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Abstract. This work proposes a supervised approach for classifying SARS-CoV-
2 variants of concern (VOCs) using vector embeddings derived from amino acid
substitutions. The pre-trained model all-MiniLM-L6-v2 was employed to
generate high-dimensional vectors encoding mutations without requiring se-
quence alignment. These embeddings served as input to classifiers such as
SVM, Random Forest, XGBoost, and k-NN, evaluated through cross-validation
and on an external test set of nearly 288,000 samples. XGBoost achieved the
best results, with 99.83% accuracy, 99.83% F1 macro, and a logLoss of 0.0068,
maintaining high performance on unseen data. Tree-based models outperfor-
med others, particularly in handling the Gamma variant. The proposed appro-
ach proves to be robust, accurate, and scalable for application in automated
genomic surveillance systems, providing a complementary perspective to clini-
cal and laboratory analyses, and outperforming traditional and hybrid methods
from recent literature.

Resumo. Este trabalho propõe uma abordagem supervisionada para a
classificação de variantes do SARS-CoV-2 (VOCs) a partir de embeddings ve-
toriais derivados de substituições de aminoácidos. Utilizando o modelo pré-
treinado all-MiniLM-L6-v2, foram gerados vetores de alta dimensionali-
dade que codificam mutações sem necessidade de alinhamento genômico. Esses
embeddings alimentaram classificadores como SVM, Random Forest, XGBo-
ost e k-NN, avaliados por validação cruzada e em um teste externo com quase
288 mil amostras. O XGBoost obteve os melhores resultados, com acurácia
de 99,83%, F1 macro de 99,83% e logLoss de 0,0068, mantendo desempenho
elevado mesmo em dados não vistos. Os resultados evidenciam que modelos
baseados em árvores superam alternativas como SVM, especialmente na vari-
ante Gamma. A proposta se mostra robusta, precisa e escalável para aplicação
em sistemas automatizados de vigilância genômica, fornecendo uma segunda
perspectiva de análise complementar à abordagem clı́nica e laboratorial, e su-
perando métodos tradicionais e hı́bridas da literatura recente.

1. Introdução
Desde o surgimento do SARS-CoV-2 no final de 2019, o acompanhamento de

suas variantes tem sido um dos principais desafios da vigilância epidemiológica global.



As mutações acumuladas no genoma viral, especialmente na proteı́na Spike, impactam
diretamente na transmissibilidade, escape imunológico e efetividade de vacinas, tornando
essencial a detecção rápida e precisa de variantes de preocupação (VOCs). Nesse con-
texto, abordagens computacionais capazes de classificar automaticamente essas variantes
com base em seus perfis mutacionais representam ferramentas valiosas para subsidiar
ações de saúde pública e estratégias de contenção. Neste trabalho, propomos o uso de
aprendizado supervisionado aplicado a embeddings gerados a partir de substituições de
aminoácidos, sem necessidade de alinhamento genômico, com o objetivo de realizar a
classificação de VOCs de forma precisa, escalável e interpretável [Ran et al. 2022].

Diversas abordagens têm sido propostas para a classificação de variantes
do SARS-CoV-2, com diferentes fontes de dados e metodologias. O trabalho de
[Qin et al. 2024] propõe uma abordagem baseada em espectroscopia Raman com realce
por superfı́cie (SERS), combinada com aprendizado de máquina supervisionado, especi-
ficamente regressão logı́stica, alcançando 100% de acurácia na distinção entre variantes
como Wuhan, Beta, Delta e Omicron em amostras de saliva e swabs nasais. Embora
eficaz e promissora para diagnósticos rápidos e não invasivos, essa abordagem depende
de infraestrutura laboratorial especializada e de espectrômetros portáteis. De forma seme-
lhante, o estudo de [Fatima and Ahmad 2024] propõe um sistema de detecção de variantes
e predição de mortalidade baseado na análise de sintomas clı́nicos, utilizando algoritmos
como Random Forest, XGBoost, SVM e k-NN. A proposta se destaca por mapear sin-
tomas a variantes conhecidas e prever desfechos clı́nicos com alta acurácia, mas está
limitada à disponibilidade e qualidade das informações sintomáticas. Já o trabalho de
[Promja et al. 2023] combina qPCR de alta resolução de fusão (HRM) com aprendizado
de máquina, alcançando 95,2% de sensibilidade em 167 amostras clı́nicas, destacando-
se como alternativa econômica ao sequenciamento genético, embora ainda dependa de
experimentação laboratorial.

