Assessor Models for Predicting and Explaining Aleatoric
Uncertainty in Classification

Pedro B. S. Lima', Ricardo B. C. Prudéncio’,
Ana Carolina Lorena?, Maria Gabriela Valeriano®

!Centro de Informética
Universidade Federal de Pernambuco (UFPE) — Recife, PE — Brazil

Instituto Tecnolégico de Aerondutica
Departamento de Ciéncia e Tecnologia Aeroespacial (DCTA)
Sao José dos Campos, SP — Brazil

{rbcp, pbsl}@cin.ufpe.br, {aclorena, mariagabrielavaleriano}@gmail.com

Abstract. Machine Learning (ML) models have been successfully adopted in
several applications. However, despite their success, high levels of uncertainty
can be observed depending on the problem being solved. Specifically, aleatoric
uncertainty in classification is related to the inherent randomness associated
with predictor and target attributes, usually observed for instances close to an
area of class overlap. The literature on ML has developed different methods
for quantifying uncertainty. The current paper addresses the complementary
task of explaining uncertainty. For this, we proposed using assessors, which
are meta-models trained to predict the performance of a given base model on
a problem of interest. In our work, we adapted the concept of assessors to
predict the aleatoric uncertainty of instances, measured by the average class
entropy across a pool of diverse base models. Once built, eXplainable Al (XAI)
techniques are adopted to extract explanations from the assessor. Experiments
were performed in two case studies, using both a simulated and a real dataset
for predicting the severity of COVID-19 patients. A pool of 12 base models was
adopted to measure aleatoric uncertainty, and Random Forest was adopted as
the assessor. The explanations extracted from the assessor were useful to identify
specific features that cause high uncertainty in the classification problems.

1. Introduction

Machine Learning (ML) techniques have been successfully adopted in different applica-
tions, covering a variety of problems like classification, regression, anomaly detection,
and language understanding, among others. Despite the usefulness of ML models, their
quality is usually not homogeneous in a given problem [Burnell et al. 2023]. Specifically,
in supervised classification, some instances in a dataset may be harder than others to clas-
sify due to different reasons [Lorena et al. 2023]. In such cases, the confidence of an MLL
model may be low, reflected, for example, in terms of its predicted class probabilities.

The literature distinguishes two general types of uncertainty in ML: aleatoric and
epistemic [Hiillermeier and Waegeman 2021]. Aleatoric uncertainty is intrinsic to a prob-
lem, caused mainly by a non-deterministic relation between predictor and target attributes.
For example, in a binary classification problem, an instance may lie close to a class bound-
ary and hence the true class conditional probability p(y|x) is close to 0.5. When aleatoric



uncertainty is high, no model would be correctly confident about its prediction. Epistemic
uncertainty, in turn, arises due to the lack of knowledge related to the available data and
model. This is the case, for example, when training sets are scarce or a wrong model is
chosen at development time.

There are different methods in literature to quantify uncertainty in ML,
like standard uncertainty measures (e.g., maximum predicted probability and class
entropy, conformal prediction, credal sets) as well as specific methods to de-
compose the aleatoric and epistemic components of uncertainty [Bhatt et al. 2021,
Hiillermeier and Waegeman 2021]. Beyond quantification, the current paper addresses
a complementary task: explaining uncertainty. So this paper is directly related to the area
of eXplanaible Al [Molnar 2022], but instead of explaining model predictions, we aim to
derive explanations for model uncertainty.

Previous works have investigated XAl techniques to explain uncertainty in the
context of ML with reject option [Hendrickx et al. 2024]. In this context, given an in-
stance, the model uncertainty is quantified, and its prediction is rejected if the measured
uncertainty is higher than an acceptance threshold. Once rejected, post-hoc explana-
tions of uncertainty are derived by adapting local methods like LIME and counterfactuals
[Artelt et al. 2023, Antordn et al. 2020]. The current paper investigates a different direc-
tion, which is to build a global assessor [Herndndez-Orallo et al. 2022] to predict and
explain the aleatoric uncertainty of instances in a problem, estimated in our work by the
average class entropy across a pool of diverse base models.

