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Abstract. Determining optimal tolerance in lexicographic multi-objective opti-
mization is crucial for robust results. This paper introduces a machine learn-
ing algorithm that automatically sets the appropriate tolerance, optimizing the
lexicographic strategy and enhancing the analysis of tolerance impact on out-
comes. Applied to various datasets, our method consistently provides insights
into the relationship between tolerance and model performance. Results show
that automatic tolerance optimization improves computational efficiency and
accuracy. These findings highlight the importance of addressing tolerance in
multi-objective optimization.

1. Introduction
Multi-objective optimization problems, prevalent in fields such as engineering, finance,
and healthcare, involve the simultaneous optimization of multiple conflicting objectives.
This inherent complexity poses significant challenges to traditional optimization methods,
necessitating the development of advanced methodologies.

Recently, the integration of machine learning with optimization algorithms has
demonstrated considerable potential in addressing complex multi-objective problems.
The adaptability of machine learning offers novel ways to enhance the efficiency and
effectiveness of these optimization processes. This research focuses on improving the
lexicographic method, a renowned multi-objective optimization technique, through the
application of machine learning [Ahlert and Kliemt 2001].

The lexicographic method prioritizes objectives based on their importance and
solves the problem iteratively. A critical aspect of this approach is the selection of the
optimal tolerance parameter, which balances solution quality with computational effi-
ciency [Andrade 2020]. Traditionally, tolerance values have been chosen in an ad-hoc
manner, significantly limiting the potential of the lexicographic approach [Basgalupp et al.
2014]. This arbitrary selection introduces uncertainties, making it difficult to achieve con-
sistent and reliable results. Despite the critical importance of tolerance values, there is a
notable lack of literature addressing systematic methods to explore or resolve this issue.
The absence of comprehensive studies on optimizing tolerance parameters undermines
the robustness and efficiency of the lexicographic method, often leading to sub-optimal
solutions and increased computational costs.

Nevertheless, the lexicographic method stands out in multi-objective optimization
for several compelling reasons. Firstly, it provides a clear hierarchical prioritization of
objectives, ensuring that the most critical objectives are not sacrificed for lesser ones. For
example, in medical diagnosis systems, ensuring high accuracy might be more important



than minimizing computational time. This hierarchical prioritization is essential in appli-
cations where certain objectives must take precedence over others, such as safety-critical
systems or financial decision making [Basgalupp et al. 2009].

Secondly, the lexicographic method is relatively straightforward to understand and
implement compared to more complex techniques like evolutionary algorithms [Biswas
et al. 2021]. Its simplicity enhances the interpretability of results, which is crucial in
fields such as healthcare and finance, where stakeholders must comprehend the trade-offs
made. The method’s transparency helps in communicating the decision-making process
to non-expert users, facilitating trust and adoption.

Thirdly, by focusing on one objective at a time in a pre-determined order, the
lexicographic method ensures that each solution is feasible for the most critical objectives
before considering others. This approach is particularly beneficial in resource allocation
problems where certain constraints must be met before others can be optimized [Boriwan
et al. 2020]. For example, in supply chain management, ensuring timely delivery might
be prioritized over cost reduction [Boriwan et al. 2021].

The inclusion of a tolerance parameter adds flexibility in solution comparison,
allowing for more practical solutions in scenarios where strict adherence to one objective
is less important than achieving a balance between several objectives. This flexibility can
lead to more robust solutions that perform well across various conditions, enhancing the
method’s applicability in real-world scenarios [Ahlert and Kliemt 2001].

The lexicographic method also compares favorably to other multi-objective tech-
niques. The weighted sum approach, which combines all objectives into a single com-
posite objective using predetermined weights, is simple but selecting appropriate weights
is challenging and may not capture the nuances of trade-offs between objectives as effec-
tively as the lexicographic method [Andrade 2020]. This approach often leads to solutions
that might not be truly optimal in a multi-objective sense, as it reduces the problem to a
single-objective one.

Pareto optimization seeks to find a set of Pareto-optimal solutions where no other
solution is better in all objectives. While comprehensive, it often requires more computa-
tional resources and can produce a large set of solutions, making decision-making more
complex. Users are left with the task of selecting from potentially many non-dominated
solutions, which can be overwhelming and impractical in time-sensitive situations [Bas-
galupp et al. 2014].

