and practical perspective on
this phenomenon.

5. In-Context Learning (ICL) and Few-Shot Learning: The use of In-Context Learning
to adapt models to new tasks with minimal examples is exemplified by Radford et al.
(2019), showing its importance in the broader context of few-shot learning.

6. Chain of Thought (CoT) and Prompt Engineering: The strategy of eliciting reasoning
through Chain of Thought prompting, as discussed by Wei et al. (2022), highlights the
importance of well-structured prompts in guiding model outputs.



7. Retrieval Augmented Generation (RAG): Lewis et al. (2020) introduced the
Retrieval-Augmented Generation technique, which enhances the factuality of generated
text by integrating external knowledge during generation.

8. Quantized LLMs and Model Deployment: The deployment of large models on limited
hardware resources through quantization techniques is addressed by Dettmers et al.
(2022), demonstrating the feasibility of running powerful models in
resource-constrained environments.

9. Retrieval-Augmented Generation for Large Language Models: A Survey: Gao, et al.
(2023) highlights the state-of-the-art technologies embedded in each of these critical
components, providing a profound understanding of the advancements in RAG systems.

4. Proposed methodology

The proposed methodology is an extension of a RAG workflow that implements the
Advanced RAG as described in Gao et al, (2024). This classification is a comparison
with other model optimization methods in the aspects of “External Knowledge
Required” and “Model Adaption Required”, that gives two axes of: how much
modifications to the model versus the external knowledge that are necessary to harness
the capabilities of LLMs themselves. In this scale the Advanced RAG needs more
external knowledge than Naive RAG, that is basic Prompt Engineering. Advanced RAG
is classified as an index / pre-retrieval / post-retrieval optimization process. This
retrieval augmentation processes adds to most common once retrieval process to create
general types of processes, exactly as described as follows:

● Iterative retrieval: involves alternating between retrieval and generation,
allowing for richer and more targeted context from the knowledge base at each
step;

● Recursive retrieval: involves gradually refining the user query and breaking
down the problem into sub-problems, then continuously solving complex
problems through retrieval and generation;

● Adaptive retrieval: focuses on enabling the RAG system to autonomously
determine whether external knowledge retrieval is necessary and when to stop
retrieval and generation, often utilizing LLM-generated special tokens for
control.

These classification groups are useful to identify the proposed methodology as an
Adaptive retrieval that differs from CoT pipelines in solving complex problems. The
concern of the proposed methodology is to have a small token budget as part of the
process, and breaking it down into sub-problems creates an exponentially tree that is not
the focus for application in limited resources and latency restrictions.

Some of those steps from Iterative retrieval and Adaptive retrieval are replicated in a
different way in the proposed Advanced RAG, while the score is binary, based on the
LLM inference of the context given and the prompt of each step, that are described in
the Figure 1.



Figure 1. A schematic of the workflow (arrows) of the proposed RAG with nodes and
actions (dotted arrows) annotated with brackets of each group by color: a) red
for router retriever decision, b) green for retrieval using web search, and c) blue
nodes branching for grading documents in regard of relevance of the question,
and answer have presence of hallucination and answers the question. d)
Actions to parameter change in boxes with positive and negative increases.

The workflow starts with the user question and checks if it has an index in the local
document store as shown in the red node in Figure 1a. The Question Router node
(represented by rounded diamond) uses a local LLM to analyze chunks and decide using
a binary answer if the document should be retrieved from the datastore or be fetched
online using web search. In each case the result is the same and it is graded by
Document Grade node in accordance with the relevance to the question. A decision is
taken, giving a binary score: yes or no. If yes, the process follows the upper path in
Figure 1c and the answer is generated in the Answer Generator node. The generated
answer is tested for the presence of hallucinations using another binary score: yes or no.
If the result is negative, the process continues in the upper path to finally be scored
again by the Answer Grader node if the generated answer is relevant to the question.
The same binary scoring is used to decide whether it answers correctly the question, and
return it as result.