In our proposal, given a pool of models and a test set of instances, initially the
aleatoric uncertainty is quantified for each instance. Then a set of meta-examples is built,
each one storing: (1) the instance’s attributes; and (2) the quantified uncertainty, which is
now the target attribute for the assessor. Based on a set of meta-examples, the assessor
is learned to model the relationship between the predictor attributes and the aleatoric
uncertainty. Once the assessor is a model itself, standard XAI techniques can be used to
derive both global and local explanations, which are more flexible than previous works.

The proposal is adopted in two case studies. First, we applied it in the Two Moons
dataset, a non-linear synthetic binary classification problem, which was convenient for
inspecting results. Additionally, we applied the proposal to a real dataset to predict the
severity of COVID-19 in patients based on laboratory tests. In the case studies, 12 diverse
ML models were used for classification. The aleatoric uncertainty of each instance is
measured by the average class entropy across the models. Then, the Random Forest
(RF) regression algorithm was adopted to learn the assessor model. In the experiments,
Permutation Feature Importance (PFI) and Partial Dependence Plots (PDP) were adopted
to derive explanations from the assessors. In the experiments, we evaluated the assessor
and discussed the insights gained from the derived explanations.

The remaining of this paper is organized as follows. Section 2 presents the back-
ground and related work for contextualizing the current paper. This is followed by Sec-
tion 3, which presents the proposal and the performed case studies. Finally, Section 4
concludes the paper with final considerations and future work.



2. Background and Related Work

In this section, we introduce the background on the problem of uncertainty quantification
in ML (Section 2.1), followed by the topic of assessors (Section 2.2), which is the base of
the proposed solution. Finally, in Section 2.3, we discuss previous works on using XAl
techniques to explain uncertainty in ML, which is closely related to our proposal.

2.1. Uncertainty in ML Classification

In the ML context, uncertainty refers to the lack of confidence in the output of a predictive
model [Bhatt et al. 2021]. Let ) be the set of possible classes and let p(y|x;, h) be the
conditional probability predicted by model h for the class y € ). The uncertainty related
to the predicted class probabilities can be computed in different ways [Bhatt et al. 2021].
The most common measure is the maximum class probability returned by the model (see
Eq. 1), or alternatively the entropy of the class probabilities (see Eq. 2). Class entropy
tends to be more informative, especially in multi-class problems.

U (xi) =1— I;leagp(ylxi, h) (1)
Un (x:) = =Y p(ylxs, h) log(p(y|xi, h)) )
yey

A high uncertainty can result from different factors, distinguished as either
aleatoric or epistemic [Hiillermeier and Waegeman 2021]. Aleatoric uncertainty is asso-
ciated with the intrinsic difficulty of an instance, which is usually the byproduct of class
overlap, i.e., a non-deterministic relation between the predictors and the class attribute.
Epistemic uncertainty, in turn, usually refers to the lack of knowledge about the adequate
model for a problem or the lack of representative data during the model training. The total
uncertainty is the sum of the aleatoric and epistemic uncertainty [Bhatt et al. 2021].

A pool of models ‘H can be used to estimate the total uncertainty of an instance,
trying to overcome the choice of a single model to make predictions. So instance uncer-
tainty can be measured by the predictive entropy as follows:

U(x;) = = > plylxi) log(plylxi)) 3)
yey
in which p(y|x;) is the average class probability for class y and instance x;:

1
plylxi) = i p(y|xi, h) 4
heH

By following [Depeweg et al. 2018], the predictive entropy can be decomposed
into its aleatoric and epistemic components. Aleatoric uncertainty can be measured by
the average entropy across models:

U () = S U x) 5)



Table 1. Example of decomposing the total uncertainty (predictive entropy) into
aleatoric and epistemic components, for two instances and five models.