Evolutionary algorithms are powerful for finding diverse solutions but can be com-
putationally intensive and harder to interpret [Basgalupp et al. 2009]. They often require
fine-tuning of parameters and extensive computational resources, which may not be fea-
sible in all applications. Furthermore, the stochastic nature of these algorithms can lead
to variability in the solutions, making it harder to guarantee consistency [Biswas et al.
2021].

This study proposes a novel approach to improve the lexicographic method by
empowering a machine learning algorithm to automatically determine the optimal toler-
ance parameter tailored to the specific characteristics of each problem. By automating this
process, we aim to enhance the robustness and effectiveness of the lexicographic method.
Our extensive experiments with benchmark datasets illustrate the efficacy of our approach
in identifying Pareto-optimal solutions even with simple neural network structures.



2. Theoretical Framework
The concept of tolerance plays a crucial role in the multi-objective algorithm [Andrade
2020]. It is important to distinguish between absolute tolerance and relative tolerance.
Tolerance refers to the absolute value of the tolerance applied during the optimization
process. The absolute tolerance is obtained by multiplying the relative tolerance by the
value of the objective of interest, which in this case it will be the categorical cross-entropy.
Relative tolerance is a relative number, expressed with decimal places.

Using relative tolerance instead of absolute tolerance ensures that the different nu-
merical scales of the objectives, such as categorical cross-entropy and norm L2, do not
pose a problem. This is particularly important because objectives can have vastly differ-
ent numerical meanings and magnitudes. By applying relative tolerance, we normalize
the impact of tolerance across objectives, facilitating a more balanced and meaningful
optimization process.

This approach addresses a common challenge in multi-objective optimization
methods, such as the weighted sum method, where the different scales of the objectives
can lead to biased or sub-optimal solutions [Boriwan et al. 2020]. By leveraging relative
tolerance, our algorithm effectively navigates these numerical disparities, enabling a more
robust and equitable optimization process [Boriwan et al. 2021].

In summary, the lexicographic method offers a balanced approach to multi-
objective optimization by providing hierarchical prioritization, simplicity, feasibility as-
surance for critical objectives, and flexibility through tolerance parameters [Ahlert and
Kliemt 2001]. These advantages make it a suitable and effective method for various real-
world applications, where interpretability, resource constraints, and clear prioritization
are paramount [Basgalupp et al. 2014].

3. Materials and Methods
3.1. Datasets
To explore the robustness of the multi-objective algorithm, we applied it to various data
analysis challenges. To this end, we employ four distinct datasets, each representing a
unique challenge: MNIST; FashionMNIST; PneumoniaMNIST; and BreastMNIST. By
confronting the algorithm with these different datasets, we aim to consolidate its effec-
tiveness and generalization in the face of diverse recognition and classification tasks. This
approach allows us to examine the algorithm’s capability to handle a variety of problems
and validate its utility in various machine learning contexts.

3.2. Artificial Neural Network Structure
The same neural network architecture was used for all datasets to ensure consistency
and focus on the multi-objective algorithm. The choice of a simple architecture was
deliberate to minimize the impact of the neural network structure on the results, thereby
concentrating on the evaluation and optimization of the multi-objective algorithm itself.

The neural network used consists of an input layer of 784 nodes, correspond-
ing to a flat 28x28 pixel MNIST image, followed by two dense layers with 50 and 10
neurons, respectively. The rectified linear unit activation function was used for the first
dense layer, while the softmax activation function was employed in the output layer for
multi-class classification. The network weights were randomly initialized using a uniform
distribution between -0.1 and 0.1, with biases initialized to zeros. This approach ensured
that the neural network structure did not introduce bias into the results and allowed for a



more accurate assessment of the multi-objective algorithm performance across different
datasets.

This comprehensive description of the neural network architecture used is essen-
tial for understanding the context and details of the implemented model for solving multi-
objective problems.

3.3. Training the Artificial Neural Network
3.3.1. Objectives

In this study, we adopt a multi-objective approach to train the artificial neural network,
considering two key parameters: categorical cross-entropy (CE) and L2 complexity (L2).
The choice of these objectives is motivated by their complementary roles in model opti-
mization and their importance in achieving a balance between accuracy, generalization,
and complexity of the model [Andrade 2020]. This multi-objective approach allows us
to explore the trade-offs between these two objectives and identify solutions that exhibit
optimal performance across multiple evaluation criteria.