The alternative branching in the previous path is intended to rewrite the question and
return the generation to the Document Retriever node. There are additional steps if the
branching is due hallucination or due relevance to the question. If there is hallucination
the process goes back to the Web Search node, since the problem is lack of fact to
support the answer In both cases, the branching increases the counter of cycles to limit
the number of retries of the process and give an honest answer “don't know”. This is an
acknowledgment of the natural process of hallucination or misguidance of the LLM,
and the temperature of the model used to generate the answer is decreased. If the answer
still does not answer the question, a last branching increases the temperature of the
LLM, in the expectation that it rewrites the question with extra creativity in the
Question Re-writer. This tries to avoid endless loops if the rewritten question is always
the same. The opposite happens with hallucination branching, it lowers the temperature
of the LLM in order to generate less creative answers, and lower the probability of
generation of hallucinations.



5. Implementation and Results

Without loss of generality, the goal of this work is to use local and small models, but
any other can be interchanged to use available computing resources at the best capacity,
with greater latency and memory usage as disadvantage. Regarding that, the motivation
is the opposite, to have better utilization of resources with almost the same token
budget, as newer small LLMs are getting better performance and reasoning capabilities.

5.1. Implementation

The latest improvements of Llama 3 LLMs in its release shows better results over other
LLMs with similar LLMs w.r.t. the number of parameters. This is achieved with better
training with web data curation, text extraction and cleaning, deduplication, heuristic
filtering, model-based quality filtering, code and reasoning data; to provide similar
versions, Llama 3 7b and Llama 3.1 7b that differ mostly by tool usage. While Lamma3
7b has been post-trained to use tools such as search engines to expand the range of
tasks, they both can generate an output encoded in JavaScript Object Notation (JSON).

The nodes of the Advanced RAG are implemented using LangChain Expression
Language (LCEL) that not only creates templates for prompts, with system and user
commands, but also chains the LLM and its output to other steps in the same node,
structuring the output in JSON format that follows an desired schema given by a code.
This output is already created only if the LLM supports the usage of tools such Llama
3.1. The previous version of the same model Llamma3 does not have this functionality,
and the text output has to be parsed in the chain of the LCEL to generate a mapping of
keys and values in the same structure as the JSON. For instance, in order to guide the
LLM to JSON outputs the message is appended to the prompt:

“Provide the binary score as a JSON with a single key '{key}' and value either
'{ok_msg}' or '{fail_msg}'.”

where {ok_msg} or {fail_msg} are value fields filled with particular node values for
branching for a given {key}.

The Router node has a local storage with pre-fetched documents from the web in a
vector store. The task of this node is to check the relevance of the question to each
document using the system prompt:

“You are an expert at routing a user question to a vectorstore or web search.

Give a binary choice '{ok_msg}' or '{fail_msg}' based on the question.”

where {ok_msg} or {fail_msg} are “vectorstore” or “web_search”

If all documents are irrelevant to the question the decision branch takes the next step to
the Web Search node, which performs a web search using top 4 results and stores the
results in the vectorstore.

The Grade node assess the relevance of an retrieved document added to the prompt
context using the system prompt:



"You are a grader assessing the relevance of a retrieved document to a user question.

If the document contains keyword(s) or semantic meaning related to the user question,
grade it as relevant.

It does not need to be a stringent test. The goal is to filter out erroneous retrievals.

Give a binary score '{ok_msg}' or '{fail_msg}' score to indicate whether the document
is relevant to the question.”

where the binary choice is “yes” or “no”, based on the assessment.

The Generate node answers the question and prompt checks for hallucination using the
system prompt:

“You are a grader assessing whether a generated answer is grounded in or supported by
a set of facts.

Give a binary score '{ok_msg}' or '{fail_msg}' score to indicate whether the document
is relevant to the question.”

where the binary choice is “no” or “yes”, as it indicates the answer is supported by the
facts given in the context.

The final decision, in case there is no hallucinations, or “no” in the previous step, is to
address the answer as relevant to the question with the system prompt:

“You are a grader assessing whether an answer addresses / resolves a question.

Give a binary score '{ok_msg}' or '{fail_msg}' score to indicate whether the document
is relevant to the question.”

where the binary choice is again “yes” or “no”, based on the assessment. The question
can be not the original user question, but a rewritten version if there is hallucination or
not relevant in the previous steps.

5.2. Results

This section shows the experiments for the workflow presented and implemented in the
previous sections. They consist of 10 questions, Q1 to Q10 and the experiments used
increasing difficulty grouping by 3 easy questions, 4 regular questions, 3 hard questions.

Table 1b shows Q1 to Q5 and the node output with the total number of items that were
generated in the whole process to the final answer, while Table 1a shows the parameters
used for each question, and both Tables 1a e 1b uses Llama 3 7b as model for all nodes.
The model could answer all questions without iterating, hence 1 in all parentheses in the
binary answers in Table 1b, but in most cases it used web search instead of using the
vector store for answering the question at the first cycle.

