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Abstract. It is increasingly common for sectors of society to use Machine Learn-
ing (ML) techniques to make decisions and make variations with the data gener-
ated. One of the most common problems that a dataset can present is imbalance.
Under these conditions, the tendency is to produce biased models, which favor
the majority class. To mitigate this problem, data balancing algorithms can be
used, one of which is oversampling. However, it is not a simple task to define
whether an oversampling technique really helps in the model learning process.
The experiments carried out show that IRT is capable of revealing the impact of
oversampling even when there is no variation in performance when using clas-
sical characteristics. Furthermore, the results found pointed to the existence of
an imbalance threshold where oversampling techniques are more effective.

1. Introduction
The large amount of information generated and stored by different sectors of society in-
creases every day, such as industry and academia. It is increasingly common for these
different sectors to use Machine Learning (ML) techniques to make decision-making and
predictions with the data they generate. ML is a sub-area of study of Artificial Intel-
ligence and encompasses studies of computational methods for automating knowledge
acquisition and for structuring and accessing existing knowledge [dos Santos 2005]. It is
divided into three main types: supervised, unsupervised and reinforcement learning.

Supervised learning is trained using a set of labeled data so that it is later able to
identify new data according to previously learned labels. These datasets can be obtained
from specific platforms focused on ML such as OpenML [Vanschoren et al. 2014] and
UCI [Dua et al. 2019].

One of the most common problems that a dataset can have is imbalance, which
is defined as the greater incidence of one category in relation to the others within it.
Under these conditions, the tendency is to produce classification models (or rules) that
favor these majority classes. Such biased models can generate incorrect predictions. To
generate more reliable models, the data set used must be balanced, and there are two
main methods to perform balancing: one of them is undersampling, which is balancing



by “cutting” instances of the majority class. The second method is oversampling, which
is the creation of synthetic data in the minority class. Both methods aim to equalize the
number of instances of the classes. In this work the focus of study is oversampling.

Good performance in results returned by classic ML metrics, such as Accuracy
and F1 score and MCC (Matthews Correlation Coefficient), but metrics like these can only
reveal information about the quality of the model’s final performance across the entire set
of tests. Therefore, when applying oversampling techniques to balance the dataset, there
is no way to identify whether the artificially generated instances are of good quality using
only classic ML metrics.

Recent studies attempt to resolve this issue by applying techniques from other
areas of knowledge in ML. For example, [Cardoso et al. 2022] uses IRT (Item Response
Theory), used in psychometric tests to try to explain the model and quantify its reliability
when analyzing the relationship between classifier and instance using IRT concepts.

Widely used in evaluating students in exams such as the ENEM (National High
School Exam), the TRI does not only count the total number of correct answers in a
test, as is done in classic evaluation metrics. The item is the basic unit of analysis and
performance on a test can be explained by the ability of the person evaluated and the
characteristics of the questions (items) [MEC 2012].

The TRI qualifies the item according to three parameters: Discrimination, which
is the ability of an item to distinguish, in this case, students who have the required profi-
ciency from those who do not; Degree of difficulty; Possibility of a random guess (guess-
ing) [MEC 2012].

In this way, making a parallel with the use of IRT in Machine Learning, the items
are the instances of the test set while the classifiers are the respondents who are performing
the test.

In this work, IRT is used to evaluate the ability of classifiers to recognize data
created synthetically by oversampling techniques, with the aim of trying to identify which
technique can generate higher quality data and under what conditions this is possible. The
remainder of this work is organized into the following sections: Section 2 presents the
theoretical foundation on Machine Learning, data imbalance and IRT; Section 3 presents
the methodology used to evaluate oversampling techniques with IRT; Section 4 presents
the results obtained; Section 5 brings the final considerations of the work.

2. Theoretical Background

2.1. Machine Learning (ML)

As a subarea of Artificial Intelligence, Machine Learning is the science of programming
computers so that they can learn from data [Barchilon and Escovedo 2021], encompasses
the studies of computational methods for automating knowledge acquisition and for struc-
turing and access to existing knowledge [dos Santos 2005].

The use of ML can contribute to organizations, with the purpose of making effi-
cient prediction. It has three main types: supervised learning, unsupervised learning, and
reinforcement learning. Supervised learning is a machine learning paradigm that aims to
acquire relationship information between the input and output of a system, based on a



set of training samples [Monard and Baranauskas 2003]. The model is trained using a set
of labeled data so that it is later capable of identifying new data according to previously
learned labels.