3.3.2. The Multi-Objective Algorithm

We propose an algorithm that operates through an iterative process that dynamically ad-
justs the relative tolerance threshold while training a neural network model to determine
the optimal relative tolerance to be used in the lexicographic method for multi-objective
problems. To achieve this, we investigate the influence that different relative tolerance
values have on crucial key metrics, in hopes of finding the most suitable relative tolerance
value to be employed. Here’s how the algorithm works:

1. Establish a lexicographic order to manage all objectives of the multi-objective
problem. In this study, categorical cross-entropy is prioritized as the primary ob-
jective, followed by norm L2.

2. Define a sequence of loss functions corresponding to the lexicographic order of
objectives. Specifically, we create loss functions for categorical cross-entropy and
norm L2.

3. Initialize all necessary variables, including the neural network structure and the
relative tolerance value range to be investigated, which varies based on the objec-
tives and datasets.

4. Conduct a complete training of the neural network for each relative tolerance value
of interest.

5. For the training process of the neural network, executed for each relative tolerance
value:

(a) Begin training with the loss function dedicated to the primary lexico-
graphic objective (categorical cross-entropy).

(b) Perform training epochs until the optimization of the lexicographic objec-
tive on the validation dataset is achieved.

(c) Proceed to the next lexicographic objective (norm L2) and repeat the train-
ing process.

(d) From the second lexicographic objective onwards, consider the relative
tolerance value to manage the compromise between optimizing the current
objective and previously optimized objectives.



(e) Change the loss function when further optimization of the lexicographic
objective value is not possible.

(f) Iterate through the every lexicographic objective.
6. Extract important data from each trained neural network, including accuracy, cat-

egorical cross-entropy, norm L2, training epochs, and training time.
7. Plot the extracted data as a function of the relative tolerance value to analyze the

Pareto curve.
8. Analyze the data to identify the best solution, corresponding to the optimal relative

tolerance for the problem.
By iteratively adjusting the relative tolerance threshold and prioritizing objectives

using lexicographic ordering, the algorithm effectively navigates the optimization land-
scape to generate competitive solutions for multi-objective tasks. This systematic and
adaptive approach offers a promising framework for optimizing neural network models
across various domains and datasets.

3.3.3. Best Solution Analysis

Following the training of the artificial neural network using the multi-objective algorithm
with varying relative tolerances, a comprehensive analysis was conducted to determine the
best-performing solutions. This analysis aimed to identify configurations that achieved
superior performance across multiple evaluation metrics.

To initiate the analysis, we transformed the evaluation metrics, including cate-
gorical cross-entropy and L2 complexity, into tensors for efficient manipulation. Sub-
sequently, the data were normalized to ensure consistency and comparability between
metrics, allowing a fair assessment of model performance.

The mean of the normalized values was calculated to obtain an aggregate measure
of performance. Subsequently, the three configurations with the smallest mean normal-
ized values were identified, representing the top-performing solutions across both metrics.

A combined graph was plotted to illustrate the normalized values of categorical
cross-entropy, L2 complexity, and mean performance across different relative tolerances
(center of Fig. 1). This visualization provided a comprehensive overview of how each
configuration performed relative to others, emphasizing the top-performing solutions. To
enhance clarity, distinct markers were utilized to identify the points corresponding to the
three configurations with the smallest mean normalized values, ensuring their visibility
and significance in the analysis.

Furthermore, the models were sorted according to the ideal tolerance value discov-
ered, the categorical cross-entropy, the L2 complexity, and the training time, providing a
detailed analysis of the best-performing configurations. This step provided valuable in-
formation on the optimal model parameters and the relative tolerance values associated
with the most effective solutions.

This algorithm for analyzing the best solution is significantly different from a
typical analysis of a Pareto curve or solving a multi-objective problem by summing values
into a single function. The crucial distinction is that the solutions being analyzed were
generated by an optimized lexicographic algorithm. As will be shown in the practical
results, this approach greatly impacts the characteristics of the solutions. Essentially,
what is being analyzed is the impact of the tolerance value in the optimized lexicographic
method previously utilized. This provides a deeper understanding of the robustness and



efficiency of the multi-objective algorithm in optimizing the performance of the artificial
neural network across various evaluation metrics.

