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Abstract. Graph Neural Networks (GNNs) are powerful tools for learning from
graph-structured data, with applications in social networks, bioinformatics, and
fraud detection. However, GNNs can inherit and amplify biases present in data,
leading to unfair predictions regarding sensitive attributes such as gender or
race. To mitigate these issues, fairness-aware frameworks like NIFTY and its
variant with Biased Edge Dropout have been proposed. In this work, we in-
troduce FairGNN-Bagging, an ensemble framework that combines NIFTY with
Bagging to improve fairness in node classification tasks. Our method uses graph
perturbations to generate an augmented graph dataset to train an ensemble of
GNNs in parallel. These models are then aggregated via majority voting or
fairness-aware selective voting. We evaluate our approach on three real-world
datasets, showing that it achieves better fairness metrics while preserving or
improving predictive performance.

1. Introduction
In complex problems such as social network analysis, recommendation systems, bioin-
formatics, and fraud detection, graphs have demonstrated a remarkable ability to rep-
resent different possible relationships between entities encountered in these problems.
However, most machine learning algorithms are designed for simple sequences or grids,
while graphs have complex topological structures and can have multimodal characteristics
[Hamilton et al. 2017b]. To deal with these difficulties, Graph Neural Networks (GNNs)
can be used to learn vector representations of nodes called embeddings. In this way, deep
neural networks can be generalized to model graph-structured data to solve several graph
learning tasks such as node classification, link prediction, and graph classification. GNNs
adopt the message-passing mechanism that aggregates the information of neighbors of a
given node to update this node representation. This mechanism allows the learned embed-
dings to capture both the node attributes and its local structure [Hamilton et al. 2017b].

The performance of GNNs in terms of accuracy and generalization is often pri-
oritized in the literature. However, it is equally important to design more trustworthy al-
gorithms that also consider algorithmic performance with respect to fairness, robustness,
privacy, and explainability [Dong et al. 2023].

Previous research has highlighted that GNNs not only inherit undesirable biases
present in the data but can also amplify them through their message-passing mecha-
nisms [Dong et al. 2023, Dai et al. 2024, Zhang et al. 2024]. These biases, often linked



to sensitive attributes such as gender and race, can lead GNNs to make unfair decisions,
with the message-passing process and the topological structure of the graph further inten-
sifying these effects [Dong et al. 2022].

In this work we focus on predictions over graph nodes. In this context, a dataset
is formed by a graph and each example is a node of a graph. The node classification task
consists of assigning a label for each node in a graph. Success in this task depends heavily
on the graph structure, the node attributes, as well as the effectiveness of the GNN model
that will be used to capture local and global patterns in the graph [Hamilton et al. 2017a].

In the literature, there is a taxonomy that categorizes the existing types of
fairness for GNNs as group fairness, individual fairness, and counterfactual fair-
ness [Dong et al. 2023]. Group fairness ensures that demographic groups do not re-
ceive discriminatory treatment [Cynthia et al. 2012]. On the other hand, individual fair-
ness aims to ensure that two similar individuals receive similar algorithmic treatment
[Kang et al. 2020]. Counterfactual fairness, in turn, is inspired by the development of
counterfactual learning [Kusner et al. 2017], and measures fairness from the perspective
of causal inference. Thus, it is expected that when the value of the sensitive attribute is
changed in a counterfactual (unobservable) scenario, the predictions given by the model
remain the same. For example, in a credit scoring context, in which race can be a sensitive
attribute, it is expected that if a person of a certain race received a high credit approval
based on their characteristics, they would also have obtained a high credit approval in a
counterfactual scenario in which their race was different.

The most widely used node classification framework that deals with counterfactual
fairness for graphs is NIFTY [Agarwal et al. 2021], which aims to learn fair representa-
tions for predictions while ensuring stability. Stability here refers to the property of not
changing the predictions when the graph structure and node attributes are subjected to
small perturbations. In NIFTY, two new graphs are created from the original graph, a
counterfactual graph and a noisy graph. The counterfactual graph is generated by flipping
the value of the sensitive attribute of all nodes. The noisy graph is created by dropping
edges and slightly modifying the values of the non-sensitive attributes of the nodes. In
NIFTY framework, a triple loss function maximizes the similarity of the embeddings of
the original graph and the two new graphs created. Experiments show that NIFTY signifi-
cantly enhances fairness and stability without sacrificing predictive performance in terms
of AUROC and F1-score [Agarwal et al. 2021].