No trabalho de [Beduk et al. 2022], os autores desenvolveram uma plataforma
portátil de diagnóstico baseada em sensores eletroquı́micos funcionalizados com ACE2 e
integrados a nanopartı́culas de ouro e grafeno laser-escrito (LSG), acoplada a um disposi-
tivo point-of-care (PoC) com aprendizado de máquina embarcado. Essa proposta permite
a identificação rápida de variantes (Alpha, Beta e Delta) diretamente a partir de swabs na-
sofarı́ngeos, com acurácia de 99,37% em menos de 1 minuto, utilizando TinyML em um
potenciostato portátil. Apesar da inovação em acessibilidade e resposta em tempo real,
o método ainda depende de sensores fı́sicos e experimentação laboratorial. De forma
distinta, o estudo de [Ali et al. 2021] propõe uma abordagem computacional baseada em
k-mers para representar sequências da proteı́na spike do SARS-CoV-2, com posterior
aplicação de PCA e classificação supervisionada (SVM, Random Forest), atingindo alta
acurácia mesmo com 1% dos dados para treinamento. Embora compartilhe o uso da
proteı́na spike com nossa proposta, o trabalho utiliza vetores de frequência de k-mers,
enquanto adotamos embeddings contextuais gerados por modelos de linguagem, o que
reduz a necessidade de engenharia manual de features e facilita a adaptação a novas va-
riantes. Complementarmente, o estudo de [Chourasia et al. 2023] introduz um modelo
baseado em aprendizado federado (Federated Learning – FL) para classificação de vari-
antes, preservando a privacidade dos dados entre instituições. Utilizando modelos locais
(Random Forest, XGBoost, Regressão Logı́stica) e um modelo global de rede neural, o
sistema alcança acurácia superior a 93%.



Trabalhos como [Singh et al. 2022], propõem uma analogia conceitual, tratando
mutações como “palavras” e genomas como “documentos” em um grande “corpus”
de evolução viral. Utilizando modelos como Word2Vec e Dynamic Topic Mode-
ling (DTM), esses autores conseguiram rastrear assinaturas mutacionais ao longo do
tempo e associá-las a linhagens especı́ficas e regiões geográficas distintas. Aspecto
também abordado por [Sokhansanj et al. 2022], que propuseram um modelo baseado
em atenção interpretável aplicado à sequência da proteı́na Spike para prever desfechos
clı́nicos com base no padrão. De forma semelhante, os trabalhos apresentados em
[Câmara et al. 2022, Azevedo et al. 2024, de Souza et al. 2023, Coutinho et al. 2023] ex-
ploram diferentes formas de representações e classificação de sequências usando CNNs,
alcançando acurácia superior a 98% na distinção entre SARS-CoV-2 e outros vı́rus da
famı́lia Coronaviridae, reforçando a eficácia de abordagens baseadas em aprendizado pro-
fundo para a classificação genômica.