4. Results and Discussion

4.1. MNIST Dataset

For the MNIST dataset, 33 solutions were generated within the relative tolerance range of
20.25 to 24. This interval was meticulously selected after numerous iterations of the al-
gorithm, which allowed the identification of a region where meaningful variations in opti-
mization metrics occurred. Below the tolerance threshold of 20.25, the algorithm seemed
to converge to a stable regime, where the accuracy plateaued at a commendable 0.96 (left
of Fig. 1), indicating robust performance in digit recognition tasks. Similarly, categorical
cross-entropy, a measure of the model’s prediction accuracy, remained consistently low
at around 0.1 (center of Fig. 1), signifying the reliability of the model’s predictions. The
L2 norm, representing the complexity of the model, exhibited a relatively stable behav-
ior, hovering around 3400 (center of Fig. 1). These observations suggest that within this
range, the model’s performance remained largely unaffected by variations in the tolerance
value.

In contrast, beyond the upper relative tolerance limit of 24, significant deviations
in the optimization metrics were observed. The accuracy sharply declined to a mere 0.09
(left of Fig. 1), indicating a substantial drop in the predictive power of the model. Concur-
rently, the categorical cross-entropy increased to 2.30 (center of Fig. 1), reflecting a de-
terioration in the model’s ability to make accurate predictions. Interestingly, the L2 norm
decreased drastically to 4.0 × 10−4 (center of Fig. 1), suggesting a reduction in model
complexity. These findings underscore the critical role of tolerance value in influencing
the optimization process, as deviations from the optimal range can lead to considerable
degradation in model performance.

Exploring the interval of interest, 20.25 to 24, revealed intriguing insights into
the behavior of optimization metrics. Variations in the tolerance value within this range
caused irregular fluctuations in the parameters: categorical cross-entropy; L2 norm; and
accuracy. Although these fluctuations may initially appear disruptive, they present an op-
portunity to finely balance the trade-off between categorical cross-entropy and L2 com-
plexity. It is within these irregular disturbances that the optimal tolerance value emerges,
enabling the algorithm to prioritize the optimization of categorical cross-entropy while
maintaining an acceptable norm L2.

Taking into account these observations, the algorithm has shown exceptional re-
sults, pinpointing 23.5313 as the optimal relative tolerance value for this lexicographic
approach. Consequently, the top 3 solutions identified (center of Fig. 1) can be identified
in Table 1.

Rank Relative Tolerance Accuracy CE L2 Training Time (s)

1º 23.5313 0.9732 0.0949 33694.9570 94.8731
2º 21.8906 0.9664 0.1145 28961.2168 46.9999
3º 20.8359 0.9668 0.1118 29041.4043 41.4505

Table 1. Best Models for MNIST.



Figure 1. Algorithmic Analysis of MNIST.

4.2. FashionMNIST Dataset

For the FashionMNIST dataset, a distinct set of 30 solutions was generated within a spe-
cific relative tolerance range of 4.75 to 5.20. As observed in the MNIST dataset, below
this tolerance threshold, the algorithm stabilized, yielding an admirable accuracy rate of
0.87 (left of Fig. 2). Consequently, categorical cross-entropy consistently hovered around
0.35 (center of Fig. 2), underscoring the reliability of the model’s predictions. Further-
more, the L2 norm exhibited relative stability, maintaining a value near 4000 (center of
Fig. 2).

Similarly, beyond the upper tolerance limit of 5.20 for the FashionMNIST dataset,
notable deviations were observed in the optimization metrics. The accuracy was sharply
reduced to 0.1 (left of Fig. 2), signaling a significant reduction in the predictive capacity
of the model. Simultaneously, the categorical cross-entropy spiked to 2.30 (center of Fig.
2), indicating a deterioration in the model’s predictive accuracy. Interestingly, the L2
norm decreased substantially to 5.0× 10−4 (center of Fig. 2), implying a reduction in the
complexity of the model. These trends are consistent with those observed in the MNIST
dataset, emphasizing the sensitivity of the model’s performance to tolerance values.

The analysis of the FashionMNIST dataset, within the 4.75 to 5.20 interval, re-
vealed a pattern of irregular fluctuations in optimization metrics similar to those observed
in the MNIST dataset. These variations in tolerance value also caused fluctuations in
categorical cross-entropy, L2 norm, and accuracy. This similarity suggests that, as with
the MNIST dataset, these irregular fluctuations help identify the optimal tolerance value,
balancing the trade-off between categorical cross-entropy and L2 complexity.

With these observations in mind, the algorithm has achieved highly commendable
outcomes, identifying 4.9983 as the ideal relative tolerance value to employ in this lexi-
cographic method. As a result, the top 3 solutions (center of Fig. 2) can be seen in Table
2.

Rank Relative Tolerance Accuracy CE L2 Training Time (s)

1º 4.9983 0.8772 0.3474 35053.9336 96.1841
2º 5.2000 0.8766 0.3539 35210.9961 79.7574
3º 4.8586 0.8746 0.3561 35234.4648 78.7583

Table 2. Best Models for FashionMNIST.



Figure 2. Algorithmic Analysis of FashionMNIST.

4.3. PneumoniaMNIST Dataset

For the PneumoniaMNIST dataset, a set of 33 solutions was generated within a specific
relative tolerance range spanning from 14 to 18. Similarly to the MNIST and FashionM-
NIST datasets, below this tolerance threshold, the algorithm exhibited stability, achieving
a commendable accuracy rate of 0.87 (left of Fig. 3). Similarly, categorical cross-entropy
consistently maintained a value around 0.4 (center of Fig. 3), indicating reliable model
predictions. Furthermore, the L2 norm remained relatively stable, hovering around 1400
(center of Fig. 3).

For the PneumoniaMNIST dataset, beyond the upper tolerance limit of 18, no-
ticeable deviations were also observed in the optimization metrics. The accuracy sharply
declined to 0.01 (left of Fig. 3), indicating a significant deterioration in the predictive
capacity of the model. Simultaneously, the categorical cross-entropy increased to 2.30
(center of Fig. 3), reflecting a degradation in the predictive accuracy of the model. Inter-
estingly, the L2 norm decreased substantially to 2.0 × 10−8 (center of Fig. 3), implying
a reduction in the complexity of the model. These observations are in line with the find-
ings from the MNIST and FashionMNIST datasets, highlighting the critical impact of
tolerance value deviations on model performance.

In the PneumoniaMNIST dataset, exploring the interval from 14 to 18 resulted
in findings consistent with the MNIST and FashionMNIST dataset. Here, variations in
tolerance value induced irregular fluctuations in categorical cross-entropy, L2 norm, and
accuracy. This consistency across datasets reinforces the notion that these irregular fluc-
tuations are key to identifying the optimal tolerance value, allowing the algorithm to ef-
fectively prioritize categorical cross-entropy optimization while maintaining acceptable
model complexity.

Given these observations, the algorithm has shown remarkable effectiveness, de-
termining that 14.1250 is the optimal relative tolerance value for using this lexicographic
strategy. The algorithm’s top 3 solutions (center of Fig. 3), therefore, can be observed in
Table 3.

Rank Relative Tolerance Accuracy CE L2 Training Time (s)

1º 14.1250 0.8622 0.4602 1421.7051 11.2353
2º 14.7500 0.8599 0.4679 1420.6168 9.9428
3º 14.6250 0.8478 0.4779 1411.7041 7.8627

Table 3. Best Models for PneumoniaMNIST.



Figure 3. Algorithmic Analysis of PneumoniaMNIST.

4.4. BreastMNIST Dataset

For the BreastMNIST dataset, a total of 33 solutions were generated within a specific rel-
ative tolerance range spanning from 0 to 5. This range was carefully chosen after multiple
iterations of the algorithm, identifying it as the region of interest where meaningful varia-
tions in optimization metrics occurred. Below the tolerance threshold of 0, no results were
obtained as tolerance values cannot be negative. In contrast, beyond the upper tolerance
limit of 5, significant deviations in the optimization metrics were observed. The accuracy
sharply declined to 0.006 (left of Fig. 4), indicating a considerable degradation in the
predictive capacity of the model. Simultaneously, the categorical cross-entropy increased
to 2.30 (center of Fig. 4), reflecting a deterioration in the model’s predictive accuracy.
Interestingly, the L2 norm decreased substantially to 0.005 (center of Fig. 4), implying a
reduction in model complexity.

Exploring the interval of interest, from 0 to 5, revealed intriguing insights into the
behavior of optimization metrics. Unlike other datasets, the variations in parameters such
as accuracy, categorical cross-entropy, and the L2 norm within this tolerance range were
significantly more regular. Specifically, categorical cross-entropy exhibited an exponen-
tial relationship with relative tolerance, while the L2 norm showed an inverse proportion-
ality to relative tolerance. This consistent behavior suggests a unique optimization land-
scape for BreastMNIST, where the interplay between tolerance values and optimization
metrics follows distinct patterns. Leveraging these observed patterns within the tolerance
range presents an opportunity to uncover an optimized solution for the multi-objective
problem, where the fine balance between categorical cross-entropy and L2 complexity
can be achieved more systematically.

In light of these observations, the algorithm has delivered outstanding results, es-
tablishing 0.7813 as the best relative tolerance value to apply this lexicographic approach.
Consequently, the top 3 solutions identified by the algorithm (center of Fig. 4) can be
seen in Table 4.

Rank Relative Tolerance Accuracy CE L2 Training Time (s)

1º 0.7813 0.7436 0.6568 101.3206 11.6942
2º 1.0938 0.7372 0.6730 99.1314 11.9251
3º 0.9375 0.7564 0.6794 99.8176 12.7922

Table 4. Best Models for BreastMNIST.



Figure 4. Algorithmic Analysis of BreastMNIST.

4.5. Results Overview
As demonstrated, intriguing phenomena consistently emerged in all data sets, provid-
ing valuable insights into the intricacies of the tolerance value. Firstly, a notable pat-
tern was observed in the behavior of critical metrics, including accuracy, norm L2, and
categorical cross-entropy, outside a specific range of tolerance values. It became ap-
parent that beyond this range, these metrics exhibited stability, suggesting a transition
towards a single-objective optimization scenario. This behavior stems from extreme tol-
erance values, where the optimization focus shifts exclusively towards either categorical
cross-entropy or norm L2, disrupting the delicate balance between them. Consequently,
beyond the identified range of interest, accuracy and categorical cross-entropy are opti-
mized while norm L2 is unduly penalized for low tolerance values. In contrast, for high
tolerance values, an optimized L2 value is achieved at the expense of accuracy and cross-
entropy, demonstrating the inverse relationship. Thus, our analytical focus centers on the
delineated tolerance value ranges, ensuring a holistic examination of the multi-objective
optimization landscape.

Secondly, a noticeable trend was observed in relation to training time in all
datasets (right of Fig. 1; Fig. 2; Fig. 3 and Fig. 4). On average, an irregular escala-
tion in training time was observed with higher tolerance values. This phenomenon can be
attributed to the increase in the number of training epochs required to optimize the norm
L2 as tolerance values increase. With increased tolerance, the neural network training
algorithm gains flexibility to explore additional iterations optimizing norm L2, thereby
elongating the training duration.

These consistent phenomena underscore the intricate interplay between tolerance
values and algorithmic performance, highlighting the importance of selecting an appropri-
ate tolerance range for effective optimization. While computational resources constraints
posed challenges to the depth of analysis, the elucidated observations offer profound in-
sights into the importance of the tolerance value across diverse datasets.

4.5.1. Exploring Limitations

Despite the constraints imposed by the limited RAM memory capacity available, our
investigation made significant strides. Although exploration of the Pareto curve was cur-
tailed, we managed to generate up to 33 solutions, showcasing the remarkable potential
of our approach. By iteratively refining the tolerance value range, we maximized the ef-
ficiency of our analysis. However, the constrained number of solutions did influence the
depth of our investigation, but also underscores the effectiveness of our methodology in
optimizing resource utilization.

It is crucial to note that we employed a simple neural network structure to maintain
focus on the multi-objective algorithm, but the approach can be applied to any machine
learning model. Achieving satisfactory results with such simplicity is noteworthy, as it



underscores the algorithm’s capability to deliver exceptional outcomes. This reinforces
the robustness and effectiveness of our approach.