In a binary dataset, imbalance is defined as the lower incidence of one category
(minority class) compared to the other category (majority class). This means that we
have a lot of information from the majority class. Therefore, the tendency is to produce
classification models (or rules) that favor this class, resulting in a low recognition rate for
the minority class [Castro and Braga 2011], which could result in problems for the model.
One of the problems in model evaluation is the accuracy paradox, which can be defined
as the contradictory situation in which a high accuracy in your classification model can
highlight a failure of your own model to make truly significant predictions.

One way to try to mitigate the bias caused by the difference between classes is to
manipulate the data, increasing or removing, so that the classes are balanced. This can
be done using oversampling and undersampling techniques. In this work the focus is on
oversampling balancing techniques.

Oversampling balancing techniques aim to increase the number of instances of
the minority class by generating synthetic data, leaving them with the number of in-
stances equal to that of the majority class. There are different oversampling algorithms,
for this work 5 techniques used by the ML community were chosen, they are: SMOTE,
ADASYN, SVMSMOTE, SMOTEN and BorderlineSMOTE.

• SMOTE: Generates virtual training records by linear interpolation for the minor-
ity class. These synthetic training records are generated by randomly selecting
one or more of the k-nearest neighbors for each example in the minority class
[Chawla et al. 2002]. To do this, the difference between the feature vector (sam-
ple) under consideration and each of the selected neighbors is taken. This differ-
ence is multiplied by a random number drawn between 0 and 1 and then added to
the previous feature vector. This causes the selection of a random point along the
“line segment” between the features. In the case of nominal attributes, one of the
two values is randomly selected [Fernández et al. 2018].

• ADASYN: The main idea of the algorithm is to use the density distribution as
a criterion to automatically decide the number of synthetic data that needs to be
generated for each example of the minority class [He et al. 2008]. It creates differ-
ent number of synthetic data based on data distribution. The algorithm ADASYN
can decide the number of synthetic examples that need to be generated for each
minority example by the number of its closest majority neighbor, i.e., the closer
majority neighbor, the more synthetic examples will be created. An important
disadvantage of this approach is that synthetic data is only generated close to the
boundary [Majumder et al. 2020]. .

• SVMSMOTE: Generates synthetic samples close to the optimal decision region.
It focuses on generating samples close to the edge region of the class, using only
samples that make up the optimal decision region, and it is not necessary to use
all samples from the minority class [Nguyen et al. 2011]. The optimal region is
obtained by training the SVMs on the original database. SVMSMOTE generates
synthetic data through interpolation and extrapolation. The first is carried out if
the number of samples belonging to the class majority is greater than or equal



to half of the total number of neighbors. In this way, the edge of the minority
class will be consolidated. The second occurs when the number of samples be-
longing to the majority class is less than half the total number of neighbors. Thus
goes the extrapolation and consequent expansion in the area of the minority class
[LIMA et al. 2020].

• SMOTEN: It works in such a way that the closest neighbors of the majority class
are estimated and excluded, which excludes the most extensive data before over-
sampling the minority class [Alabrah 2023]. It expects that the data to resample
are only made of categorical features[Lemaı̂tre et al. 2017].

• Borderline SMOTE: It is a variant of the SMOTE technique that focuses on gener-
ating synthetic instances of the response variable in regions closer to the decision
boundary between the minority and majority classes [Han et al. 2005].

2.2. Item Response Theory (IRT)
Widely used in evaluating students in tests such as the ENEM (National High School
Exam), the IRT emerged as a way of considering each item of an object studied, without
revealing only the total score. Therefore, in the case of tests or questionnaires, the con-
clusions depend on each item that composes them [Araujo et al. 2009]. That is, IRT does
not only account for the total number of correct answers in a test, the item is the basic unit
of analysis. Performance on a test can be explained by the ability of the respondent and
the characteristics of the questions (items) [MEC 2012].

These characteristics make it possible to estimate the ability of an evaluated can-
didate and to ensure that these skills, measured from one set of items, are compared with
another set on the same scale, even if they are not the same and there are different amounts
of items used for the calculation [MEC 2012].

Adopting the dichotomous model or cumulative multiple-choice items (those that
are corrected as right or wrong), we have the logistic models of 1, 2 and 3 parameters.
The logistic model adopted in this work is the 3-parameter model, which is given by the
Equation 1.

P (Uij = 1|θj) = ci + (1− ci)
1

1 + e−ai(θj−bi)
(1)

Where, Uij is a dichotomous variable that takes on the value 1, when the respon-
dent j answers correctly, agrees or satisfies the conditions of item i, or 0 otherwise; θj
represents the latent trait (ability) of the respondent j; b is the difficulty parameter of the
item i, measured on the same scale as the latent trait, refers to the level of skill needed to
answer the item correctly, the higher the value of b, the greater the difficulty of the item;
a is the discrimination (or slope) parameter of the item i, with a value proportional to the
slope of the characteristic curve of the item at the point b. It refers to the item’s ability
to discriminate between individuals with different abilities. Items with higher a values
provide better breakdowns; c is the parameter of chance hit or guesswork. The higher the
value of c, the greater the chance of the item being answered correctly by chance.