Assim, este artigo tem como objetivo propor e avaliar uma abordagem su-
pervisionada para a classificação de variantes do SARS-CoV-2 (VOCs) baseada em
representações vetoriais (embeddings) derivadas de substituições de aminoácidos. Uti-
lizando o modelo pré-treinado all-MiniLM-L6-v2, essas substituições são transfor-
madas em vetores de alta dimensionalidade que preservam aspectos contextuais e estru-
turais das mutações, eliminando a necessidade de alinhamento genômico, coleta clı́nica
ou experimentação laboratorial. Esses embeddings foram utilizados como entrada para
algoritmos clássicos de aprendizado supervisionado, incluindo Máquina de Vetores de
Suporte com kernel radial (SVM), Floresta Aleatória (Random Forest), eXtreme Gradi-
ent Boosting (XGBoost) e k-Vizinhos Mais Próximos (k-NN), treinados com validação
cruzada estratificada e avaliados em um conjunto de teste externo composto por dados
não vistos durante o treinamento. Para garantir a robustez dos resultados, foram adotadas
estratégias de balanceamento de classes e métricas estatı́sticas consistentes.

2. Metodologia

2.1. Base de Dados e Pré-processamento

As amostras genômicas utilizadas neste estudo foram obtidas da plataforma GI-
SAID [Khare et al. 2021], com extração realizada em 28 de março de 2024. O conjunto
original possuı́a aproximadamente 16,6 milhões de sequências. Foram aplicados filtros de
qualidade para reter apenas as sequências completas, com alta cobertura e classificadas
como Variantes de Preocupação (VOCs), conforme as diretrizes da Organização Mun-
dial da Saúde. Após essa etapa, restaram 936.638 amostras com metadados contendo
a coluna AA Substitutions, que representa mutações de aminoácidos no formato
Gene:Substituição (por exemplo, Spike:D614G) [Ran et al. 2022].

Essa notação padronizada preserva a unidade semântica de cada alteração e des-
taca apenas os eventos mutacionais com potencial impacto funcional, evitando a neces-
sidade de alinhar sequências nucleotı́dicas completas. Cada amostra foi, então, tratada
como um “documento” composto por um conjunto de substituições de aminoácidos, o
que favorece a aplicação de técnicas de Processamento de Linguagem Natural para cap-
turar relações contextuais entre mutações. Essas substituições foram processadas com
o modelo all-MiniLM-L6-v2 da biblioteca Sentence Transformers, o qual
aplica mecanismos de atenção para capturar relações contextuais não lineares entre as



substituições. O resultado foi a geração de vetores de embeddings de 384 dimensões para
cada perfil mutacional.

A etapa seguinte consistiu na remoção de duplicatas com base na coluna AA
Substitutions e na representação vetorial. Para a tarefa de classificação supervi-
sionada, foi realizado um balanceamento por subamostragem com base na menor classe,
assegurando distribuição uniforme entre as variantes. As amostras não utilizadas no pro-
cesso de balanceamento foram reservadas como conjunto de teste externo, de modo a
permitir avaliação em dados inéditos não vistos durante a validação cruzada.

Durante o pré-processamento dos dados vetoriais, foi identificado que duas di-
mensões especı́ficas do espaço de embedding, denominadas aqui como dimensões 224
e 320, apresentavam variância nula, isto é, mantinham exatamente o mesmo valor em
todas as amostras analisadas. Tais dimensões invariantes foram removidas antes do trei-
namento dos modelos, uma vez que não oferecem qualquer contribuição informativa para
a separação entre as classes. Além disso, a permanência de atributos invariantes pode
prejudicar o desempenho de algoritmos sensı́veis à variabilidade dos dados, como SVM e
k-NN, ao introduzir redundância ou ruı́do numérico desnecessário no processo de apren-
dizado.

2.2. Modelos Supervisionados e Validação Cruzada

Foram avaliados quatro modelos clássicos de aprendizado supervisionado:
Máquina de Vetores de Suporte com kernel radial (SVM), Floresta Aleatória (Random
Forest), eXtreme Gradient Boosting (XGBoost) e k-Vizinhos Mais Próximos (k-NN). To-
dos os modelos foram treinados utilizando validação cruzada estratificada do tipo k-fold,
com k = 5, de modo a assegurar uma avaliação robusta e imparcial do desempenho pre-
ditivo.

Os modelos receberam como entrada exclusivamente os vetores de embeddings
gerados a partir das substituições de aminoácidos. A tarefa supervisionada consistiu
na classificação de cada amostra genômica em uma das cinco variantes de preocupação
consideradas no estudo (Alpha, Beta, Delta, Gamma e Omicron). Durante a validação
cruzada, foram armazenadas as predições realizadas em cada fold, permitindo a análise
consolidada dos resultados sem necessidade de avaliação sobre o conjunto de treino com-
pleto.

Durante a validação cruzada, além da avaliação do desempenho preditivo em cada
partição, foi realizado o ajuste de hiperparâmetros internos especı́ficos para cada mo-
delo. No caso do SVM, foram testados diferentes valores do parâmetro de penalização
C; na Random Forest, diferentes valores de mtry; no XGBoost, combinações de pro-
fundidade de árvore, taxa de aprendizado, subamostragem e número de iterações; e no
k-NN, diferentes valores de k. As melhores configurações foram selecionadas com base
na minimização do logLoss, garantindo não apenas acurácia, mas também maior confia-
bilidade nas probabilidades estimadas. As predições geradas em cada fold foram arma-
zenadas separadamente, permitindo a análise consolidada dos resultados e evitando viés
decorrente de avaliação sobre o próprio conjunto de treinamento.



3. Resultados e Discussão

Antes da avaliação do desempenho dos classificadores, é importante apresentar a
composição final dos conjuntos utilizados nas análises. O conjunto de treinamento ba-
lanceado resultou em 29.325 amostras distribuı́das uniformemente entre as VOCs Alpha,
Beta, Delta, Gamma e Omicron. Já o conjunto de teste externo foi composto por 287.994
amostras, distribuı́das da seguinte forma: Alpha (45.099), Delta (223.466), Gamma
(6.937) e Omicron (12.492).

3.1. Desempenho do Classificador SVM

O classificador SVM com kernel radial (RBF) foi treinado com embeddings
de 382 variáveis, resultantes da remoção de duas dimensões com variância nula. O
treinamento foi conduzido com validação cruzada estratificada do tipo 5-fold, permi-
tindo uma avaliação robusta do desempenho preditivo. Foram testados diferentes valo-
res do parâmetro de penalização C (0,25, 0,50 e 1,00), mantendo-se fixo o parâmetro
σ = 0,00213. Os resultados obtidos para cada configuração estão apresentados na Ta-
bela 1.

Tabela 1. Resultados da validação cruzada para o classificador SVM com kernel
RBF.

C logLoss AUC prAUC Acurácia Kappa F1 macro Sens. média

0,25 0,4324 0,9982 0,9933 0,9331 0,9163 0,9296 0,9331
0,50 0,4384 0,9983 0,9936 0,9369 0,9211 0,9339 0,9369
1,00 0,4664 0,9980 0,9926 0,9380 0,9225 0,9351 0,9380

C Espec. média Prec. média NPV média Acc. balanceada

0,25 0,9833 0,9423 0,9844 0,9582
0,50 0,9842 0,9452 0,9853 0,9606
1,00 0,9845 0,9461 0,9855 0,9612

O melhor desempenho do classificador SVM foi obtido com C = 0,25, conforme
o critério de menor logLoss. Nessa configuração, o modelo alcançou uma acurácia média
de 93,31%, F1 macro de 92,96%, AUC de 0,9982 e prAUC de 0,9933. A estatı́stica de
Kappa foi de 0,9163, refletindo concordância elevada entre predições e rótulos reais. As
métricas de sensibilidade e precisão médias foram de 93,31% e 94,23%, respectivamente,
e a acurácia balanceada atingiu 95,82%, evidenciando um desempenho equilibrado na
classificação das diferentes variantes. Esses resultados indicam um desempenho robusto e
equilibrado na classificação das cinco variantes (Alpha, Beta, Delta, Gamma e Omicron),
com alta separabilidade dos embeddings gerados a partir de substituições de aminoácidos.
A alta AUC e prAUC refletem a capacidade discriminativa do modelo, mesmo diante de
classes com padrões mutacionais semelhantes.

Embora os valores de C = 0,5 e C = 1,0 tenham apresentado ligeiras melhorias
em métricas como acurácia e F1, o critério de menor logLoss levou à seleção de C =
0,25, favorecendo maior confiabilidade probabilı́stica nas predições. A combinação de
pré-processamento (centralização e normalização), balanceamento estratificado e uso de
embeddings contextualizados permitiu que o SVM capturasse padrões não lineares entre
os perfis mutacionais das VOCs. Esses achados reforçam o potencial da abordagem para
tarefas de vigilância genômica baseada em IA supervisionada.



A Figura 1 apresenta a matriz de confusão percentual do modelo SVM obtida du-
rante a validação cruzada. Observa-se que a maioria das classes apresenta alta taxa de
acerto nas diagonais principais, com destaque para as variantes Beta e Alpha, que atin-
giram 99,9% de acertos. A variante Gamma, por outro lado, apresentou o maior ı́ndice
de confusão relativa, com 22,7% de suas amostras sendo equivocadamente classificadas
como Omicron. Essa confusão entre Gamma e Omicron pode ser atribuı́da à sobreposição
de padrões mutacionais entre essas variantes. De modo geral, a matriz confirma a capa-
cidade do SVM em distinguir corretamente a maioria das variantes, embora com maior
dificuldade em contextos de alta similaridade genômica.
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Figura 1. Matriz de confusão percentual para o classificador SVM com kernel
radial, obtida durante a validação cruzada (5-fold).

3.2. Desempenho do Classificador Random Forest

O classificador Random Forest foi treinado com os embeddings derivados das
substituições de aminoácidos, resultando em 382 preditores. A avaliação foi conduzida
com validação cruzada estratificada do tipo 5-fold. Três valores do hiperparâmetro mtry
foram testados: 2, 192 e 382, correspondendo à quantidade de variáveis consideradas em
cada divisão das árvores de decisão.

O melhor desempenho foi obtido com mtry = 192, conforme o critério de me-
nor logLoss. Nessa configuração, o modelo alcançou acurácia de 99,71%, F1 macro de
99,71%, AUC de 0,9999 e logLoss de 0,0290. As métricas de Kappa, precisão e recall
também apresentaram valores elevados, todos em torno de 99,7%, com acurácia balance-
ada de 99,82%. Esses resultados estão detalhados na Tabela 2.

Tabela 2. Resultados da validação cruzada para o classificador Random Forest.
mtry logLoss AUC prAUC Acurácia Kappa F1 macro Sens. média

2 0,0673 0,9999 0,6560 0,9964 0,9955 0,9964 0,9964
192 0,0290 0,9999 0,2305 0,9971 0,9964 0,9971 0,9971
382 0,0319 0,9999 0,1668 0,9946 0,9932 0,9946 0,9946

mtry Espec. média Prec. média NPV média Acc. balanceada

2 0,9991 0,9964 0,9991 0,9977
192 0,9993 0,9971 0,9993 0,9982
382 0,9986 0,9946 0,9986 0,9966



Além da acurácia elevada, o modelo com mtry = 192 apresentou desempenho
consistente em métricas complementares. O valor de logLoss, igual a 0,0290, indica ele-
vada confiabilidade nas probabilidades preditas, penalizando menos os casos em que o
modelo comete erros incertos. A métrica AUC atingiu o valor de 0,9999, evidenciando
excelente separabilidade entre as classes, enquanto a prAUC, igual a 0,2305, refletiu a
influência do balanceamento das classes sobre a distribuição de precisão e recall. A es-
tatı́stica de Kappa (0,9964) revelou forte concordância entre as predições do modelo e
os rótulos reais. A métrica F1 macro foi de 99,71%, indicando equilı́brio entre precisão
e sensibilidade, que também atingiram 99,71% e 99,71%, respectivamente. Esses resul-
tados indicam que o modelo manteve um desempenho robusto em todas as dimensões
avaliadas, sendo capaz de classificar corretamente as variantes mesmo diante de padrões
mutacionais complexos.