Model | p(+|x1) | Up (x1) | p(+]x2) | Up (x2)
hy 0.90 0.46 0.60 0.97
hs 0.80 0.72 0.55 0.99
hs 0.50 1.00 0.50 1.00
hy 0.20 0.72 0.45 0.99
hs 0.10 0.46 0.40 0.97
5(+x) | 050 0.50

U(x) | 1.00 1.00

U,(x) | 0.67 0.98

U.(x) | 033 0.02

In turn, epistemic uncertainty can be measured by the complement of the predic-
tive entropy as follows:

Ue (x;) = U (x;) — Ua (x:) (6)

Table 1 illustrates the computation of uncertainty for two instances and five models
in a binary classification problem, in which total uncertainty is measured by the predictive
entropy (Eq. 3). For both instances, the pool of models is highly uncertain: p(+|x;) =
P(+|x2) = 0.5, which results on the maximum predictive entropy (U = 1). There is a
high variation in the uncertainty across the models (U},) for instance x;. Some models
are more confident than others. In turn, for instance x,, all models are uncertain. These
differences across models are reflected in the aleatoric and epistemic uncertainty values.
While instance x, has a higher aleatoric uncertainty, instance x; has a higher epistemic
uncertainty, which could be reduced by choosing the right models. We could say that
instance x5 is more challenging, as it has a high aleatoric uncertainty, which is irreducible
in principle. For this, the current paper focuses on aleatoric uncertainty.

2.2. Assessor Models

The concept of assessor models was introduced in [Herndndez-Orallo et al. 2022], aiming
to generalize the results collected from evaluating a base Al system on different tasks and
then predict the performance for new tasks. The idea is straightforward. Each training
example for the assessor is related to a specific task, labeled with the system performance
measured in a testing battery. So, a supervised ML model is learned using training exam-
ples from a set of tasks. Once built, the assessor can predict the system performance for
new tasks based on their characteristics. Assessor models have already been applied for
different practical applications [Zhou et al. 2022, Da Costa et al. 2023].

Closely related to our work, in [Prudencio et al. 2024], assessors were adopted to
predict the hardness of instances in classification tasks. In the assessor modeling, the Al
system is a classifier pool and the Al task is an instance to predict. So the paper relies
on a test dataset D = {(x;, ;) }X., of N instances. For each instance, the pool is applied
and the hardness I H ((x;,y;)) is measured for that instance, defined as the average error
obtained by the pool. Then a training example for the assessor is built by storing: (1) the



original instance’s features, x;; and (2) the value of 1 H ((x;,y;)) as the assessor’s target
attribute. Finally, based on such examples, the assessor is learned to predict the IH for an
instance according to its features. The current paper differs from [Prudencio et al. 2024]
because the assessor predicts the uncertainty as the target attribute, instead of predicting
average error. This is convenient, for example, to build an assessor when a pool of models
is available to make predictions, but a good labeled test set is not.

2.3. Related Work

In the literature, we identified some previous works that used XAI methods for ex-
plaining instance uncertainty, mainly developed in the context of ML with reject option
[Hendrickx et al. 2024].In this context, given a model and an instance, initially the model
uncertainty is quantified and the prediction is rejected if the uncertainty is greater than
a predefined threshold. Once the instance is rejected, an XAI method is used to explain
the causes of rejection. In [Antorédn et al. 2020], this is done by producing counterfac-
tual explanations of uncertainty, identifying features that distinguish the uncertain in-
stance from a certain one. In [Watson et al. 2024], the Shappley method is adapted. In
[Artelt et al. 2023] in turn, the LIME method is adapted to explain uncertainty measured
by conformal prediction. As in the standard LIME, a local surrogate is learned from data
points surrounding the instance to be explained. However, the local points are labeled
with their uncertainty, and hence the local surrogate is an interpretable model to predict
the uncertainty measure.