In the interpretation of the 3-parameter logistic model, the P (Uij = 1|θj) is the
probability of getting it right (Uij = 1) given the parameters of the item i and the es-
timated ability of the respondent j [Araujo et al. 2009]. The relationship between these



Figure 1. ICC for 3-parameter logistic model.

mathematical functions is estimated and is called Item Characteristic Curves (ICC), as
can be seen in Figure 1.

It is noted that the discrimination parameter a is very determining for the behavior
of the ICC. Normally this parameter has positive values, but it is not impossible for items
with negative discrimination values to appear. Such values are not expected by the IRT,
and when they appear they usually indicate that there is some inconsistency with the item,
as in these cases the ICC curve inverts so that respondents with less ability have a greater
chance of getting it right than respondents with greater ability [Cardoso et al. 2022].

In addition to evaluating the students themselves, IRT is used in ENEM to evaluate
the quality of student learning. Likewise, this work aims to use IRT to evaluate the stage
that the model is studying for testing, i.e., the training stage in which there will be artificial
instances created by oversampling techniques and at the end the IRT results are observed
to evaluate whether the synthetic data generated by the different oversampling techniques
actually improved model learning.

3. Methodology

To carry out the experiments, the CONDA 23.3.1 programs were used, with the
Python 3.10.4 language, and the Jupyter notebook. Five oversampling balancing tech-
niques were selected from the Imbalanced-learn library: ADASYN, SMOTE, SMOTEN,
SVMSMOTE and BorderlineSMOTE.

When carrying out the proposed study, the analyzed dataset has its split stratified
and is divided into training and testing, in a 70/30 proportion. The training dataset goes
through the oversampling process, which is done using several techniques separately, one
at a time, where the models will be generated. The result is a response matrix that contains
the result of each model’s prediction for each test instance, 1 for when the model gets the
prediction right and 0 for when it gets it wrong. From the response matrix, the IRT item
parameters are estimated, as well as the classic evaluation metrics Accuracy, F1 score and
MCC.

To carry out this process automatically, decodIRT[Cardoso et al. 2020] was used,
which is a tool composed of a set of Python scripts, which automates the model genera-
tion process and estimates item parameters, with their results. it is possible to calculate
classical metrics and ICC. By definition, the tool uses different families of algorithms to
generate the results contained in the response matrix in order to generate a diversity of



Figure 2. Methodology flowchart.

responses: Naive Bayes, MLP, KNN, SVM, Decision Trees and Random Forests. The
step-by-step process is described below and is also illustrated in Figure 2:

1. Obtaining the datasets: the pre-selected datasets were acquired from the OpenML
platform, through the platform’s API made available for Python;

2. Dataset processing:
2.1 Division of data sets: then decodIRT divides the dataset into training and

test, where the training dataset is subjected to data processing;
2.2 Data processing: datasets are balanced using oversampling techniques;
2.3 Training dataset processing: then the training dataset is processed so that

results are returned, both for the original training dataset and for the training
dataset that was balanced by oversampling techniques;

2.4 Machine Learning + IRT: the decodIRT tool processes training datasets
with and without data processing, that is, with and without balancing;

2.5 Response Matrix: the result of the processing is the response matrix,
from which the IRT item parameters (2.5.1) are calculated and a confusion matrix
(2.5.1) is formed, from which the classic metrics (Accuracy, F1score and MCC)
were generated, all from both the original dataset and the balanced dataset.

3. Results: the end of the process is the result of the classic metrics and item pa-
rameters, both from the original dataset, with unbalance, and from the datasets
that were subjected to balancing through oversampling techniques. The results
obtained are then organized and analyzed.



Table 1. Metadata of the selected datasets.
Level Dataset Major % Minor % Nº Feat. Nº Inst. Dimen. C. Entropy Auto Corr. Feat. N. Feat. C.