A Figura 2 mostra a matriz de confusão percentual obtida para o modelo Random
Forest durante a validação cruzada. Observa-se um desempenho excepcionalmente alto,
com as classes Delta, Gamma, Alpha e Beta sendo corretamente classificadas em 99,8%
dos casos. A variante Omicron, embora ligeiramente mais distribuı́da, ainda apresentou
99,4% de acertos, com erros residuais mı́nimos espalhados entre as demais classes. Esses
resultados reforçam a robustez da Random Forest na tarefa de classificação das VOCs,
com margens de erro quase nulas e alta separabilidade entre os perfis mutacionais repre-
sentados nos embeddings.
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Figura 2. Matriz de confusão percentual para o classificador Random Forest,
obtida durante a validação cruzada (5-fold).

3.3. Desempenho do Classificador XGBoost

O classificador XGBoost foi avaliado por meio de validação cruzada estratifi-
cada em 5 folds, utilizando embeddings de 382 preditores. Foram testadas diferen-
tes combinações de hiperparâmetros, variando-se o número de iterações (nrounds),
a profundidade máxima das árvores (max depth) e fração de amostras por árvore
(subsample. Os demais parâmetros, como taxa de aprendizado (eta) e proporção
de colunas por árvores (colsample bytree) foram mantidos fixos em seus valores
padrão de implementação, 0,3 e 0,6, respectivamente.

A melhor configuração encontrada foi composta por nrounds = 150,
max depth = 2 e subsample = 0,5, cujos resultados detalhados encontram-se na
Tabela 3.



Tabela 3. Melhores configurações do XGBoost e suas métricas de desempenho.
nrounds max depth subsample logLoss Acurácia F1 macro

150 2 0,5 0,0068 0,9983 0,9983
100 2 0,5 0,0069 0,9982 0,9982
150 1 0,5 0,0069 0,9982 0,9982

nrounds max depth subsample AUC prAUC

150 2 0,5 0,99998 0,9883
100 2 0,5 0,99998 0,9963
150 1 0,5 0,99998 0,9971

Com essa parametrização, o modelo obteve logLoss de apenas 0,0068, indicando
altı́ssima confiança nas probabilidades preditas. A acurácia e o F1 macro atingiram
99,83%, refletindo equilı́brio entre precisão e sensibilidade. A AUC de 0,99998 con-
firma a excelente capacidade discriminativa do modelo, mesmo diante de classes com
padrões mutacionais semelhantes. A métrica prAUC, de 0,9883, também reforça a robus-
tez do modelo sob diferentes limiares de decisão. O ı́ndice de Kappa (0,9977) e a acurácia
balanceada (99,88%) corroboram o desempenho consistente do XGBoost em todo o es-
pectro de classes.

Comparado aos demais classificadores, o XGBoost apresentou desempenho ligei-
ramente superior, tanto em termos de probabilidade calibrada (menor logLoss), quanto em
métricas clássicas de classificação. Sua estabilidade mesmo com profundidades reduzidas
de árvore e taxas de subamostragem moderadas evidencia seu potencial para aplicações
de classificação genômica em larga escala.

A Figura 3 apresenta a matriz de confusão percentual para o classificador XGBo-
ost, obtida durante a validação cruzada. Observa-se que o modelo alcançou desempenho
excepcionalmente elevado em todas as classes, com 99,9% de acerto para Alpha, Beta e
Gamma, 99,8% de acerto em Delta e 99,6% para Omicron. A classe Gamma apresentou
0,1% de confusão para Omicron, e Omicron teve 0,3% de suas amostras incorretamente
classificadas como Delta. Esses desvios mı́nimos reforçam a capacidade discriminativa
do XGBoost, mesmo em cenários com variantes geneticamente similares. A distribuição
dos erros, visualmente concentrada fora da diagonal, é pequena e não compromete o de-
sempenho geral, validando os resultados quantitativos já apresentados.

