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Abstract. The exponential growth in data volume demands efficient data analy-
sis techniques, with data clustering being crucial but interpretation often posing
a challenge. Automated group labeling using decision trees can alleviate this is-
sue. This study compares four decision tree algorithms for automated group
labeling, demonstrating that algorithm choice significantly influences perfor-
mance. CHAID outperforms other algorithms in the Iris and Seeds datasets,
while C4.5 excels in the Wine and Glass datasets. The proposed model’s va-
lidity is confirmed, highlighting the importance of careful algorithm selection.
These findings underscore the potential of automated group labeling models and
emphasize the need for further research to refine and expand their applications
across various domains.

1. Introduction
The exponential growth of data generated by diverse sources, including sensor net-
works, commercial transactions, and social networks, is fueling the rapid advancement
of data analysis. This growth has become particularly pronounced in recent years,
driven by the rapid expansion of the technology industry and the increasing appli-
cability of computational techniques, coupled with advancements in analytical tools.
[Dimotikalis et al. 2021]. Consequently, the application of clustering algorithms followed
by expert analysis is gaining prominence, attracting the attention of numerous studies in
the field of Unsupervised Learning, a subdiscipline of Machine Learning (ML). The un-
supervised formation of clusters is framed as a problem of classifying objects into dis-
tinct categories without predetermined category labels [Russell and Norvig 2016]. Clus-
tering divides a set of data into smaller subsets, called clusters, which bring together
objects with common characteristics [Lopes et al. 2016]. The labeling problem is defined
as a summary identification for groups, naming them according to their characteristics
[Lopes et al. 2016]. The group labeling process aims to uniquely identify a group through
the tuple attribute and value range. Several techniques were proposed [Lopes et al. 2014],
[Machado et al. 2015], [Filho et al. 2020], [Moura et al. 2022], [Silva et al. 2021]. This
work presents a new approach using decision tree.

2. Related Work
The concept of group labeling was initially introduced in [Lopes et al. 2013]. In this
work, a database is provided as input to an unsupervised learning algorithm, resulting in



the generation of clusters from the original elements. Subsequently, a supervised learn-
ing algorithm is applied to each previously formed cluster to select the most pertinent
attributes. If the input database contains continuous values, a discretization method is
employed prior to utilizing the supervised learning algorithm. The model comprises four
steps. The Automatic Labeling Model (ALM) proposed by the authors achieved label
generation agreement rates exceeding 90%. The ALM method was also successfully
applied to other problems [Lopes et al. 2013], [Lopes et al. 2014], [de Lima et al. 2015],
[Lopes et al. 2016], demonstrating promising results.

The study present in [Machado et al. 2015] introduces a novel group labeling
model that utilizes the Fuzzy C-Means algorithm to assign membership degrees to data
elements. A parameter-based approach is employed to refine labels and prevent over-
lap. The model achieves an average agreement rate of 96.61%, outperforming a previous
method.

To address the reliance on the Fuzzy C-Means Algorithm, the approach present
in [Filho et al. 2020] proposed a new method for group labeling that addresses the limi-
tations of the Fuzzy C-Means Algorithm. The proposed method utilizes a distance-based
algorithm, K-Means, to cluster data and then assigns labels to each cluster based on at-
tribute values. The results of the proposed method were compared to a previous method
and found to be comparable, with a slight difference of 0.36% for the Iris dataset.

The CAIBAL model, introduced in [Moura et al. 2022], employs the CAIM dis-
cretization algorithm to address information loss in the discretization process. The model
offers two methods for selecting value ranges: a standard method based on accuracy and
an alternative method using the V parameter. The CAIBAL model achieved high agree-
ment rates (98.49% and 97.33%) using these methods in three of five databases.

In the work of [Silva et al. 2021], the labeling model is structured into two phases:
Phase I defines attribute-range pairs, utilizing regression techniques to minimize predic-
tion errors within the domain of each group. Phase II selects pairs that most effectively
differentiate and represent each group, forming distinct labels based on their predominant
representation among elements.

3. The model

This study proposes a model for automated group labeling utilizing a decision tree. To
identify the optimal decision tree algorithm, a comparative analysis was conducted among
ID3, C4.5, CART, and CHAID algorithms to determine which generates superior la-
bels. The rationale for selecting these algorithms is outlined below. When develop-
ing machine learning models, it is essential to consider the interplay between accuracy
and interpretability. A growing number of critical domains, such as group labeling,
emphasize the importance of understanding model outputs as much as their accuracy
[Di Teodoro et al. 2024].