Our paper is related to the above papers, but we can point out some differences.
First, previous works have adapted single XAl techniques like LIME to explain uncer-
tainty. In turn, the assessor is a model itself and hence existing XAI techniques can
be used in a flexible way to provide different types of explanations. Notably, global or
semi-local explanations can be derived at development time to inspect the potential un-
certain areas in a problem. Also, local explanation methods like LIME can be eventually
adopted on the top of the assessor, to derive explanations for particular instances if nec-
essary, similarly to [Artelt et al. 2023]. Second, the assessor is anticipative, i.e., it can
be used to predict uncertainty before the base models are actually dispatched, as pointed
out in [Herndndez-Orallo et al. 2022]. Finally, regarding uncertainty quantification, in the
experiments, we focused on quantifying, predicting, and then explaining aleatoric uncer-
tainty, which can be critical in revealing intrinsic uncertain situations in a classification
task. The proposed methods, however, can be adapted to other types of uncertainty.

3. Proposal

The main goal of this paper is to investigate the use of assessor models to predict and
explain uncertainty in classification problems. Specifically, the current paper is interested
in predicting aleatoric uncertainty, estimated in our work by the average entropy across a
pool of classification models. Figure 1 presents the architecture of the proposed solution.
By following the notation of [Prudencio et al. 2024], the proposed solution relies on a
pool of models H and a test set D = {(x;,y;) };*, of N instances. For each instance, the
uncertainty is quantified using the pool of models. As already mentioned, this is done by
computing the average entropy U, (x;) (see Eq. 5). Then a meta-example stores: (1) the
instance’s features, x;; and (2) the value of U, (x;) as the target attribute. The assessor is
then a regression model to predict the U, for the instances according to their features.
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Figure 1. Proposed architecture

As the assessor is a model, various XAl methods can be used to extract explana-
tions. As discussed in Section 2.3, the assessor is a global surrogate of uncertainty, and
hence valuable for extracting both global and local explanations of uncertainty. The asses-
sor is anticipative, i.e., it can predict the uncertainty of instances without the need to use
the base models in the pool. We highlight that although our focus is to model aleatoric
uncertainty, the proposed solution can be adopted with other definitions of uncertainty
and to model the uncertainty of individual black-box models.

3.1. Experiments: Two Moons Problem Dataset

In a first battery of experiments, we adopted the proposed solution to the Two-Moons
problem, a simulated non-linear binary classification task. A dataset with 5000 examples
and a noise level of 0.22, was generated (as illustrated in Figure 2a) using the Scikit-learn
library'. The dataset was equally divided into training and test. The first set was used
to train a pool of 12 base models, while the holdout test set D was used for testing the
trained ML models, and then for producing the meta-examples to train the assessor. This
process was repeated 30 times, each one with different randomized seeds.

3.1.1. Uncertainty Quantification

For quantifying the aleatoric uncertainty of each test instance, the predicted probabil-
ity was collected from a pool composed of 12 different models: two Decision Trees
with different maximum depths (2 and 10) and minimum samples per split (50 and 10),
two Support Vector Machines with different kernels (linear and RBF), Random Forests,
k-Nearest Neighbors, Gaussian Process, Gaussian Naive-Bayes, Logistic Regression,
Stochastic Gradient Descent, Multi-layer Perceptron and Kolmogorov-Arnold Network
(KAN) [Liu et al. 2024]. Except for the KAN, which required its own library, Pykan?,
all the other models were adopted using their respective implementations in the Scikit-
learn library!. Once the predicted probabilities are collected, uncertainty is measured by
adopting the expected entropy of each instance, as defined in Eq. 5.

Figure 2b presents an example test dataset, collored according to the aleatoric un-
certainty. As expected, the uncertainty is more prominent in the areas of overlap between

Thttps://scikit-learn.org
Zhttps://github.com/KindXiaoming/pykan



the two classes, reaching U, (x;) = 0.5 on the tips of both moons. Uncertainty can be even
higher, e.g., U, (x;) =~ 0.75, for noisier instances. For this example, the mean and stan-
dard deviation (SD) values for the expected entropy are, respectively, 0.263 and 0.166,
while across all tests, the average for both metrics were 0.264 and 0.173, respectively;
indicating a general intermediate difficulty of the problem.