1
Credit apvl 55,51 44,49 16 690 0,023 0,991 0,978 6 10
Cylinder 57,77 42,23 40 540 0,074 0,982 0,811 18 22
dresses-sales 57,99 42,01 13 500 0,026 0,981 0,4729 1 12

2
wdbc 62,74 37,26 31 569 0,054 0,952 0,625 30 1
tic-tac-toe 65,34 34,65 10 958 0,010 0,931 0,999 0 10
qsarbiodeg 66,00 34,00 42 1055 0,040 0,922 0,997 41 1

3
credit-g 70,00 30,00 21 1000 0,021 0,0881 0,570 7 14
ilpd 71,35 28,65 11 583 0,019 0,864 0,613 9 2
haberman 73,529 26,47 4 306 0,130 0,833 0,786 2 2

4
jm1 80,66 19,34 22 10885 0,002 0,709 1,000 21 1
backache 86,11 13,89 32 180 0,177 0,581 0,731 5 27
pc4 87,79 12,21 38 1458 0,026 0,535 0,885 37 1

5
sim. crashes 91,48 8,52 21 540 0,039 0,420 0,839 20 1
pc1 93,06 6,94 22 1109 0,198 0,363 0,990 21 1
oil spill 95,63 4,37 50 937 0,053 0,259 0,928 49 1

3.1. Dataset Selection

Since our goal is to balance data by oversampling techniques, it is necessary to select
datasets with different levels of imbalances. To this end, the rule of gradual growth of
these levels was defined:

• Level 1: Imbalance greater than 50% and less than 60%;
• Level 2: Imbalance greater than or equal to 60% and less than 70%;
• Level 3: Imbalance greater than or equal to 70% and less than 80%;
• Level 4: Imbalance greater than or equal to 80% and less than 90%;
• Level 5: Imbalance greater than or equal to 90% and less than 100%.

As a case study, fifteen datasets of the OpenML [Vanschoren et al. 2014] were
selected, through the platform’s API made available for Python. There are 3 datasets
for each level of unbalance, starting from 55.5% of credit-approval, considered here as
the dataset with the lowest degree of unbalance, going up to the oil spill dataset, whose
majority class has 95.6%, considered as here, as the dataset with the highest degree of
unbalance. In addition, other metadata is provided, which can be seen in the Table 1.

4. Results and Discussion
This section presents the results obtained from fifteen data sets organized from the lowest
to the highest level of imbalance, starting from level 1 to level 5. Firstly, the results
are analyzed using only classic ML metrics and subsequently the Analysis is performed
through IRT.

4.1. Through the lens of classical metrics

For each dataset of each level of imbalance, the 5 Oversampling techniques studied were
applied to subsequently calculate the Accuracy, F1 and MCC metrics. In this way, 5
values of each evaluation metric will be obtained, one for each Oversampling technique.
The average variation of the values was then plotted in the graph in Figure 3, which
presents an overview of the behavior of classical metrics as the level of imbalance in the
datasets increases.

It is noted that there is little or almost no impact from the application of over-
sampling techniques on the performance of the models for level 1 and 2 datasets. This
was expected, because for these datasets that already have close numbers of instances per
class, oversampling techniques need to generate few instances to balance the datasets and,
therefore, will have little impact. The interesting results are for datasets from level 3 on-
wards. It is noted that there is a gradual drop in accuracy as the imbalance of the datasets



Figure 3. Variation in the average value of classic metrics after oversampling.

increases, this indicates that the application of oversampling techniques may not have the
desired effect on very unbalanced datasets.

Only level 3 datasets present the most interesting model performance results after
applying oversampling. It is noted that the average drop in accuracy was minimal and
showed more significant increases for F1 and MCC, with the ilpd (71.35% imbalance) and
haberman (73% imbalance) datasets that had the greatest improvement in performance.
ilpd had an average F1 increase from 0.3 (original) to 0.53 (oversampling) and the MCC
increased from 0.18 to 0.34, haberman in turn, had an average F1 increase of 0.13 to
0.32, while the MCC increased from 0.01 to 0.11. For the level 3 datasets, it was the
SMOTE and ADASYN techniques that showed a greater performance improvement than
the others, despite it being by little difference.

These results indicate that there may be imbalance thresholds, at which oversam-
pling techniques may or may not have a positive effect. In the experiments carried out,
level 3 of unbalance is the condition that is most worth the effort of applying an over-
sampling technique, while for levels 1 and 2 the unbalance is too small for the techniques
to have any impact. For example, for the level 2 wdbc dataset (62.74% imbalance), the
difference between the performance metrics values was very low, being 0.001, 0.005 and
0.005 for Accuracy, F1 and MCC, respectively.

For levels 4 and 5, the results suggest that the imbalance is too high to apply
oversampling, so that the performance of the models may even worsen. For example,
the dataset climate-model-simulation-crashes (91.48% imbalance) at level 5 presented
variations very close to zero in model performance, with -0.08 for Accuracy, -0.05 for F1
and 0.09 for the MCC. It is noted in this case that there was no advantage in applying
oversampling techniques.

