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Abstract. Processing data streams is challenging due to the need for mining al-
gorithms to adapt to real-time drifts. Ensemble strategies for concept drift detec-
tion show promise, yet gaps in flexibility and detection remain. We propose the
Self-tuning Drift Ensemble (StDE) method, which dynamically adapts ensem-
ble structure to stream changes while maintaining a lightweight solution. StDE
adjusts the number of base learners through a self-regulating voting system,
achieving high detection accuracy. Experiments across various drift scenarios
demonstrate the superior performance of our method compared to established
baselines.

1. Introduction

The rapid advances in wireless sensor networks, cloud computing, and big data have led
to the widespread use of devices that gather, transmit, and process online data across
various domains, such as weather forecasting, network traffic analysis, power grid con-
trol, and stock market trading. These applications generate data streams with chal-
lenging characteristics, including massive size and high velocity, requiring mining al-
gorithms to meet strict response latency and storage constraints. Moreover, as these
data streams evolve over time, algorithms must adapt to new knowledge as it emerges
[Cano and Krawczyk 2022, Han et al. 2022].

The dynamic and infinite nature of real-world data streams often leads to con-
cept drifts—changes in data behavior due to seasonal events, system reconfigurations, or
unexpected situations. Detecting and handling these drifts is crucial for algorithms to
adapt effectively [Han et al. 2022, Komorniczak et al. 2022, Martins et al. 2023]. Con-
cept drifts can be abrupt, gradual, incremental, recurring, sudden, mixed, or blip, each
requiring specific detection techniques or hyperparameter configurations.

Designing detectors for multiple drift types is challenging. Simple, in-
dependent detectors may fail with complex drifts, as noted by Korycki et al.
[Korycki and Krawczyk 2019]. Ensemble-based approaches offer potential solutions,
but they also pose challenges. For instance, while ensemble methods can han-
dle various drift types, they may introduce computational overhead and scalabil-
ity issues [Pérez et al. 2020, Du et al. 2015, Komorniczak et al. 2022]. Abbasi et al.
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[Abbasi et al. 2021] also pointed out that offline classifiers might slow down real-time
adaptation. Consequently, new solutions must be adaptive, maintaining limited memory
usage and high accuracy over unbounded, heterogeneous streams.

This work proposes the Self-tuning Drift Ensemble (StDE), an ensemble-based
method for concept drift detection. StDE adapts to data stream changes by dynamically
adjusting the number and configuration of its base learners based on voting behavior. A
drift is detected through a hard voting scheme when a simple majority of base learners
agree. StDE operates in two phases: a Warm Start phase, where an ensemble of three
detectors self-tunes over a labeled stream, and an Online phase, where StDE monitors
real-time streams, adjusting the ensemble based on voting results. Unanimous decisions
reduce detector numbers to save resources, while divided decisions increase detectors with
modified hyperparameters. Tests on homogeneous and heterogeneous drifts demonstrated
StDE’s robustness and efficiency in maintaining a lightweight structure.

The remainder of this work is organized as follows: Section 2 presents the related
work. Section 3 describes StDE. The experimental results are presented and discussed in
Section 4. Finally, Section 5 provides the concluding remarks.

2. Related Work

The identification and adaptation to concept drifts in data streams have been explored
by single and ensemble-based solutions. This section reviews various techniques, par-
ticularly focusing on the identification of concept drifts using ensembles. Algorithms for
prediction and adaptation are outside the scope of our proposal, as well as single detectors.

Most ensemble drift detectors rely on supervised learning. [Deckert 2011] in-
troduced the Batch Weighted Ensemble framework, which enhances performance by
integrating multiple classifiers with a weighted voting scheme. [Abbasi et al. 2021]
used an ensemble of classifiers like K-Nearest Neighbor, Random Forest, and Multi-
layer Perceptron to efficiently handle concept drift in dynamic social big data streams.
[Ramane and Gnanasekar 2022] proposed an ensemble framework combining two de-
tectors and a classifier, using dissimilarity-based and performance-based drift detection
methods for effective drift management. [Mavromatis et al. 2023] presented LE3D, an
ensemble framework that identifies irregularities in sensor streams using ADaptatinve
WINdowing (ADWIN), Page-Hinkley Test (PHT), and Kolmogorov-Smirnov Window-
ing (KSWIN).