« ®. oo Label . Entropy
.0 15

(a) Original Two-Moons (b) Expected Entropy of (c) PDP of the Trained
Problem Data Test Set Assessor

Figure 2. The Two-Moons Problem dataset example

3.1.2. Assessor Model

This paper adopted a Random Forest Regressor model as the assessor, trained and eval-
uated with the meta-examples from the holdout set of instances. It was also evaluated
using 10-fold cross-validation. The performance of the assessor in this experiment was
measured by the Root Mean Squared Error (RMSE), which was 0.003. To verify how the
assessor extrapolates its predictions, we evaluated it in regions of data not seen during
its training (i.e., out-of-distribution data). For this, we produced a new test set sampled
from a uniform distribution, as illustrated in Figure 3. With the newly generated set of
10000 instances, the aleatoric uncertainty was then calculated just like in Section 3.1.1,
so it could be used for the measurement of the assessor’s performance predictions, which
resulted in an average RMSE of 0.086 (with 0.019 of standard deviation). Although this
value is not high in absolute terms (considering the range of values for class entropy), it is
greater than the RMSE observed for the in-distribution data (i.e., average RMSE = 0.003).

As seen in Figures 3a and 3b, the actual and predicted uncertainties on the top-
right and the bottom-left regions of the distribution have the most discrepant values. For
analysing the top-right region, we considered instances with attributes o > 1.4, and z; >
0.6, resulting on the average RMSE of 0.141. In turn, for the bottom-left, we considered
the instances with attributes zo < —0.4 and x; < —0.1, resulting in the average RMSE
of 0.177. In both cases, the instances correspond to out-of-distribution data. Especially in
the bottom-left region, the assessor tended to underestimate the uncertainty of instances
(see Figure 4b). So, despite the potential of assessors, its use must be carefully judged for
out-of-distribution instances, which is actually the case for ML models in general.

3.1.3. Explanations

Figure 2c presents the PDP extracted from the assessor model. The PDP actually shows
that the assessor precisely identified that the instances located in the regions of class over-
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Figure 3. Example evaluation of assessor’s predictions of newly generated data
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Figure 4. True Uncertainty Values versus Predictions for the Two Moons Dataset

lap have a higher aleatoric uncertainty than the other instances. Notice that uncertainty is
even higher in the extreme positions of the two moons. Uncertainty progressively decays
as instances move away from the class frontier.

3.2. Experiments: COVID Dataset

In this section, we present the experiments performed with a dataset of COVID-19 sever-
ity prognosis® [Valeriano et al. 2022]. This dataset was produced from the blood tests
performed on patients from two large hospitals in Sdo Paulo during the global pandemic.
It comprises 17 input features, such as age, sex and 15 blood test results, collected from
laboratory tests. As target attribute, it contains a label indicating the severity of each pa-
tient case. The severity was defined by either an extended hospitalization of two weeks at
least, or the patient’s death within 30 days. The data from the first hospital was divided
into two sets: a training and a holdout set. The training data was adopted to learn the
12 base models, while the holdout set was used to evaluate them and then to train the
assessor. The data from the second hospital was only adopted for testing the assessor.

3.2.1. Uncertainty Quantification

As in Section 3.1.1, the measure of uncertainty used in these experiments was the average
class entropy, based on the predicted probabilities from the pool of ML models. Also,
the pool was the same as in the previous case study. The aleatoric uncertainty increased
drastically from the Two-Moons Problem dataset to the COVID dataset, reaching the

3https://repositoriodatasharingfapesp.uspdigital.usp.br/



mean value of 0.7, with a standard deviation of 0.09. About 75% of the instances in the
training set have a U, (x;) > 0.65.

3.2.2. Assessor Model

In this section, the experiment adopted a similar methodology to evaluate the assessor,
as in Section 3.1.2. Initially, a Random Forest was trained and evaluated as the assessor
model. The aleatoric uncertainty was quantified for each instance, and the assessor was
evaluated using 10-fold cross-validation, with an average score of 0.07.