3.4. Desempenho do Classificador k-NN

O classificador k-Nearest Neighbors (k-NN) foi avaliado por meio de validação
cruzada estratificada com 5 folds, utilizando embeddings de 382 preditores previamente
centralizados e normalizados. Foram testados cinco valores do hiperparâmetro k: 5, 7, 9,
11 e 13.

A configuração que obteve o menor logLoss foi aquela com k = 13, indicando-
a como a mais adequada segundo o critério probabilı́stico. Os resultados detalhados
encontram-se na Tabela 4. Com essa configuração, o modelo apresentou logLoss de
0,0303, acurácia e F1 macro de 99,66%, AUC de 0,9996, prAUC de 0,0149 e Kappa
de 0,9957. As métricas de precisão, sensibilidade e especificidade médias também foram
elevadas, todas acima de 99,6%, com acurácia balanceada de 99,78%.
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Figura 3. Matriz de confusão percentual para o classificador XGBoost, obtida
durante a validação cruzada (5-fold).

Tabela 4. Resultados da validação cruzada para o classificador k-NN.
k logLoss AUC prAUC Acurácia Kappa F1 macro Sens. média

5 0,0372 0,9994 0,0074 0,9971 0,9964 0,9971 0,9971
7 0,0322 0,9995 0,0098 0,9969 0,9961 0,9969 0,9969
9 0,0316 0,9995 0,0118 0,9968 0,9960 0,9968 0,9968
11 0,0310 0,9996 0,0134 0,9968 0,9960 0,9968 0,9968
13 0,0303 0,9996 0,0149 0,9966 0,9957 0,9966 0,9966

k Espec. média Prec. média NPV média Acc. balanceada

5 0,9993 0,9971 0,9993 0,9982
7 0,9992 0,9969 0,9992 0,9980
9 0,9992 0,9968 0,9992 0,9980
11 0,9992 0,9968 0,9992 0,9980
13 0,9991 0,9966 0,9991 0,9978

Embora o valor de logLoss tenha sido ligeiramente superior ao observado no XG-
Boost, o desempenho global do k-NN foi altamente competitivo. O modelo demonstrou
estabilidade e elevada capacidade de generalização, mesmo operando em um espaço ve-
torial de alta dimensionalidade, como o dos embeddings de substituições de aminoácidos.

A Figura 4 apresenta a matriz de confusão percentual do classificador k-NN, ob-
tida durante a validação cruzada. Observa-se que o modelo apresentou desempenho al-
tamente consistente, com todas as classes sendo corretamente classificadas em mais de
99,8% dos casos. A variante Alpha atingiu 99,9% de acerto, com erros praticamente nu-
los. A classe Gamma foi corretamente classificada em 99,8% das amostras, com 0,2% de
confusão para Omicron. Já a classe Omicron apresentou 98,9% de acerto, com 0,8% de
suas amostras sendo classificadas como Delta. Apesar dessas pequenas taxas de confusão,
o desempenho geral do k-NN manteve-se elevado, confirmando sua eficácia mesmo em
cenários de alta similaridade genômica entre variantes.

3.5. Comparação entre os Modelos

A Tabela 5 apresenta um resumo comparativo do desempenho dos quatro classi-
ficadores avaliados neste estudo. Entre os modelos analisados, o XGBoost destacou-se
em todas as métricas principais: obteve a maior acurácia (99,83%), o maior F1 macro
(99,83%), a maior AUC (0,99998), o maior Kappa (0,9977) e a maior acurácia balan-
ceada (99,88%). Além disso, apresentou o menor valor de logLoss (0,0068), indicando
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Figura 4. Matriz de confusão percentual para o classificador k-NN, obtida durante
a validação cruzada (5-fold).

maior confiabilidade na calibragem das probabilidades preditas.

Tabela 5. Comparativo entre os classificadores com base na validação cruzada
(5-fold).