It is important to mention that relying on machine learning algorithms require im-
plementing offline and online phases, creating computationally costly solutions, and even
violating stream mining constraints. For example, [Abbasi et al. 2021] noted that reliance
on offline classifiers may slow down the adaptation to new data and [Deckert 2011] does
not address potential challenges in scalability and computational overhead when using
traditional machine learning.

For this reason, we consider that solutions based on stream detectors fit stream
constraints more properly. The first work grounded on an ensemble of drift detectors was
proposed by [Khamassi et al. 2013]. The authors discussed integrating drift detection
methods and proposed the Error Distance-based Approach for Drift Detection (EDIST),
a new method that monitors the distance between two consecutive classification errors.



This proposal differs from ours due to the use of a fixed number of detectors with fixed
hyperparameters and the combination of classification procedures.

[Du et al. 2015] proposed a selective detector ensemble using methods like Drift
Detection Method (DDM), Early Drift Detection Method (EDDM), ADWIN, and Statis-
tical Test of Equal Proportions (STEPD) to identify concept drifts. While this approach
maintains model accuracy through supervised learning, it suffers from a high level of false
positives due to its early-find-early-report strategy. [Samant et al. ] introduced a selective
ensemble method that dynamically chooses the most relevant detectors (ADWIN, DDM,
and EDDM) based on a machine learning classifier’s performance, combining detectors
and classifiers to adaptively respond to drifts.

[Korycki and Krawczyk 2019] discussed the Ensemble Drift Detection with Fea-
ture Subspaces (EDFS), which independently monitors and detects drifts in data streams,
emphasizing simplicity and efficiency. [Pérez et al. 2020] introduced the Statistical
Tests Ensemble Detector (STED), which combines Brown-Forsythe, O’Brien, and
ANOVA statistical tests with voting strategies to detect changing data distributions.
[Komorniczak et al. 2022] proposed the Statistical Drift Detection Ensemble (SDDE),
which uses a fixed set of detectors, including a Gaussian Naı̈ve Bayes classifier, to manage
sudden, incremental, and gradual drifts.

Supported by the current literature review regarding ensembles of drift detec-
tors, we observed that the flexibility to detect a wide range of drifts while maintaining
a lightweight structure requires further research and new proposals. We projected StDE
to fulfill these gaps.

3. StDE: Self-tuning Drift Ensemble
In this section, we describe our proposed approach for enhancing drift detectors predic-
tive performance through a voting-based and windowed ensemble method. Our approach,
illustrated in Figure 1, consists of two main phases: the Warm Start phase and the Online
phase. During the Warm Start phase, the proposed approach performs hyperparameter
tuning for DDM and EDDM. Following this, the Online phase involves dynamically man-
aging the drift detectors based on data stream behavior, allowing the ensemble to adapt
and perform self-tuning in response to changes. This dynamic and self-tuning capability
ensures that the model remains robust and effective in varying conditions.

3.1. Voting and Windowing Mechanisms
We propose a voting ensemble method that incorporates multiple instances of DDM and
EDDM. Each detector independently monitors the data stream and votes on whether a
concept drift has occurred. The final decision is based on the majority vote among
these detectors. By leveraging the strengths of both DDM and EDDM within the en-
semble, we can improve the robustness and accuracy of our drift detection process
[Lagman et al. 2020].

Our ensemble algorithm for drift detection includes a windowing mechanism to
determine if successive bits in a data stream represent the same drift or different ones.
The window size is a key parameter that influences the sensitivity and robustness of drift
detection. A smaller window detects abrupt changes quickly, enhancing responsiveness
but increasing the risk of false positives. A larger window provides more stable detection,
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Figure 1. Self-tuning Drift Ensemble (StDE) overview.

reducing false alarms but potentially delaying drift recognition or increasing false nega-
tives. When the first detector in the ensemble detects a drift, the window is initiated, and
all drifts identified within this window are considered the same. For example, as shown
in Figure 2, with a window size of 3 bits, any detector signaling a drift within this win-
dow is considered to indicate the same drift, while detections outside the window indicate
different drifts.
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Figure 2. Windowing mechanism overview.