Decision tree ensemble models, including Random Forests and Boosted Trees, are
widely employed in machine learning, particularly for prediction tasks. Their exceptional
predictive performance makes them among the most recommended approaches for real-
world problems. However, as noted in [Hara and Hayashi 2016], the primary limitation
of tree ensemble models lies in their interpretability. They partition the input space into



Figure 1. Flowchart of the proposed model.

numerous small regions and make predictions based on the corresponding region. Typi-
cally, the number of generated regions exceeds a thousand, implying thousands of distinct
prediction rules, which can be challenging for non-experts to comprehend. In contrast, a
simple decision tree is renowned for its high interpretability. Despite its relatively lower
predictive capability, the number of regions generated by a single tree is significantly
smaller, rendering the model transparent and understandable. These models divide the
input space into a limited number of regions and make predictions based on the assigned
region.

The proposed model analyzes the rules generated by decision trees, suggesting
that more interpretable models are preferable for this application.

Given the group labeling problem outlined in [Lopes et al. 2013], the current
model introduces a method for labeling clusters utilizing decision trees. Tree-based super-
vised learning techniques are well-suited for tasks prioritizing interpretability. The feature
splits and decision paths of decision trees offer valuable insights into the distinguishing
characteristics among members within each cluster [Bertsimas et al. 2020].

To compare the performance of each algorithm, a model was developed consisting
of four phases: (I) employing an unsupervised clustering algorithm (k-means), groups are
generated from the input database, (II) with the grouped dataset, a decision tree model is
constructed, treating the generated cluster as a class attribute. At this stage, one of the
four decision tree algorithms, ID3, C4.5, CART, or CHAID, is utilized, (III) the branches
of the generated tree with the highest number of hits for each cluster used as a class are
selected, and finally, (IV) within each selected branch, the attributes are listed, and their
corresponding value ranges are calculated. The phases are illustrated in Figure 1

To illustrate the labeling process, the Iris dataset, initially introduced by
[Fisher 1936], will be employed.

3.1. Phase I - Generating clusters
The Iris database clustering process was carried out using the K-Means algorithm, defin-
ing a number for k(total cluster number) equal to 3.



3.2. Phase II - Generation of the decision tree model

In the second phase, the decision tree model is generated using the group number as a
class attribute. To generate the trees shown in Figures 2, 3, 4 and 5 the default values for
each respective algorithm were used. (ID3, C4.5, CART and CHAID) from the library
ChefBoost 1 , which implements each of these four algorithms [Serengil 2021].

Figure 2. Tree induced with the Iris base from its clusters with the ID3 algorithm

Figure 3. Tree induced from the Iris base from its clusters with the C4.5 algorithm

3.3. Phase III - Selection of branches with the best rating

In this phase, the binary tree generated in the previous phase is analyzed to identify the
subtrees that yield the most favorable classification results for each cluster, as the clusters
generated in step I were utilized as classes for inducing the classification tree. Conse-
quently, at the conclusion of phase III, we have the set of branches that will be employed
in phase IV. Each branch selected for each cluster is presented below.

For the sake of clarity, this demonstration will focus solely on the selection of
branches from the tree generated by the CHAID algorithm, which, as illustrated in Tables
1, 2, 3, and 4, achieved the highest agreement rates compared to the other algorithms.

1available at https://github.com/serengil/chefboost



Figure 4. Tree induced from the Iris base from its clusters with the CART algo-
rithm

Figure 5. Tree induced from the Iris base from its clusters with the CHAID algo-
rithm



For cluster 0, the branch composed of nodes (1,3,4, 6, and 7) of the tree was
selected, as depicted in the subtree in Figure 6. In this instance, there were two branches
that could lead to the classification of group 0, and the one that resulted in the highest
number of correct classifications was chosen, specifically, the branch with the largest
number of samples in the leaf node.

Figure 6. Subtree selected for cluster zero.

For cluster 1 (one), nodes (1 and 2) were selected. In this case, it is the only path
that leads to the leaf node of cluster one. This branch is demonstrated in Figure 7.

Figure 7. Subtree selected for cluster one.

For cluster 2 (two), the selected branch was composed of nodes (1, 3, 9, 10 and
11) of the decision tree. In this case, it was also necessary to choose the path that leads to
the highest number of hits. This subtree is demonstrated in Figure 8.