Modelo Acurácia F1 macro logLoss AUC Kappa Acc.
balanceada

SVM 0,9331 0,9296 0,4324 0,9982 0,9163 0,9582
Random Forest 0,9971 0,9971 0,0290 0,9999 0,9964 0,9982
XGBoost 0,9983 0,9983 0,0068 0,99998 0,9977 0,9988
k-NN 0,9966 0,9966 0,0303 0,9996 0,9957 0,9978

A Random Forest e o k-NN também demonstraram desempenhos altamente com-
petitivos, com acurácia acima de 99,6%, Kappa superiores a 0,995 e AUC próximas de 1.
A Random Forest apresentou resultados ligeiramente superiores ao k-NN, especialmente
em logLoss e prAUC. Já o SVM obteve resultados satisfatórios, porém inferiores aos de-
mais modelos, com acurácia de 93,31% e logLoss significativamente mais alto (0,4324),
refletindo menor confiança nas probabilidades preditas.

Esses resultados indicam que modelos baseados em árvores de decisão são mais
eficazes para a tarefa de classificação de variantes do SARS-CoV-2 a partir de embeddings
de substituições de aminoácidos. Tais modelos se mostraram mais robustos, tanto em
termos de desempenho absoluto quanto de generalização, mesmo em um espaço vetorial
de alta dimensionalidade.

A Tabela 6 apresenta os resultados obtidos na avaliação dos modelos sobre o con-
junto de teste externo, composto pelas amostras que não participaram do treinamento ou
da validação cruzada. Observa-se que, de forma geral, todos os modelos mantiveram altos
nı́veis de acurácia, indicando boa capacidade de generalização. O classificador XGBoost
novamente se destacou, obtendo as maiores acurácias em todas as variantes: 99,91% para
Alpha, 99,83% para Delta, 99,75% para Gamma e 99,61% para Omicron.

Os modelos Random Forest e k-NN apresentaram desempenhos muito próximos
aos do XGBoost, também com acurácia superior a 99% nas quatro classes. O modelo
SVM, por outro lado, teve desempenho comparável nas variantes Alpha, Delta e Omi-
cron, mas apresentou acurácia significativamente inferior na variante Gamma (66,77%),
o que confirma a tendência observada na validação cruzada de maior dificuldade do SVM



Tabela 6. Acurácia por modelo e por VOC no conjunto de teste externo.
Modelo VOC Acurácia Total de Amostras

SVM

Alpha

0,9988

45.099RF 0,9978
XGB 0,9991
KNN 0,9988

SVM

Delta

0,9962

223.466RF 0,9971
XGB 0,9983
KNN 0,9976

SVM

Gamma

0,6677

6.937RF 0,9967
XGB 0,9975
KNN 0,9977

SVM

Omicron

0,9892

12.492RF 0,9922
XGB 0,9961
KNN 0,9894

em separar essa classe. Esses resultados reforçam a robustez dos modelos baseados em
árvores (XGBoost e Random Forest) e validam a eficácia da estratégia proposta em dados
completamente novos.

4. Conclusões

Este trabalho apresentou uma abordagem supervisionada para a classificação
de variantes do SARS-CoV-2 (VOCs) utilizando embeddings vetoriais derivados de
substituições de aminoácidos, gerados por modelos de linguagem natural, sem a ne-
cessidade de alinhamento genômico, coleta clı́nica ou experimentação laboratorial.
Os experimentos demonstraram que classificadores supervisionados aplicados a essas
representações, especialmente modelos baseados em árvores, como XGBoost e Random
Forest, são capazes de atingir desempenho excepcional, com acurácia superior a 99% e
elevada robustez mesmo em cenários de alta similaridade genômica entre variantes. O
modelo XGBoost destacou-se com acurácia de 99,83% e logLoss de 0,0068, mantendo
alta performance em dados externos. Os resultados validam o potencial da abordagem
como uma solução eficiente, escalável e inteiramente digital para vigilância genômica
automatizada, superando métodos tradicionais e hı́bridos da literatura recente.
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