3.2. Warm Start Phase

The Warm Start phase initializes the ensemble operation by tuning the parameters of
the drift detection algorithms (base learners). This offline process utilizes a finite data
stream. By employing algorithms that have been tuned based on this specific subset of



data streams relevant to the problem, we ensure a robust and well-adapted model for the
subsequent online learning phase. The Warm Start phase consists of 4 steps, which are
presented as follows:

1. Hyperparameter Space Definition: the search space for hyperparameters is de-
fined to explore various configurations for the ensemble components. For both
DDM and EDDM, the tuned hyperparameter is the threshold for triggering a warn-
ing (α). The value ranges are determined based on the specific characteristics and
requirements of the problem at hand.

2. Hyperparameter Optimization: this step involves exploring the hyperparame-
ter space to find the optimal settings for the ensemble. We use a Random Search
algorithm, which randomly samples and evaluates multiple hyperparameter com-
binations on a validation subset of the data streams. Random Search is chosen for
its simplicity and effectiveness, offering a good balance between performance and
computational efficiency. However, other hyperparameter optimization methods
could also be employed [Silva et al. 2024].

3. Performance Evaluation: each hyperparameter combination is assessed based on
its performance in detecting concept drifts, measured through the F1-score metric.

4. Selection of Hyperparameter Values: the combination of hyperparameters that
achieves the best performance across the data streams is selected. These param-
eters are then used to initialize DDM and EDDM instances for the subsequent
online phase.

Algorithm 1 implements the Warm Start phase, formalizing the process of itera-
tively optimizing hyperparameters for a voting ensemble of drift detectors.

3.3. Online Phase
The Online phase is executed after the Warm Start phase. Its first step is to configure an
odd number of detectors, DDM or EDDM, with the hyperparameter values obtained in
the previous phase. After configuring the initial detector set, this phase moves on to the
data stream monitoring, during which drifts are detected and the number of detectors is
managed in real-time. This detector dynamic management relies on two main methods:

1. Increasing Number of Detectors: in a divided vote scenario, where a simple mi-
nority of detectors agree on the presence of a concept drift, it suggests potential
uncertainty or the emergence of new patterns in the data stream. To address this,
and to maintain an odd total number of detectors, two additional detectors are
added to the ensemble. These new detectors, either DDM or EDDM, are selected
randomly and instantiated with hyperparameters perturbed by Gaussian noise cen-
tered around the optimal values defined in the Warm Start phase. This controlled
randomness enhances the ensemble’s ability to adapt to diverse drift patterns while
avoiding over-specialization. The mean-centered nature of the Gaussian distribu-
tion ensures that while variability is introduced, the detectors remain close to their
optimal configurations.

2. Decreasing Number of Detectors: when there is an unanimity vote scenario, the
detectors indicate strong confidence in the presence of a drift, which suggests a
stable concept. In this case, the ensemble reduces its complexity by removing
two randomly selected detectors. This reduction helps maintain computational
efficiency and prevents over-fitting.



Algorithm 1 Warm Start Phase for Self-tuning Drift Ensemble (StDE)
Input:
- D: Initial finite data stream
- M : List of drift detectors
- H: Dictionary of hyperparameter ranges for each detector in M
- n iter: Number of random hyperparameter configurations
Output:
- best params: Dictionary of best hyperparameters for each detector in M
begin best params← ∅
best score← −∞
for i ∈ [1, . . . , n iter] do

current detectors← ∅
for m ∈M do

- Generate random hyperparameter hi for detector m from H[m]
- Configure detector di of type m with hyperparameters hi

- Add di to current detectors
end
- Create hard voting ensemble Ei using current detectors
- Evaluate Ei on subset D using F1 Score metric
- scorei ← Evaluation metric for Ei

if scorei > best score then
best score← scorei
best params← {hi | m ∈M}

end
end
return best params

Algorithm 2 implements the Online phase to dynamically update the ensemble by
changing the number of detectors based on data stream behavior.

4. Exiperiments

4.1. Automatic Generation of Streams

The StDE’s performance was evaluated on abrupt, gradual, and incremental drifts us-
ing synthetic data streams generated with the Synthetic Datastream Database Generator1

[Sakurai et al. 2023]. This tool allows the creation of homogeneous streams (containing
one drift type) and heterogeneous streams (mixing various drift types). It systematically
introduced different drifts, providing a robust test bed for assessing the algorithm’s adapt-
ability and accuracy.