According to Spinelli et al.(2021), nodes with similar characteristics are more
likely to be connected to each other. This property is called homophily. From a fairness
perspective, homophily associated with sensitive attributes exerts a direct influence on the
GNN prediction process, potentially introducing and amplifying inequalities in the pre-
dictions [Spinelli et al. 2021]. In this direction, Spinelli et al.(2021) proposed FairDrop,
based on the hypothesis that removing homophilous edges can help improve group fair-
ness. Franco et al. (2024) simplify the formulation of FairDrop to empower NIFTY’s
framework using a technique called Biased Edge Dropout that balances homophilous and
heterophilous sensitive connections.

Following another approach line, some proposals found in the litera-
ture use GNN ensembles to improve the algorithmic effectiveness of individual



GNNs [Nagarajan et al. 2022, Lin et al. 2022, Wei et al. 2023]. In this line, there is
no concern about ensuring fairness in decisions, since the interest is only in predic-
tive performance. Among the GNN architectures used for these ensembles are GCN
[Kipf and Welling 2017] and GraphSage [Hamilton et al. 2017a], which are GNN frame-
works that also only attempt to improve algorithmic predictive performance.

In this work, we propose FairGNN-Bagging, a novel ensemble-based framework
that improves the trade-off between fairness and predictive performance in node classifi-
cation tasks over graphs. Our contributions are as follows: (1) we integrate the NIFTY
framework into an ensemble strategy, using graph perturbations to create diverse training
graphs and train GNNs in parallel, aggregated via majority or fairness-aware voting; (2)
we design an augmented graph dataset method using structured perturbations (DropE-
dge and Biased Edge Dropout) to promote ensemble diversity while preserving relevant
information; (3) we show that FairGNN-Bagging improves fairness metrics (counterfac-
tual fairness, demographic parity, and equal opportunity) across three real-world datasets,
without compromising—often improving—AUROC and F1-score and (4) we provide ev-
idence that FairGNN-Bagging achieves a more stable and reliable prediction behavior
compared to single GNN models.

This paper is organized as follows: Section 2 presents the foundational concepts.
Section 3 reviews the related work in graph counterfactual fairness and ensemble learning
for GNNs. Our proposal is detailed in Section 4, while Section 5 offers the experimental
results. Finally, Section 6 offers the conclusions.

2. Preliminaries
Let the unweighted, undirected graph G = (V,E,X) be denoted by a set of N nodes V =
{v1, v2, ..., vN}, a set of edges E ⊆ V×V and a set of attribute vectors X = {x1, x2, ..., xN}
corresponding to all nodes in the set V, where each xv ∈ X is a d-dimensional vector and
represents the attribute values for node v ∈ V. The edges of the graph G are represented
by the adjacency matrix A ∈ RN×N in which Auv = 1 if there exists an edge e ∈ E
between nodes u and v, and Auv = 0 otherwise. The node classification task consists of
assigning a label Ŷv to each node v ∈ V.

2.1. Information Processing in GNNs

In a GNN, information processing is typically structured into three interconnected stages:
message passing, embedding generation, and prediction [Kipf and Welling 2017]. The
first stage, message passing, involves iterative communication between nodes and their
neighbors. At each iteration, nodes aggregate information from their direct neighbors,
combining it with their own attributes to update their representations. This process lever-
ages the graph structure to capture local connectivity patterns and attribute dependencies,
allowing nodes to incorporate context from their surrounding network. As the iterations
progress, the node representations evolve into embeddings zv, i.e., ENC(v) = zv, which
are latent vectors that not only encode local neighborhood information, but, depending
on the depth of the network, also capture broader, more global graph structures. These
embeddings serve as a compact, informative representation of each node within the graph,
synthesizing both its own attributes and the structural and attribute-based context provided
by its neighbors [Kipf and Welling 2017, Hamilton et al. 2017a].

Finally, in the prediction stage, these learned embeddings are passed through a



classifier, often implemented as a fully connected layer. This classifier f maps the em-
beddings to output labels, i.e., Ŷv = f(zv). By combining these stages, GNNs enable
effective learning from graph-structured data, offering a flexible framework for the node
classification task [Kipf and Welling 2017, