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Abstract. This article reports an empirical investigation on the prediction of
the volume of water accumulated in dams, comparing the performance of tradi-
tional statistical methods, machine learning algorithms, and dynamic and static
ensemble approaches, applied to volume time series, seeking to understand if
there is any model that stands out from the others. The study showed that LSTM
networks, isolated or used in ensemble, seem to be a sufficiently robust model to
reproduce time series with a hydrological context.

1. Introduction

Water stress, measured essentially by the use of water depending on the available supply,
affects different parts of the world. Over 2 billion people already live in areas subject to
water stress. According to independent assessments, the world will face a global water
deficit of 40% by 2030. This situation will be worsened by global challenges such climate
change [Water 2019].

Brazil has around 12% of the planet’s freshwater available. This means that the
country has one of the largest freshwater reserves in the world. However, most of this
water is in the Amazon Basin, which covers a vast area of the country. This relative abun-
dance of water resources places Brazil in a strategic position in terms of water security,
but this reality is not uniform for all regions of the federation. A considerable part of the
Brazilian Northeast region has historically lived with the problem of drought, especially
in the region known as semi-arid, which covers nine northeastern states, most of which
are located in the backlands and countryside [APAC 2015].

The state of Pernambuco, with an area of 98,067 km? and a population of 9 million
inhabitants [de Geografia e Estatistica IBGE 2023], has around 88.6% of its territory lo-
cated in a semi-arid region, and an availability of water resources of the order of 1,270 m3
inhabitant/year, considered the lowest average of water consumed per year among Brazil-
ian states, below the critical level indicated by the World Health Organization. 80% of
the state’s usable water volumes are located in the Zona da Mata and Metropolitan Recife
mesoregions.

The Recife Metropolitan Region (RMR) covers an area of approximately 2,768.48
km?, comprising 15 municipalities, including Recife, which is the state capital. With
a population of 3.7 million people [de Geografia e Estatistica IBGE 2023], it is a region
supplied mainly by water dams, arranged as shown in Figure 1:
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Figure 1. lllustrative example of the percentage volume accumulated in the dams
that supply the Metropolitan Region of Recife (Source: COMPESA)

Considering the dependence on water dams for the regular supply of the
Metropolitan Region of Recife, the predictability of the volume of water available is a
fundamental data for the operational planning of the water distribution for the conces-
sionaire which can, for example, anticipate any predicted scenario of water restriction
promoting a campaign to encourage reduction in consumption and seeking alternative
sources for water supply through underground water sources, desalination plants, etc.
Errors in forecasting water volumes accumulated in RMR dams can cause failures in op-
erational water distribution planning, inhibiting, for example, decision-making that seeks
to mitigate water restriction scenarios.

2. Related Works

Forecasting water levels or volumes in reservoirs is a recurrent theme in hydrological
and environmental studies. Different methodological families have been applied to this
problem, ranging from classical statistical models to machine learning and deep learning
approaches. Below, we organize the related literature into two main groups: (i) classical
statistical models and (ii) machine learning and deep learning models.

2.1. Classical Statistical Models

Autoregressive models, such as AR, MA, ARMA, and their extensions with exogenous or
seasonal components (e.g., ARIMAX, SARIMA, SARIMAX), have long been used in hy-
drological forecasting. [Sekban et al. 2022] applied these methods to monthly dam levels
in Istanbul and found that an ARMA model with specific lags captured the series behavior
effectively. Similarly, [Yu et al. 2017] used an ARIMA model to predict daily water lev-
els at stations along the Yangtze River. In the context of Indian cities, [Dutta et al. 2020]
used a SARIMA model to forecast reservoir levels in Chennai, highlighting its usefulness
in urban water supply planning. [Reyes-Baeza et al. 2023] also employed SARIMAX for
long-term forecasting of water levels in the El Yeso dam (Santiago, Chile), with promising
results. [Ghimire 2017] used ARIMA models to predict daily streamflow at two stations



along the Schuylkill River in the United States, illustrating the potential of classical ap-
proaches in streamflow modeling.

2.2. Machine Learning and Deep Learning Models

Support Vector Regression (SVR) and Artificial Neural Networks (ANNs) are among the
most frequently explored techniques in recent years. [Velasco et al. 2024] used SVR to
predict river levels in the Philippines, demonstrating accurate short-term forecasts. MLPs
(Multilayer Perceptrons) have also been applied in navigable rivers, such as in the work of
[Zhou et al. 2020], who achieved reliable short- and long-term forecasts on the Nanjing
section of the Yangtze River.

Recurrent neural networks, particularly LSTM models, have shown excellent
performance in modeling temporal dependencies. [Widiasari et al. 2018] developed an
LSTM-based flood prediction model for Semarang, Indonesia. [Hai Yen et al. 2021] pro-
posed a multi-input LSTM using precipitation and water level data to improve forecasts
for the Lai Chau dam in Vietnam. [Raman and Rathi 2024] applied LSTM models to
improve dam control policies in India. Similar success with LSTM was observed by
[Yang et al. 2020] for tidal levels in Taiwan and by [Fu et al. 2020] in streamflow fore-
casting in Malaysia.

In addition to water quantity forecasting, LSTM has also been used in related
domains. [Wang et al. 2017] developed an LSTM-based model to forecast water quality
parameters in Lake Taihu, China. [Lukas et al. 2024] applied MLPs to predict sedimen-
tation levels in Ethiopia’s Gibe-III reservoir based on hydrometeorological data.

3. Proposed Method

The purpose of the methodology proposed in this article is to present a complementary
model to those described in the related work section, where the results of linear and non-
linear models are used, individually, in the predictions. The hypothesis to be tested is
that a weighted combination of a set of forecast models, which have LSTM networks in
their composition, is the most appropriate approach to reproduce forecast data time series
that have hydrological context, because this strategy allows us to capture simple linear
patterns and more complex non-linear relationships in the data.
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Figure 2. Proposed Methodology



As shown in Figure 2, the database (Z;) is treated (Z;) and then segmented into
training (Z,,,,,), validation (Z, ) and testing (Z,,,,) data. The training data (Z},;,) is
submitted to literature models (ARIMA, SARIMA, SVR, MLP, LSTM). The validation
data (Z] ) is used during the training stage for tuning the hyperparameters that improve
the model’s performance. The selection of hyperparameters is done using the Grid Search
optimization technique, according to the values described in Table 1.

Table 1. GridSearch Values

Model Parameters Value
ARIMA (p,d,q) Hyndman Method [Hyndman and Khandakar 2008]
SARIMA (p,d, (P, D, Q) Hyndman Method [Hyndman and Khandakar 2008]
N° Lags 1,2,...,10
Kernel Linear, Poly, RBF
SVR Gamma 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100
C 0.01, 0.1, 1, 10, 100
Epsilon 0.0001, 0.001, 0.01
N° Lags 1,2,...,5
MLP i Al.gorithm i adam
Activation Function ReLU, Tanh
Number of Hidden Layer Nodes 100
Algorithm adam
LSTM Activation Function ReLU
Number of Hidden Layer Nodes 50

The linear models ARIMA and SARIMA were generated using the programming
language R. The SVR model and MLP model were developed using Python 3.7 and im-
plemented using the Sklearn library. The LSTM model was developed using Python 3.7
with the aid of Tensorflow and Keras.

The projections of the individual models are generated (Z/ARIMA | 71SVER - 7IMLP

Z/LSTMY and subsequently combined through static and dynamic approaches, generating
new predictions, this way:

1. Static approach: It was calculated the least squares solution to find the weights
that minimize the sum of squares of the residuals between the specific and actual
values in the data set;

2. Dynamic approach: It was implemented a dynamic combination approach that
adjusts model weights based on training data, using k-NN (k-Nearest Neighbors),
and these weights are used to predict target values for the test set.

The static model combination approach can be summarized in 6 steps: (I) Con-
catenation of predictions in the validation data, (II) Separation of variables in the valida-
tion data, (III) Calculation of Weights through the Least Squares solution (IV) Concatena-
tion of predictions on test data, (V) Separation of variables on test data, (VI) Predictions
on test set.

e Step (I) the predictions of the individual models are concatenated together with
the target value (i.e. the real value) for the validation data set;

» Step (II) the predictions of the individual models (features) are separated from the
actual values (labels), for the validation dataset;

e Step (II) a least squares solution is calculated to find the weights that minimize
the sum of squares of the residuals between the predictions and the actual values
in the validation data set;



Step (IV) the predictions of the individual models are concatenated together with
the target value (i.e. the actual value) for the test data set;

Step (V) the individual models’ predictions (features) are separated from the ac-
tual values (labels), for the test dataset.

Step (VI) using the previously calculated weights, a test set prediction is per-
formed by multiplying the features (individual model predictions) by the weights.

The dynamic model combination approach is structured in 5 steps: (I) Concatena-

tion of predictions in validation data, (II) Separation of variables in validation data, (III)
Concatenation of predictions in test data, (IV) Training of k-NN (k-Nearest Neighbors)
on validation data, (V) Dynamic Prediction using k-NN.

Step (I) the predictions of the individual models are concatenated together with
the target value (i.e. the real value) for the validation data set;

Step (II) the predictions of the individual models (features) are separated from the
actual values (labels), for the validation dataset;

Step (III) the predictions of the individual models are concatenated together with
the target value (i.e. the actual value) for the test data set;

Step (IV) a k-NN model is initialized with 5 nearest neighbors and the Euclidean
distance metric. The model is trained with the features (individual model predic-
tions) from the validation dataset;

Step (V) the k-NN model is used to find the 5 nearest neighbors in the valida-
tion data based on the corresponding features. Then, a dynamic weight for these
neighbors is calculated using least squares. These dynamic weights are used to
predict the target value.

The performance metric adopted to systems evaluate was the MSE and MAPE.

The latter, allows observing the percentage error in relation to the performance of the
models.

Finally, a statistical analysis based on the Friedman test with Nemenyi post-hoc

test will be carried out to evaluate the performance of the 25 models (see Table 2).

Table 2. Ensemble of Models

. . Ensemble of Models Ensemble of Models
Individual Models . .
(static approach) (dynamic approach)
ARIMA Ens(ARIMA+SVR)(e) Ens(ARIMA+SVR)(d)
SARIMA Ens(ARIMA+MLP)(e) Ens(ARIMA+MLP)(d)
SVR Ens(ARIMA+LSTM)(e) Ens(ARIMA+LSTM)(d)
MLP Ens(ARIMA+SVR+MLP)(e) Ens(ARIMA+SVR+MLP)(d)
LSTM Ens(ARIMA+MLP+LSTM)(e) Ens(ARIMA+MLP+LSTM)(d)
Ens(ARIMA+SVR+MLP+LSTM)(e) | Ens(ARIMA+SVR+MLP+LSTM)(d)
Ens(SVR+MLP)(e) Ens(SVR+MLP)(d)
Ens(SVR+LSTM)(e) Ens(SVR+LSTM)(d)
Ens(SVR+MLP+LSTM)(e) Ens(SVR+MLP+LSTM)(d)
Ens(MLP+LSTM)(e) Ens(MLP+LSTM)(d)

The methodology in Figure 2 is applied to the 11 databases, and the Python Au-

torank package [Herbold 2020] is used to compare the performance of different forecast-
ing models in the databases. The statistical analysis was conducted for 25 populations
with 11 paired samples.



4. Experiments and Analysis

4.1. Dataset

The data set refers to the daily volume of water accumulation in water dams that supply
the Metropolitan Region of Recife, in the period from 24/06/2009 to 31/12/2023, totaling
5304 records for each of the 10 dams. An eleventh database was generated, totaling the
volume of accumulation available to supply the entire Metropolitan Region of Recife,
through a simple sum of the volume accumulated in each of the ten dams.

During the data learning stage, the data set was subjected to a process of analy-
sis/treatment of missing data, outlier analysis and subsequently a correlation matrix be-
tween the 10 sources was generated for understand how they relate to each other.

The eleventh time series were generated with weekly data on the accumulated
volume of water, and the data was segmented into training data (60%), validation data
(20%) and test data (20%).

4.2. Results and Discussion
Using MAPE and MSE as metrics to evaluate the models applied to each of the 11 datasets
analyzed, the results presented in tables 6 and 7, attached at the end of the article, were
obtained.

Selecting MSE as an evaluation criterion, it could be mentioned that the most
accurate models were Ens(MLP+LSTM)(d) and Ens(SVR+LSTM)(d), which obtained
the best result in 3 series each (see Table 3).

Table 3. Comparison of Highest Performing Models by Dam (Ranking by MSE)

Model 1 2 3 4 5 6 7 8 9 10 11
Ens(MLP+LSTM)(d) °1° — 3 — 20 20 3 __ [° _
Ens(ARIMA+LSTM)(d) 200020 20 20 3 |0 . . o __
Ens(SVR+LSTM)(d) 3 10 1° — 1° — 20 20
Ens(ARIMA+SVR+MLP+LSTM)(e) — — — — 1° — — — 1° — 2°
Ens(SVR+MLP+LSTM)(d) ~  — — — — — — — 1T — — I°
Ens(ARIMA+MLP+LSTM)(e) e T A, L L p—
stM 3

Dams: 1-BITA, 2-BOTAFOGO, 3-CARPINA, 4-DUAS UNAS, 5-GOITA, 6-PIRAPAMA,
7-RMR (Total Sum), 8-SICUPEMA, 9-TAPACURA, 10-UTINGA, 11-VARZEA DO UNA.

Selecting MAPE as an evaluation criterion, it could be mentioned that the most
accurate models were Ens(SVR+LSTM)(d), Ens(SVR+MLP+LSTM)(d) and LSTM,
which obtained the best result in 2 series each (see Table 4).

It is important to highlight that when analyzing the MSE and MAPE results in
this tables, the best MSE values do not necessarily correspond to the best MAPE. This
is due to the asymmetry of the MAPE metric [Hyndman and Koehler 2006], which eval-
uates positive and negative errors differently. Therefore, as MSEs perform symmetric
evaluations, their values may not always be the same.

In a quick analysis, as can be seen in tables 3 and 4, the results obtained in this
work suggest that, for the time series analyzed, hybrid intelligent systems built using the



Table 4. Comparison of Highest Performing Models by Dam (Ranking by MAPE)

Model 1 2 3 4 5 6 7 8 9 1011

Ens(MLP+LSTM)(d) ° — — — — 2° 20 . 2 __
Ens(ARIMA+MLP)(d) —1° — 2 - — — — — — —
LSTM - 1 - - - — ° — —
Ens(SVR+MLP)(d) — 3 — 1° - — — — — —
Ens(ARIMA+LSTM)(e) |
Ens(SVR+LSTM)(d) 2 — — — — 1° 3° 22 — 1° —
Ens(ARIMA+LSTM)(d) ¥ - — — — 3% 1° 3 — 3° 3°
Ens(SVR+MLP+LSTM)(d) @ @— — — — — — — ° — — 1°
Ens(ARIMA+SVR)(d) -2 — 3 - _— _— _— — —
Ens(ARIMA+SVR+MLP)(e) _ — 2 - — — — — - — —
Ens(SVR+LSTM)(e) S o 1 U —
Ens(ARIMA+MLP)(e) - 3
Ens(ARIMA+SVR+MLP+LSTM)d) — — — — — — — — — — 2°
Ens(ARIMA+SVR+MLP+LSTM)(e) — — 3° — — — — — — — —
Ens(ARIMA+SVR)(e) = — — — — — — — — 3

Dams: 1-BITA, 2-BOTAFOGO, 3-CARPINA, 4-DUAS UNAS, 5-GOITA, 6-
PIRAPAMA, 7-RMR (Total Sum), 8-SICUPEMA, 9-TAPACURA, 10-UTINGA, 11-
VARZEA DO UNA.

ensemble methodology seem to have better performance when compared to the results of
the individual models proposed in literature.

However, a statistical analysis based on the Friedman test with Nemenyi post-
hoc test will be carried out to evaluate the performance of the 25 models. Based on
the decision flow of Autorank (see Figure 3) and considering we have more than two
populations and some of them are not normal, it is used the non-parametric Friedman test
as omnibus test to determine if there are any significant differences between the median
values of the populations. It is used the post-hoc Nemenyi test to infer which differences
are significant.
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Figure 3. Decision Flow of Autorank [Herbold 2020]



It is reported the median (MED), the median absolute deviation (MAD) and the
mean rank (MR) among all populations over the samples. The table 5 provides a summary
of populations.

Table 5. Summary of populations

Models MR MED MAD v Magnitude
Ens(MLP+LSTM)(d) 3.818 7.9 x 1019 7.9 x 10!  0.000 negligible
Ens(SVR+LSTM)(d) 4.227 3.4 x 100 34 x 10'° 0.505 medium
Ens(ARIMA+LSTM)(d) 4.227 6.8 x 10'° 6.8 x 10'°  0.100 negligible
Ens(SVR+MLP+LSTM)(d) 6.273 2.4 x 10" 2.4 x 10" —0.601 medium
Ens(ARIMA+MLP+LSTM)(d) 6.364 1.8 x 10" 1.8 x 10" —0.500 small
Ens(SVR+MLP+LSTM)(e) 7.136 7.1 x 10* 7.1 x 10! —0.845 large
Ens(ARIMA+MLP+LSTM)(e) 7.727 8.4 x 10* 8.2 x 10! —0.876 large
Ens(ARIMA+SVR+MLP+LSTM)(e) 8.182 8.8 x 10'! 8.6 x 10! —0.879 large
Ens(MLP+LSTM)(e) 9.045 1.6 x 10'? 1.5 x 10'2 —0.969 large
LSTM 9.409 8.3 x 10! 8.1 x 10* —0.875 large
Ens(ARIMA+LSTM)(e) 9.636 8.3 x 10 8.2 x 10! —0.863 large
Ens(ARIMA+SVR+MLP+LSTM)(d) 9.727 5.3 x 10! 5.2 x 10'' —0.804 large
Ens(SVR+LSTM)(e) 10.318 1.5 x 10'2 1.5 x 10'2 —0.913 large
Ens(ARIMA+MLP)(e) 16.000 3.0 x 10'2 2.9 x 10'2 —0.964 large
MLP 16.364 3.0 x 10'2 2.9 x 102 —0.961 large
ARIMA 17.136 3.1 x 1012 3.0 x 10'2 —0.951 large
SARIMA 17.136 3.1 x 10'2 3.0 x 10'2 —0.951 large
Ens(SVR+MLP)(e) 17.500 3.0 x 10'2 2.9 x 10'?2 —0.961 large
Ens(ARIMA+SVR+MLP)(e) 17.500 3.0 x 10'2 2.8 x 10'2 —0.988 large
SVR 17.818 3.0 x 1012 2.9 x 102 —0.958 large
Ens(ARIMA+SVR)(e) 17.909 3.1 x 10'2 3.0 x 102 —0.961 large
Ens(ARIMA+MLP)(d) 21.364 1.5 x 10'2 1.3 x 10'® —1.033 large
Ens(SVR+MLP)(d) 22.545 6.4 x 10'2 6.1 x 10'2 —0.982 large
Ens(ARIMA+SVR)(d) 22.909 1.3 x 10" 1.2 x 10'® —1.043 large
Ens(ARIMA+SVR+MLP)(d) 24.727 1.6 x 10'3 1.5 x 10'® —1.012 large

Differences between populations are significant if the difference of the mean rank
is greater than the critical distance CD=11.480 of the Nemenyi test. Based on the post-
hoc Nemenyi test, we assume that there are no significant differences within the following
groups (see in the critical distance diagram of Figure 4):

* Ens(MLP+LSTM)(d) * Ens(ARIMA+SVR+MLP+LSTM)(e)
* Ens(SVR+LSTM)(d) e Ens(MLP+LSTM)(e)

* Ens(ARIMA+LSTM)(d) .« LSTM

* Ens(SVR+MLP+LSTM)(d)

« Ens(ARIMA+MLP+LSTM)(d) * Ens(ARIMA+LSTM)(e)

* Ens(SVR+MLP+LSTM)(e) * Ens(ARIMA+SVR+MLP+LSTM)(d)
* Ens(ARIMA+MLP+LSTM)(e) * Ens(SVR+LSTM)(e)

5. Conclusion

Unlike most studies that focus on individual models, this work investigates a diverse en-
semble framework applied to real and sensitive data from the volume of water accumula-
tion in dams. Although no novel algorithm is proposed, the strength of this study lies in
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Figure 4. Critical Distance Diagram

its comparative and methodological depth, combining both static and dynamic ensemble
strategies to assess predictive performance across 25 configurations.

The hybrid systems proposed here, built using ensemble techniques and tested on
11 time series of water volume accumulated in the RMR dams, outperformed classical
models such as SVR, MLP, ARIMA, and SARIMA. Notably, the LSTM model, even
when used in isolation, demonstrated statistically similar performance to most ensemble
configurations. This suggests that LSTM networks—whether standalone or integrated in
hybrid systems—are robust and reliable models for hydrological time series forecasting.

From a practical standpoint, the trade-off between performance improvement and
the increased computational and modeling complexity introduced by ensemble strategies
suggests that, in many operational contexts, a well-tuned LSTM model may offer a more
efficient and effective solution.

A key limitation of this study is the use of univariate time series only, without
exogenous variables. This choice simplifies the modeling process but may reduce in-
terpretability and ignore relevant contextual influences. Future work could integrate ad-
ditional explanatory data, such as rainfall, streamflow, or dam operation schedules, to
enhance realism and generalizability. Further directions include multi-step forecasting
scenarios, experiments with uncertainty estimation, and alternative ensemble selection
methods.

6. Data and Code Availability

The source code used for model training and evaluation is available in a public GitHub
repository: https://github.com/racsl/source_codes-dams—-RMR.git.
Due to data access restrictions, the original datasets cannot be shared publicly; how-
ever, synthetic samples and relevant metadata can be provided upon request to support
replication efforts.



Table 6. Comparison of Results (using MAPE)

Model 1 2 3 4 5 6 7 8 9 10 1
ARIMA 12,5% 4.9% 8.6% 27.1% 142% 8,7% 32% 64% 42% 62% 4.9%
SARIMA 12,5% 4.9% 8.6% 27.1% 142% 8,7% 32% 64% 42% 62% 4.9%
SVR 11,7% 55% 162% 80% 14,1% 2,1% 54% 7.6% 42% 6,7% 4,8%
MLP 129% 4.6% 80% 9,1% 233% 2.5% 3.8% 8,5% 5.5% 6,0% 4,8%
LSTM 124% 78% 110% 6.8% 19.6% 1.9% 3,0% 2,7% 10,7% 5,3% 14,7%
Ens(ARIMA+SVR)(e) 119% 62% 158% 8,7% 143% 2,1% 5.8% 9,7% 4,1% 6,6% 5,1%
Ens(ARIMA+SVR)(d) 20,6% 14,3% 75.8% 16,8% 16,2% 7,1% 27,6% 17.6% 13% 9.9% 13,8%
Ens(ARIMA+MLP)(e) 124% 45% 49% 80% 13.8% 2.4% 3,1% 103% 4,0% 6,1% 4.9%
Ens(ARIMA +MLP)(d) 13.9% 11,6% 16,5% 152% 20,6% 4.8% 5,1% 47,0% 5.8% 8,5% 13,6%
Ens(ARIMA+LSTM)(e) 117% 59% 7.6% 60% 119% 1,6% 2,5% 3.0% 6% 41% 50%
Ens(ARIMA+LSTM)(d) 1.6% 3.8% 41% 2.6% 3,7% 03% 12% 02% 6,0% 19% 13%
Ens(ARIMA+SVR+MLP)(e) 119% 64% 127% 74% 142% 22% 5,1% 16,5% 4,3% 6,5% 5,3%
Ens(ARIMA +SVR+MLP)(d) 26,7% 27,3% 511,3% 19,5% 20,1% 7,7% 34.4% 19.2% 9.2% 10,3% 18,2%
Ens(ARIMA +MLP+LSTM)(e) 117% 58% 73% 65% 9.0% 1,6% 2.,6% 2,7% 53% 32% 50%
Ens(ARIMA+MLP+LSTM)(d) 25% 3.9% 40% 22% 46% 04% 14% 41% 48% 29% 49%

Ens(ARIMA+SVR+MLP+LSTM)(e) 10,.9% 6,0% 13,1% 6,0% 79% 1,6% 43% 10,1% 4,4% 3,2% 1.4%
Ens(ARIMA+SVR+MLP+LSTM)(d) 4,6% 8,8% 624% 25% 52% 0.8% 19% 04% 50% 4,7% 0,6%

Ens(SVR+MLP)(e) 11,8% 53% 133% 8,1% 144% 2,1% 5,1% 9.6% 43% 6,6% 4,7%
Ens(SVR+MLP)(d) 17,9% 21,1% 334,8% 13,0% 19,6% 3.9% 28.9% 12,3% 6,1% 93% 7.6%
Ens(SVR+LSTM)(e) 114% 58% 50% 56% 12,1% 19% 3.8% 2.9% 63% 4,6% 59%
Ens(SVR+LSTM)(d) 14% 39% 2.6% 2.5% 48% 03% 14% 02% 6,0% 15% 1,7%
Ens(SVR+MLP+LSTM)(e) 11,1% 59% 16,1% 3.8% 72% 1.8% 42% 2,0% 5.6% 3,7% 14%
Ens(SVR+MLP+LSTM)(d) 2,0% 6,0% 133,1% 3,3% 3.9% 0,5% 1,6% 00% 49% 3,1% 02%
Ens(MLP+LSTM)(e) 11,8% 56% 72% 49% 9.0% 1.8% 2,5% 2.9% 55% 3.4% 56%
Ens(MLP+LSTM)(d) 1,1% 34% 45% 3.0% 3.9% 03% 13% 02% 59% 18% 17%

Dams: 1-BITA, 2-BOTAFOGO, 3-CARPINA, 4-DUAS UNAS, S;GOITAA, 6-PIRAPAMA, 7-RMR
(Total Sum), 8-SICUPEMA, 9-TAPACURA, 10-UTINGA, 11-VARZEA DO UNA

Table 7. Comparison of Results (using MSE) with Model Abbreviations

Model 1 2 3 4 5 6 7 8 9 10 11

ARIMA 7.18e+10 3.06e+12 1.08e+14 3.07e+12 1.88e+13 2.06e+13 2.50e+14 9.96e+10 9.23e+13 4.96e+11 1.79%e+11
SARIMA 7.18e+10 3.06e+12 1.08e+14 3.07e+12 1.88e+13 2.06e+13 2.50e+14 9.96e+10 9.23e+13 4.96e+11 1.79e+11
SVR 7.23e+10 3.04e+12 7.03e+13 1.66e+12 2.31e+13 4.89e+12 4.27e+14 9.37e+10 9.15e+13 5.11e+11 2.01e+11
MLP 7.59e+10 2.99¢e+12 4.15e+13 1.30e+12 1.93e+13 5.49e+12 2.65e+14 1.03e+11 8.29e+13 4.14e+11 1.98e+11
LSTM  1.54e+10 8.26e+11 9.93e+12 3.42e+11 2.95e+12 1.42e+12 3.83e+13 3.58e+09 3.94e+13 1.20e+11 4.86e+11

El 7.25e+10 3.07e+12 6.97e+13 1.60e+12 2.32e+13 4.71e+12 4.83e+14 1.0le+11 9.14e+13 5.06e+11 1.84e+11
E2 1.60e+11 1.29¢+13 6.79¢e+14 1.15e+13 2.27e+13 2.09¢+13 1.18e+16 7.56e+11 1.05e+14 1.25e+12 1.17e+12
E3 7.36e+10 2.97e+12 3.98e+13 1.29e+12 1.81e+13 5.42e+12 2.60e+14 1.10e+11 9.19e+13 4.84e+11 1.85e+11
E4 8.79e+10 3.55e+12 2.09¢e+14 8.94e+12 2.34e+13 2.61e+13 4.25e+14 1.45e+13 8.89e+13 7.26e+11 1.18e+12
E5 1.61e+10 1.92e+12 9.89e+12 1.19e+11 3.55e+12 8.27e+11 3.90e+13 3.76e+09 5.85e+13 1.79e+11 1.18e+11
E6 6.85e+07 9.09e+11 1.57e+12 1.86e+10 1.44e+12 4.12e+10 2.20e+13 6.11e+07 7.45e+13 6.82e+10 9.38¢+09
E7 7.25e+10 3.02e+12 5.22e+13 1.44e+12 2.35e+13 4.75e+12 4.76e+14 6.25e+11 8.96e+13 4.99e+11 1.83e+11
E8 2.77e+11 1.42e+13 2.88e+16 1.62e+13 2.44e+13 3.69e+13 1.74e+16 1.00e+12 1.21e+14 1.06e+12 1.50e+12
E9 1.61e+10 1.72e+12 9.26e+12 1.22e+11 1.46e+12 8.35e+11 4.53e+13 7.71e+09 3.83e+13 4.80e+10 1.18e+11
E10 2.23e+08 6.63e+11 1.85e+12 8.32e+10 1.31e+12 9.87e+10 2.32e+13 1.82e+11 4.59e+13 1.08e+11 1.53e+11
El1 1.43e+10 1.75e+12 2.31e+13 1.12e+11 5.10e+11 8.78e+11 1.54e+14 9.27e+11 2.78e+13 4.85e+10 6.76e+09
E12 1.04e+10 4.40e+12 4.30e+14 1.0le+11 1.62e+12 5.26e+11 4.48e+13 1.64e+09 4.74e+13 4.27e+11 6.09¢+09
E13 7.29e+10 2.98e+12 5.53e+13 1.43e+12 2.37e+13 4.84e+12 4.66e+14 1.01e+11 8.98e+13 5.00e+11 1.88e+11
El4 1.27e+11 5.92e+12 1.26e+16 6.39e+12 5.47e+13 8.64e+12 1.22e+16 2.61e+11 9.99e+13 8.35e+11 3.02e+11
E15 1.54e+10 1.89e+12 8.92e+12 1.96e+11 6.10e+12 1.54e+12 1.17e+14 3.63e+09 5.28e¢+13 2.00e+11 1.31e+11
E16 1.03e+08 9.87e+11 7.08e+11 1.17e+10 1.83e+12 3.36e+10 3.10e+13 5.03e+07 7.47e+13 2.41e+10 8.56e+09
E17 1.54e+10 1.77e+12 2.30e+13 1.11e+11 6.64e+12 8.61e+11 1.07e+14 6.23e+09 4.93e+13 2.14e+11 1.03e+11
E18 1.06e+08 1.56e+12 1.04e+14 4.18e+11 6.95e+12 8.67e+11 6.10e+13 4.58¢+09 8.24e+13 3.50e+11 1.49e+11

E1:Ens(ARIMA+SVR)(e); E2:Ens(ARIMA+SVR)(d); E3:Ens(ARIMA+MLP)(e); E4:Ens(ARIMA+MLP)(d); E5:Ens(ARIMA+LSTM)(e);
E6:Ens(ARIMA+LSTM)(d); E7:Ens(ARIMA+SVR+MLP)(e); E8:Ens(ARIMA+SVR+MLP)(d); E9:Ens(ARIMA+MLP+LSTM)(e); E10:Ens(ARIMA+MLP+LSTM)(d);
E11:Ens(ARIMA+SVR+MLP+LSTM)(e); E12:Ens(ARIMA+SVR+MLP+LSTM)(d); E13:Ens(SVR+MLP)(e); E14:Ens(SVR+MLP)(d); E15:Ens(SVR+LSTM)(e);
E16:Ens(SVR+LSTM)(d); E17:Ens(SVR+MLP+LSTM)(e); E18:Ens(SVR+MLP+LSTM)(d);

Dams: 1-BITA, 2-BOTAFOGO, 3-CARPINA, 4-DUAS UNAS, 5-GOITA, 6-PIRAPAMA, 7-RMR, 8-SICUPEMA, 9-TAPACURA, 10-UTINGA, 11-VARZEA DO UNA.



References

APAC, A. P. d. e. C. (2015). Elaboracdo de Planos de Aproveitamento da Infraestrutura
Hidrica do Semidrido - Diagndstico da Situacdo Atual das Barragens e Reservatorios,
volume 01 of Infraestrutura hidrica - Semidrido. APAC, Agéncia Pernambucana de
Aguas e Clima, Recife/PE, Brasil.

de Geografia e Estatistica IBGE, I. B. (2023). Mapeamento ibge - estado de pernambuco.

Dutta, A., Chakrabarti, A., and Gautam, J. (2020). Application of sarima for predic-
tion of water storage levels for a metropolitan area: Chennai, a case study. In 2020

International Symposium on Advanced Electrical and Communication Technologies
(ISAECT), pages 1-8. IEEE.

Fu, M., Fan, T., Ding, Z., Salih, S. Q., Al-Ansari, N., and Yaseen, Z. M. (2020). Deep
learning data-intelligence model based on adjusted forecasting window scale: Appli-
cation in daily streamflow simulation. /EEE Access, 8:32632-32651.

Ghimire, B. N. (2017). Application of arima model for river discharges analysis. Journal
of Nepal Physical Society, 4(1):27.

Hai Yen, T. T., Xuan An, N., Dat, N. Q., and Solanki, V. K. (2021). Multi-input Istm for
water level forecasting in black river at the border of vietnam-china. In 2021 IEEE

International Conference on Machine Learning and Applied Network Technologies
(ICMLANT), pages 1-5. IEEE.

Herbold, S. (2020). Autorank: A python package for automated ranking of classifiers.
Journal of Open Source Software, 5(48):2173.

Hyndman, R. J. and Khandakar, Y. (2008). Automatic time series forecasting: The fore-
cast package for r. Journal of Statistical Software, 27(3).

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679—688.

Lukas, P, Melesse, A. M., and Kenea, T. T. (2024). Predicting reservoir sedimentation
using multilayer perceptron — artificial neural network model with measured and fore-
casted hydrometeorological data in gibe-iii reservoir, omo-gibe river basin, ethiopia.
Journal of Environmental Management, 359:121018.

Raman, R. and Rathi, T. (2024). Efficient dam water level management using cloud-
based data analytics and Istm networks. In 2024 [1th International Conference on
Reliability, Infocom Technologies and Optimization (Trends and Future Directions)
(ICRITO), pages 1-6. IEEE.

Reyes-Baeza, P., Trujillo-Guifiez, R., and Vidal, M. (2023). Long-term water level fore-
casting for el yeso reservoir using time-series data and satellite images. In 2023 42nd
IEEE International Conference of the Chilean Computer Science Society (SCCC),
pages 1-7. IEEE.

Sekban, J., Nabil, M. O. M., Alsan, H. F.,, and Arsan, T. (2022). Istanbul dam water
levels forecasting using arima models. In 2022 Innovations in Intelligent Systems and
Applications Conference (ASYU), pages 1-7. IEEE.



Velasco, L. C., Estose, A. J., Opon, M., Tabanao, E., and Apdian, F. (2024). Performance
evaluation of support vector regression machine models in water level forecasting. Pro-
cedia Computer Science, 234:436-447.

Wang, Y., Zhou, J., Chen, K., Wang, Y., and Liu, L. (2017). Water quality prediction
method based on Istm neural network. In 2017 12th International Conference on In-
telligent Systems and Knowledge Engineering (ISKE), pages 1-5. IEEE.

Water, U. W. (2019). The United Nations world water development report 2021: valuing
water. Water Politics. UNESCO World Water Assessment Programmer.

Widiasari, I. R., Nugoho, L. E., Widyawan, and Efendi, R. (2018). Context-based hydrol-
ogy time series data for a flood prediction model using Istm. In 2018 5th International

Conference on Information Technology, Computer, and Electrical Engineering (ICI-
TACEE), pages 385-390. IEEE.

Yang, C.-H., Wu, C.-H., and Hsieh, C.-M. (2020). Long short-term memory recurrent
neural network for tidal level forecasting. IEEE Access, 8:159389-159401.

Yu, Z., Lei, G., Jiang, Z., and Liu, F. (2017). Arima modelling and forecasting of water
level in the middle reach of the yangtze river. In 2017 4th International Conference on
Transportation Information and Safety (ICTIS), pages 172—177. 1IEEE.

Zhou, T., Jiang, Z., Liu, X., and Tan, K. (2020). Research on the long-term and short-term
forecasts of navigable river’s water-level fluctuation based on the adaptive multilayer
perceptron. Journal of Hydrology, 591.