We generated 1800 data streams—900 homogeneous and 900 heterogeneous. Ho-
mogeneous streams each contain 300 samples of a single drift type, while heterogeneous
streams mix all three drift types in varying sequences. Stream sizes and drift locations
were randomly defined to introduce variability and ensure unbiased algorithm evaluation.

1Available on https://github.com/gysakurai/datastream-synthetic



Algorithm 2 Online Phase for Self-tuning Drift Ensemble (StDE)
Input:
- Ensemble: Set of initialized detectors D1, D2, . . . , Dn with optimal
hyperparameters

- Streaming data: Incoming data stream
- k: Threshold for Minority Sequence Count
- m: Threshold for Unanimity Sequence Count
begin

1. Set MinorityThreshold← |Ensemble|
2

2. Set UnanimityThreshold← |Ensemble|
3. Initialize MinoritySequenceCount← 0
4. Initialize UnanimitySequenceCount← 0
5. While streaming data is available:

(a) Collect votes from all detectors in Ensemble if warning detected
(b) Count votes indicating drift (driftCount)
(c) If driftCount < MinorityThreshold then

i. MinoritySequenceCount← MinoritySequenceCount + 1
ii. If MinoritySequenceCount = k then

• Add two new random detectors Dnew1, Dnew2

• Perturb hyperparameters of new detectors with Gaussian
noise

• Ensemble← Ensemble ∪Dnew1, Dnew2

• Reset MinoritySequenceCount to 0
iii. Reset UnanimitySequenceCount to 0

(d) Else
i. StDE detects the drift

ii. Reset MinoritySequenceCount to 0
iii. If driftCount = UnanimityThreshold then

A. UnanimitySequenceCount←
UnanimitySequenceCount + 1

B. If UnanimitySequenceCount = m then
• Remove two random detectors Dremove1, Dremove2

• Ensemble← Ensemble \Dremove1, Dremove2

• Reset UnanimitySequenceCount to 0
(e) Update detectors in Ensemble with new data

end

4.2. Evaluation Metrics

StDE was assessed according to three main criteria: detection performance, delay to de-
tect drifts and memory cost. In this section, we provide further details on how the metrics
for these criteria were calculated.

F1 score is derived from precision and recall metrics [DeVries et al. 2021]. Pre-
cision measures the algorithm’s ability to avoid false positives, while recall measures its
ability to detect as many drifts as possible. By combining these two metrics, F1 score
offers a comprehensive evaluation of the algorithm’s performance.



Also is used Detection Delay as one of evaluation metrics, it represents the time
interval between the occurrence of a concept drift and its detection by the detector. Low
detection delays enable prompt reactions to drifts, meeting real-time constraints, while
high delays can lead to missed opportunities, false alarms, or incorrect decisions. This
delay is influenced by factors such as data complexity, drift frequency and magnitude,
the detector’s behavior, and the decision threshold used. Balancing detection delay and
accuracy is vital for optimizing data stream drift detectors according to the specific re-
quirements of the application. In this study, we calculate detection delay by counting the
number of bits in the data stream between the known start of drifts and the point where
they were detected by the assessed detector.

Memory cost in drift detection algorithms refers to the memory allocated and
utilized during execution, which impacts efficiency and scalability in resource-limited
environments. It includes average memory usage, reflecting the typical memory footprint.
Efficient memory management is crucial for handling large data streams and adapting
to changes without causing overflow or slowdowns, ensuring real-time performance and
reliability. In our study, we use Python 3.10 and the tracemalloc library2 to measure
memory usage, reporting it in megabytes (MB) for comparisons.

4.3. Results

For comparison and benchmarking against StDE, we will use the following baselines: a
DDM instance with optimal hyperparameters from the Warm Start Phase, an EDDM in-
stance with its optimal hyperparameters, and a modified version of our ensemble method,
Fixed-StDE, which maintains a constant number of base learners equivalent to the maxi-
mum used by StDE during its online phase. These benchmarks will be tested on both ho-
mogeneous and heterogeneous data streams to evaluate model performance across differ-
ent environments and drift behaviors. For StDE testing, we set the following parameters
based on preliminary results: Threshold for Minority Sequence Count = 1000, Threshold
for Unanimity Sequence Count = 5, and Window Size = 5.