4.2. Through the lens of IRT

Based on the results obtained by the classical metrics, there was no improvement in the
final performance of the models for the wdbc dataset, however when subjected to IRT
it is possible to notice some positive changes after oversampling. Figure 4 shows the



Figure 4. CCI of the techniques applied to the wdbc dataset.

behavior of the instances with the ICCs calculated with the original dataset, i.e., without
applying balancing techniques and for each oversampling technique that was applied. The
blue lines represent instances with positive discrimination, while the red lines represent
instances with negative discrimination. In section 2.2, it was explained that negative
discrimination means that the item has some inconsistency that makes it more difficult
for high-ability respondents than low-ability respondents.

Even in the original condition, the wdbc dataset already presents some instances
with negative discrimination, although it is clear that there are many more positive in-
stances (blue lines). Even though there is no improvement in performance with classical
metrics, it can be seen that after applying oversampling techniques, the total number of
instances with negative discrimination decreases and has a less pronounced slope, with
ADASYN and BorderlineSMOTE being the algorithms that present the best performance
for this case. For ML, a poorly observed class distribution during the training stage can
result in instances with negative discrimination in the test. Therefore, ADASYN and Bor-
derlineSMOTE may be presenting the best performance as they are techniques focused
on generating synthetic data based on lower density and edge instances.

When returning to the analogy of the student taking a test, although the number of
total correct answers does not increase, and even so negative discrimination decreases, it
means that students have greater conviction in their answers and better master the content
of the questions they get right. Therefore, it can be said that in this case, because of
oversampling, the models have greater confidence in the instances that classify correctly.

In contrast to the result presented previously, climate-model-simulation-cra-
shes represents the worst case scenario. As seen previously, the application of oversam-
pling techniques did not result in an improvement in the model’s final performance and
may even be harming learning. This becomes clearer when observing the ICC curves, as
can be seen in Figure 5.

It is noted that the original dataset already presented a large number of instances
with negative discrimination, in addition to the high difficulty, due to the positioning of



Figure 5. CCI of the techniques applied to the climate-model-simulation-crashes
dataset.

the lines to the right of the graphs. After applying each technique, no improvement can be
noticed in the general picture, but it can be seen that the total number of good instances
(blue lines) decreases and loses slope, which indicates that the discriminative value of
these instances is very close to zero.

These results highlight the observations made previously. Depending on the de-
gree of imbalance and the characteristics of the dataset, oversampling techniques may not
be of any use. In these cases, the best solution would be to invest in obtaining more data
from the minority class.

However, this is not a definitive rule. Among the level 5 datasets, pc1 (93.56%
imbalance) presented very interesting results. As can be seen in Figure 6, all the oversam-
pling techniques that were applied resulted in an improvement in the item parameters of
the dataset instances, where the average discrimination increased from -8.79 to 7.93, the
difficulty of the dataset decreased from 1.35 to -1.05 and guessing decreased from 0.17 to
0.05.

These results indicate that data that were previously considered bad by IRT, after
oversampling techniques, are considered good for evaluation. With the original accuracy
(92%) of the models being very close to the percentage of the majority class (93.56%), this
could mean that the models were biased towards classifying all instances as being from the
majority class without actually having adequately generalized the class distribution. This
is highlighted with the guess value decreasing from 0.17 to 0.05 after applying oversam-
pling. But what causes this superior result for pc1 than climate-model-simulation-crashes,
both of which have very similar levels of imbalance. When analyzing the metadata in
Table 1, it is noted that pc1 has twice as many instances as climate-model-simulation-
crashes, the largest number of examples available to the algorithms Oversampling may
be the most direct explanation. A deeper investigation into the two datasets would be
interesting in future work.



Figure 6. CCI of the techniques applied to the pc1 dataset.

5. Final Considerations

In this article, IRT was explored as a tool to measure the effectiveness of data balancing
techniques. For this, 15 separate datasets were evaluated at 5 different levels of imbalance.
It was verified, throughout the 5 levels, that there may be unbalance thresholds, in which
oversampling techniques may not have a positive effect. Therefore, depending on the de-
gree of imbalance and the characteristics of the dataset, oversampling techniques may not
be of any use when analyzing whether there was a performance gain using classical met-
rics. Although classical metrics indicate that there is no gain, the results obtained by IRT
can indicate when a model has gained confidence with the application of oversampling
techniques. This can be observed from the relationship between the item parameters and
the dataset, revealed by the Item Characteristic Curves of each evaluated instance. For
example, for the wdbc dataset with level 2 imbalance, the CCI revealed that the number
of instances considered inappropriate by the IRT decreased after applying oversampling.
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