Figure 8. Subtree selected for cluster two.



3.4. Phase IV - Selection of attributes and assignment of value ranges

In this phase, the attributes constituting the subtrees identified in the previous phase are
analyzed to determine the subset of attributes that will comprise the label for each cluster.
Each algorithm employs a specific metric to identify decision points within the decision
tree.

The attributes that make up a label are those that belong to the respective branches
selected in phase III. Within each decision node generated along the branch, in addition
to the attribute, we find the limits that will be used to compose the label value ranges.
In this case, the number of bands is only two, because binary trees are always generated
from the bases used by the decision tree algorithms used in the study.

The rules for defining the limits are as follows: if the rule node is the child to the
left of the parent node, the rule of that node determines the range with the upper limit, and
the lower limit will be selected in the database, accordingly. according to the rule; if the
child node is on the right, the rule of that node determines the range with the lower limit,
and the upper limit will be chosen from the database according to the rule.

3.5. Value range selection process for zero cluster labels.

To determine the value range of the label attributes, the subtree to which the attribute node
belongs is identified. For this cluster, the range of values is defined by the attributes: Petal
Length, Sepal Width, and Sepal Length. The following criteria are applied: Petal Length:
The first value exceeding 2, which is 3.0 in this case, is considered the lower limit. As
this node leads to the right branch (node number 3 in the tree), the upper limit is found
in the database as 6.3; Sepal Width: The value 3.2 is considered the upper limit, as this
node leads to the left branch of the subtree. The lower limit is found in the database as
2.9; Sepal Length: The lower limit is the first value exceeding 5.7, which is 5.8 in the
database. The upper limit selected from the database is 7.6.

3.6. Value range selection process for cluster one labels.

For this cluster, Petal Length is the sole attribute. To establish the value range, the follow-
ing observation is made: the value 1.9 is designated as the upper limit, as the tree branch
rule defined for the attribute is ”less than or equal to 2.0.” Since the leaf node is located
in the left subtree, the value 1.0 is selected from the database as the lower limit.

3.7. Value range selection process for cluster two labels.

For cluster two, the attributes Petal Length, Sepal Width, and Petal Width constitute the
label. The label value ranges are defined as follows: Petal Length: The lower limit is the
first value exceeding 2.0, as the next node belongs to the right subtree. The base values
4.5 and 6.9 serve as the lower and upper limits, respectively; Sepal Width: The lower
limit is the constant value of node 3, which is greater than 3.2. Since the next node in the
branch belongs to the right subtree, the base values 3.3 and 4.4 define the lower and upper
limits, respectively; Petal Width: The upper limit is ”less than or equal to 2.2,” and the
lower limit is the base value 1.4.

Tables 1, 2, 3, and 4 present an analysis of the generated labels, comparing the
performance of each of the four decision tree algorithms on the Iris dataset. The follow-
ing fields provide information about the labels: Cluster: Indicates the group number to



which the label belongs; Elem: Indicates the total number of elements within that cluster;
Attri.: Indicates the attribute being labeled; Value Range: Indicates the range of values
that define an attribute label for a given cluster; Errors: Indicates the number of label
errors; Agree. Rate (Agreement Rate) %: Indicates the percentage of label hits, which is
calculated as the percentage of elements falling within the label’s value range relative to
the total number of elements in the respective cluster.

Table 1. Labeling analysis for the Iris database with the ID3 algorithm.

Cluster # Elem Label Analysis

Attri. Range of values # Errors Agree.
Rate%

0 62 PL 3.0 ∼ 6.3 0 100
SW 2.9 ∼ 3.2 8 87.09
SL 5.8 ∼ 7.6 23 62.90

1 50 PL 1.0 ∼ 1.9 0 100
2 38 PL 4.5 ∼ 6.9 0 100

SW 3.1 ∼ 4.4 4 89.47
PW 1.4 ∼ 2.2 13 54.78

Table 2. Labeling analysis for the Iris database with the C4.5 algorithm.

Cluster # Elem Label Analysis

Attri. Range of values # Errors Agree.
Rate%

0 62 PL 3.0 ∼ 6.3 0 100
SW 2.9 ∼ 3.2 8 87,09
SL 5.4 ∼ 5.9 29 53,22

1 50 PL 1.0 ∼ 1.9 0 100
2 38 PL 4.5 ∼ 6.9 0 100

SW 3.3 ∼ 4.4 4 89.47
SL 6.7 ∼ 7.9 12 68,42

Table 3. Labeling analysis for the Iris database with the CART algorithm.