For detection performance in homogeneous data streams, StDE substantially out-
performs the baselines and achieves the highest F1 score, indicating superior performance
in handling drifts of the same type within a stream, as shown in Figure 3. StDE’s F1-score
exceeded Fixed-StDE’s by 20 percentage points, which suggests that dynamically adjust-
ing the number of detectors can be more effective than merely maximizing their quantity
in this scenario.

When it comes to heterogeneous data streams, StDE also outperformed the base-
lines. DDM and Fixed-StDE also achieved satisfactory results. Conversely, EDDM pro-
duced significantly poor results, as shown in Figure 3. This outcome indicates that the
balanced integration of different methods within the proposed StDE method, along with
the hyperparameters tuning — making some detectors more sensitive and others less sen-
sitive — results in superior detection performance even when multiple drift types are
present in the same stream. By carefully adjusting these hyperparameters, we are able
to enhance the overall performance, achieving more satisfactory results compared to the
other methods.

2Available on https://docs.python.org/3/library/tracemalloc.html
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Figure 3. Heat-map of F1 score in detection methods. DDM and EDDM have had
their hyperparameters tuned. Fixed-StDE was constructed with the maximum
number of base learners.

For detection delay in homogeneous data streams, StDE performed slightly better
than DDM and Fixed-StDE, as shown in Figure 4. Conversely, EDDM yielded signifi-
cantly worse results when considering delay. For detection delay in heterogeneous data
streams, StDE is also slightly better than DDM and Fixed-StDE, with StDE exhibiting
a higher delay when compared to homogeneous streams, though. EDDM presented a
very rapid reaction, as observed in Figure 4, but performed poorly in terms of predictive
capacity.
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Figure 4. Heat-map of delay in detection methods. DDM and EDDM have had their
hyperparameters tuned. Fixed-StDE was constructed with the maximum number
of base learners.

About the memory cost metric, Figure 5 presents the results for this metric. As
expected, StDE required more memory than the baselines based on DDM and EDDM.
StDE utilizes a minimum of three base learner instances but only consumes up to twice
the memory of a single base learner (DDM or EDDM), which can be deemed satisfactory.
Another positive aspect here is that StDE’s memory consumption is much lower than
that of Fixed-StDE. This demonstrates that the dynamic adjustment of the number of
base learners allowed for good predictive performance alongside a significant reduction
in memory footprint.
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4.3.1. Number of Detectors Fluctuation

As presented in Figure 6, the blue line indicates the number of detectors over time, while
the red dashed lines mark when potential drifts were signaled by the detectors. Addition-
ally, the figure indicates the actual drifts in the data stream, highlighted by the intervals
in gray. The moments where the number of detectors increases or decreases are based on
the number of votes, with each detector signaling a potential drift. Initially, the number
of detectors remains constant at its initial value of three detectors. However, as potential
drift points are signaled by the detectors, there are visible increments and decrements in
the number of detectors, reflecting the system’s adaptive response to changes in the data
distribution. As exemplified in Figure 6, at the point with 2 votes out of 5 detectors, when
the threshold for minority is reached, the number of detectors increases. Conversely, the
point with 9 votes out of 9 detectors represents a moment where the threshold for unani-
mous votes is reached and the number of detectors decreases.

5. Conclusion

StDE presents an advancement in the field of concept drift detection for data streams.
By dynamically adjusting the number and configuration of its base learners based on
their voting behavior, StDE effectively addresses the challenges posed by the diverse and
evolving nature of data streams. The dual-phase operation — initial Warm start phase with
offline data followed by real-time monitoring — ensures that StDE remains adaptable to
various drift types, whether abrupt, gradual, or incremental. Our tests demonstrate that
StDE maintains high efficiency and accuracy across different drift scenarios, validating
its robustness and versatility. Overall, StDE represents a promising solution for real-time
data stream mining, capable of maintaining performance and reliability in the face of
continuous and unpredictable changes. Future work could explore further optimization of
the ensemble’s hyperparameters and investigate the integration of additional types of base
learners to enhance the system’s performance in even more complex data environments.
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