Additionally, the assessor model was tested with the data from the second hospital,
obtaining an average RMSE of 0.077 (with a standard deviation of 0.021). The scatterplot
of this assessor’s entropy predictions against the actual expected entropy values, shown in
Figure 5, presents a similar linear pattern observed from the same plot for the Two Moons
Problem dataset (see Figure 4), even though both datasets are considerably different. This
is relevant as the assessor was trained using data from a specific hospital and produced
good predictions for patients from a second hospital.

Entropy prediction

0.4 0.5 0.6 0.7 0.8 0.9
Entropy

Figure 5. True Uncertainty values vs. Predictions from 2"¢ Hospital’s dataset

3.2.3. Explanations

Figure 6 presents the PFI plot for the trained assessor. The plot shows that the most
important features were the level of urea in blood plasma and the age of the patient. To
perform a deeper analysis of these attributes, we present their PDPs and class histograms
(see Figure 7). Regarding the urea attribute, the uncertainty is low for patients with high
levels for this attribute (see Figure 7a). Most patients develop severe cases for values
greater than 100 (see Figure 7c). Actually, urea tests often appear in COVID studies, as
the disease affects multiple systems, including the kidneys [Peramo-Alvarez et al. 2021].
Uncertainty is high in turn for patients with low levels of urea in isolation (U, (x;) ~
0.69). A combination of other factors then explains severity.

Regarding age, in turn, aleatoric uncertainty is higher for older patients, reaching
U, (x;) =~ 0.70 on patients older than 50 years (see Figure 7b). The class overlap on higher
ages (see Figure 7d) also indicates the increase in uncertainty. Although older people
tend to develop more severe cases than young people [Barek et al. 2020], this does not



always happen, which then causes uncertainty in severity prediction. Interestingly, most
hospitalized patients were old people. So the prediction uncertainty is not explained, for
example, by the lack of training data, but due to causes poorly understood about COVID.

The above analysis shows distinct situations regarding uncertainty. First, a low
level of urea would indicate in principle the non-severity class, but the uncertainty is high
on this conclusion. Differently, old age would suggest severity, but again the uncertainty is
high. Figure 8 presents the 2-dimensional PDP, illustrating the interaction between these
two attributes on the uncertainty. First, uncertainty is low for high urea levels, regardless
of the patient’s age. Second, an area of high aleatoric uncertainty is observed for patients
older than 50 years old but with urea levels below 60. As said, while old age would be a
risk factor for COVID-19 severity, a low level of urea would suggest non-severity. Such
patients then present two opposite signals for predicting the COVID-19 severity, which
was then reflected in a higher level of aleatoric uncertainty.

Feature importances on Assessor model
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Figure 6. Feature Importance Plot of the Assessor Model

4. Conclusion

In this paper we proposed a novel solution to predict and then explain the aleatoric un-
certainty in ML. This solution is composed of 3 major components: (1) measurement of
aleatoric uncertainty from instances of the test set by a trained pool of ML models; (2)
training of a predictive model (assessor), with a meta-examples set, composed of the test
set input features and the aleatoric uncertainty for those instances; and (3) the application
of xAI techniques to explain the assessor’s predictions. Each of these components was
implemented using specific methods in both performed experiments. For the first, the
uncertainty was quantified by the average entropy of each instance’s class probabilities,
from the pool of models. The second component was made with Random Forest Regres-
sors as the assessors. And the third mainly used PFI and PDPs, as tools for explanations.
The proposal was applied to both artificial and real datasets.

For future works, other implementations could used for each method, which could
be more suitable for different datasets. For example, deep artificial neural networks can
be used as base models for more complex and bigger datasets. Different methods could
be adopted to quantify uncertainty, following the literature on this topic. Specific aspects
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of the construction of the assessor can be investigated. For example, how to deal with out-
of-distribution data is a challenging problem. Finally, other XAl tools could be applied to
learned assessors, including local methods for explanation.
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