Table 2b shows Q6 to Q10 and the node output with the total number of items that were
generated in the whole process to the final answer, while Table 2a shows the parameters
used for each question, that have increased chunk size and overlap for hard question Q8
to Q10, but Tables 2a e 2b still uses Llama 3 7b as model for all nodes. The cells with
bold typing show an increase in iteration cycles for Q6 and Q7, going back to the
retriever node, but in Q6 the branching happened earlier than Q7 in the document grader



node, thus a smaller overhead to get the correct answer than going over all nodes. The
harder questions did not answer the questions with the same parameters of chunk size
and overlap, and increasing them answered the question without any branching, but with
a higher cost of tokens used as context.

Parameters Model Q1 Q2 Q3 Q4 Q5

Answer G.
Temp. Llama3 0.4 0.4 0.4 0.4 0.4

Rewriter G.
Temp. Llama3 0.0 0.0 0.0 0.0 0.0

Chunk Size None 256 256 256 256 256

Chunk Overlap None 2 2 2 2 2

Table 1a. Parameters for questions Q1 to Q5: final temperature and retriever
chunk size and overlap between chunks

Process Model Q1 Q2 Q3 Q4 Q5

Retriever None doc(4) doc(4) doc(4) doc(4) doc(4)

Question
Router Llama3 web_search(1) vectorstore(1) web_search(1) web_search(1) web_search(1)

Web Search None doc(4) None doc(4) doc(4) doc(4)

Document
Grader Llama3 yes(1) yes(1) yes(1) yes(1) yes(1)

Answer
Generator Llama3 answer(1) answer(1) answer(1) answer(1) answer(1)

Hallucination
Grader Llama3 no(1) no(1) no(1) no(1) no(1)

Answer Grader Llama3 yes(1) yes(1) yes(1) yes(1) yes(1)

Re-writer Llama3 None None None None None

Table 1b. Outputs from the interaction processes (in bold) of each node for
questions Q1 to Q5 with the number of outputs in the parentheses

Parameter Model Q6 Q7 Q8 Q9 Q10

Answer G.
Temp. Llama3 0.3 0.4 0.4 0.3 0.4

Rewriter G.
Temp. Llama3 0.1 0.0 0.0 0.0 0.0

Chunk Size None 256 256 512 512 512

Chunk Overlap None 2 2 10 10 10

Table 2a. Parameters for questions Q1 to Q5: final temperature and retriever
chunk size and overlap between chunks

Process Model Q6 Q7 Q8 Q9 Q10



Retriever None doc(4) doc(4) doc(4) doc(4) doc(4)

Question
Router Llama3

vectorstore
(2)

vectorstore
(2)

web_search
(1)

vectorstore(
2)

web_search
(1)

Web Search None doc(4) doc(4) doc(3) doc(4) doc(3)

Document
Grader Llama3 yes(2) yes(2) yes(1) yes(1) yes(1)

Answer
Generator Llama3 answer(2) answer(1) answer(1) answer(1) answer(1)

Hallucination
Grader Llama3 no(2) no(1) no(1) no(1) no(1)

Answer Grader Llama3 yes(2) yes(1) yes(1) yes(1) yes(1)

Re-writer Llama3 question(1) question(1) None None None

Table 2b. Outputs from the interaction processes (in bold) of each node for
questions Q1 to Q5 with the number of outputs in the parentheses

The same workflow has been tested with Llama 3.1, with similar results in the execution
of the isolated nodes. This section shows only the results of Llama 3 as unit testing the
Llama 3.1 it outputs the same answers of Llama 3, but uses tool calling with structured
output to a data model.

6. Conclusion

This paper presented a new Advanced RAG workflow that combines some aspects of
different RAG systems that is dedicated to smaller models and applications with limited
budget in tokens. The short communication between nodes and forcing the output
format to a JSON creates a more robust system, as the outputs are in a structured format.

Exploration for Llama 3.1 has been done and all nodes have been unit tested with the
native support for structured output mapped to a data object, but left for a future work
with more space for discussion and implications of such methodology.

Another future subject is the exploration of evaluation using the last layer of the models,
the logits distribution, as it can possibly be used to identify hallucinations.
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