Additionally, our optimization function targeted two objectives: categorical cross-
entropy and the L2 norm. In situations where more objectives of different natures need to
be optimized simultaneously, the effectiveness of the proposed lexicographic algorithm
requires validation. Although, it was designed to perform with any optimization function
and set of objectives. While initial findings are promising, additional research is required
to fully assess its potential under such conditions. Future studies could explore the robust-
ness of our method in more diverse contexts, such as optimising fairness, interpretability,
and energy efficiency metrics in neural networks.

Addressing these aspects could not only mitigate current limitations but also en-
hance the applicability and effectiveness of our developed multi-objective algorithm. This
would further solidify its contribution to advancing multi-objective optimization in ma-
chine learning.

5. Conclusion
A meticulous analysis of the results of the implementation and evaluation of our proposed
algorithm reveals extremely promising and insightful results. Our exploration into deter-
mining the optimal tolerance threshold within the lexicographic framework has unveiled
innovative pathways for addressing multi-objective optimization in machine learning.

A key revelation from this study is the efficacy of our approach in identifying
the correct tolerance level, which has traditionally been determined in an ad-hoc manner.
With no academic literature relevant to the subject, we are exploring uncharted ground.
By systematically varying the tolerance values and rigorously analyzing their impact on
key performance metrics, such as categorical cross-entropy, norm L2, and training time,
we were able to pinpoint the optimal tolerance levels with precision, for each specific
group of objectives and dataset. This methodological approach not only enhances the
robustness of the multi-objective algorithm but also ensures a more reliable and consis-
tent determination of tolerance levels, leading to improved model performance and better
generalization. Such a systematic approach eliminates the guesswork and subjectivity
often associated with ad-hoc methods, providing a clear and reproducible pathway to
fine-tuning neural network training processes.

The findings of this study reveal profound insights into the behavior of our algo-
rithm in different datasets. Firstly, despite maintaining the same neural network structure
and lexicographic objectives, the optimal tolerance threshold varied significantly with
each dataset. This underscores the sensitivity of the optimization process to dataset-
specific nuances, highlighting the need for a customized approach in determining the
tolerance threshold. We show that the previous ad-hoc approach can significantly and
detrimentally impact the task at hand.

Furthermore, our findings highlight the existence of a specific tolerance threshold
range for each dataset, beyond which crucial parameters such as accuracy, categorical
cross-entropy, and L2 norm reach a plateau. This phenomenon arises from extreme tol-
erance values, transforming the multi-objective problem into a single-objective one. By
utilizing the tolerance value determined by our algorithm for each scenario, we demon-
strated excellent results, showcasing the potential of our approach in effectively address-
ing multi-objective challenges in machine learning.

Within the identified tolerance threshold range, we discovered two distinct behav-



ioral patterns. The first pattern, observed in the MNIST, FashionMNIST, and Pneumo-
niaMNIST datasets, exhibited irregular and abrupt fluctuations in key parameters, which
presented challenges in the analysis and selection of the optimal tolerance value. De-
spite this complexity, our proposed algorithm proved effective in navigating and resolv-
ing these challenges. In contrast, the second pattern, observed in BreastMNIST, showed
a more regular behavior, with parameters such as accuracy, categorical cross-entropy, and
the L2 norm showing consistent trends. This facilitated the identification of the optimal
tolerance value, as evidenced by our findings.

Moreover, our study elucidates that, on average, the training time of the generated
neural networks increases with the tolerance value. This increase can be attributed to a
greater number of training epochs required to optimize the L2 norm. With higher toler-
ance values allowing for a more significant trade-off between categorical cross-entropy
and the L2 norm, the algorithm explores a broader optimization space, resulting in longer
training times.

In conclusion, our research highlights the significant impact of our algorithm in
addressing multi-objective challenges within machine learning. By providing fresh in-
sights and innovative methodologies, this study establishes a solid foundation for future
explorations in the field.

Ultimately, our work has resulted in the creation of a potent tool for handling
multi-objective optimization. As proven, this algorithm has the remarkable ability to
empower even the simplest neural network structures, significantly amplifying their ef-
fectiveness and enabling them to achieve commendable results in complex tasks. Further
testing against an expanded set of objectives will ensure its broad applicability and de-
ployment in real-world settings, maximizing the potential of machine learning to confront
intricate challenges and foster a new era of innovation and discovery.
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