Cluster # Elem Label Analysis

Attri. Range of values # Errors Agree.
Rate%

0 62 CP 3.0 ∼ 6.3 0 100
LS 2.9 ∼ 3.2 8 87.09
CS 5.4 ∼ 5.9 29 53.22

1 50 CP 1.0 ∼ 1.9 0 100
2 38 CP 4.5 ∼ 6.9 0 100

LS 3.3 ∼ 4.4 4 89.47
CS 6.7 ∼ 7.9 12 68.42

Table 4. Labeling analysis for the Iris database with the CHAID algorithm.

Cluster # Elem Label Analysis

Attri. Range of values # Errors Agree.
Rate%

0 62 PL 3.0 ∼ 6.3 0 100
SW 2.9 ∼ 3.2 8 87,09
SL 5.8 ∼ 7.6 23 62,90

1 50 PL 1.0 ∼ 1.9 0 100
2 38 PL 4.5 ∼ 6.9 0 100

SW 3.3 ∼ 4.4 4 89.47
PW 1.4 ∼ 2.2 13 65.78



Based on the average agreement rates presented in Tables 1, 2, 3, and 4, the
CHAID algorithm exhibited the highest performance with an average agreement rate of
86.46%. Consequently, this algorithm was selected for phase II of the proposed model.
However, this result falls short of the average agreement rate achieved by the model
demonstrated in [Lopes et al. 2016], which was 95.43%.

Table 5. Labeling analysis for Iris database present in [Lopes et al. 2016].

Cluster # Elem Label Analysis

Attri. Range of values # Errors Agree.
rate%

1 50 PW 0.1 ∼ 1 0 100
PL 1 ∼ 3.7 0 100

2 62 PL 3.7 ∼ 5.1 6 90.32
3 38 PL 5.1 ∼ 6.9 3 92.10

PW 1.7 ∼ 2.5 2 94.73

4. Results
This section presents the results of applying the proposed data grouping model
to three datasets: Seeds, Glass, and Wines, obtained from the UCI repository
[Dua and Graff 2017]. These datasets were selected due to their frequent use in related
research, enabling a comparison of the results achieved here with those reported in the
literature. The results for the Iris dataset were previously presented in the model section.

4.1. Seeds Database
The CHAID algorithm-based model demonstrated superior performance, achieving an
average agreement rate of 92.23% as can be seen in table 6. This result is marginally
lower than the 92.65% reported in [Lopes et al. 2013], as illustrated in Table 7.

Table 6 presents the results of the model using the CHAID algorithms.

Table 6. Labeling analysis for Seeds database using the CHAID algorithm

Cluster # Elem Label

Attrib Range of values # Erros #Agree.
Rate. %

0 72 A 12.0 ∼ 16.6 0 100
SL 3.1 ∼ 15.4 7 90,27

1 61 A 17.9 ∼21.1 13 78.68
2 77 A 10.5 ∼14.2 0 100

SL 2.6 ∼3.0 1 92.20

4.2. Wine Database
Table 8 presents the analysis of the labels generated by the C4.5 algorithm, as a decision
tree algorithm of the proposed model. The decision tree algorithm that performed best
using the proposed model was C4.5, with an average agreement rate of 99.67%, being
only slightly below (0.33%) the result achieved on the same basis by the model presented
[Silva et al. 2021] as shown in Table 9.

4.3. Glasses Database
Comparing the results achieved by the four decision tree algorithms, as shown in tables
10, it can be seen that the best result was achieved using the C4.5 algorithm as a supervised
algorithm, with an average agreement rate of 99.28%. This result was above the result
[Lopes et al. 2016] which was 95.54% as shown in table 11



Table 7. Labeling analysis for Seeds database present in [Lopes et al. 2016].

Cluster # Elem Label Analysis
Attri. Range of values # Errors Agree.Rate %

1 67 A 12.78 ∼16.14 8 88.05
P 13.73 ∼15.18 9 86.56

2 82 A 10.59 ∼12.78 12 85.36
P 12.41 ∼13.73 10 87.80

3 77 P 15.18 ∼17.25 0 100
SW 3.465 ∼ 4.033 3 95.08
SL 5.826 ∼ 6.675 1 98.36
A 16.1 ∼ 21.18 0 100

Table 8. Labeling analysis for Wine database using the C4.5 algorithm

Cluster # Elem Label

Attrib Range of values # Errors #Agree.
Rate %

0 62 Proline 600 ∼937 0 100
Alcalinity of ash 14.8 ∼30.0 1 98.38

1 47 Alcalinity of ash 17.5 ∼27.0 0 100
2 69 Proline 278 ∼590 0 100

Alcalinity of ash 10.6 ∼25.0 0 100

Table 9. Labeling analysis for the Wines database present in [Silva et al. 2021]

Cluster # Elem Label Análise
Attri. Range of values # Erros Agree. Rate %

1 62 Proline 600.0 ∼937.0 0 100
2 47 Proline 953.5 ∼1680.0 0 100
3 69 Proline 278.0 ∼598.0 0 100

Table 10. Labeling analysis for Glass database using the C4.5 algorithm

Cluster # Elem Lbel

Attrib Range of values # Errors #Agree.
Rate. %

0 35 Ca 8.6 ∼11.6 0 100
Mg 1.8 ∼ 4.4 0 100
K 0.0 ∼0.7 0 100
Si 70.2 ∼72.7 0 100

1 124 Ca 7.0 ∼ 9.4 0 100
Mg 2.71 ∼3.98 0 100
K 0.06 ∼1.10 0 100
Na 10.7 ∼14.8 4 96,77
Ba 0.0 ∼0.15 0 100

2 5 Ca 5.43 ∼ 6.96 0 100
K 1.46 ∼6.21 0 100
Si 69.8 ∼72.8 0 100
Al 1.8 ∼3.5 0 100

3 17 Ca 8.9 ∼12.5 0 100
K 0.0 ∼0.9 1 94,11

4 26 Ca 6.4 ∼9.9 0 100
K 0.0 ∼0.14 1 96,15
RI 1.515 ∼1.526 0 100

5 7 Ca 13.2 ∼16.1 0 100
K 0.0 ∼0.8 0 100
Si 69.8 ∼73.2 0 100

5. Conclusions
Group labeling models are essential tools for data specialists, providing concise defini-
tions of key group characteristics [Silva et al. 2021]. This study evaluated an automatic



Table 11. Labeling analysis for Glass database found in [Lopes et al. 2013]

Cluster # Elem Label Análise
Attri. Range of values # Errors Agree. Rate %

1 74 Ba 0 ∼0.7875 0 100
K 0 ∼1.5525 0 100
Si 72.61 ∼74.01 2 97.29
Na 12.3925 ∼14.055 3 95.94

2 5 Fe 0 ∼0.1275 0 100
Ca 5.43 ∼8.12 0 100

3 19 K 0 ∼1.5525 0 100
Ba 0 ∼0.7875 1 94.73

4 32 K 0 ∼1.5525 0 100
Ba 0 ∼0.7875 1 96.87
Ca 8.12 ∼10.81 1 96.87

5 56 Ba 0 ∼0.7875 0 100
K 0 ∼1.5525 0 100
Na 12.3925 ∼14.055 2 94.62
Al 1.0925 ∼1.895 4 92.85
Mg 3.3675 ∼4.49 6 89.28

6 28 Fe 0 ∼0.1275 0 100
K 0 ∼1.5525 1 96.42

group labeling model using decision trees, testing ID3, C4.5, CART, and CHAID algo-
rithms. The results revealed significant performance variations among algorithms based
on dataset characteristics.

CHAID outperformed the others on the Iris and Seed databases due to its ef-
ficiency with smaller datasets. By employing chi-squared tests for variable selection,
CHAID demonstrated robustness against outliers and noise. In contrast, ID3, C4.5, and
CART, which rely on information gain, were more susceptible to outliers in smaller
datasets like Iris and Seed. CHAID’s tendency to create simpler decision trees helps
to prevent overfitting, especially in datasets with limited records.

C4.5 excelled on the Wines and Glass databases, likely due to its pruning capa-
bility, which leads to more generalizable models. This is particularly advantageous in
datasets with class imbalances and high dimensionality, such as the Glass data.

These findings emphasize the importance of algorithm selection in model accu-
racy. Careful consideration of data characteristics and algorithm strengths is crucial for
optimal performance. The study confirms the feasibility of the proposed automatic group
labeling model and highlights the significant impact of algorithm choice on model effec-
tiveness and applicability.

Moreover, the study seeks to go beyond merely improving agreement rates. Its
objective is to uncover novel labels that have been overlooked in prior research, as exem-
plified by the Wine dataset
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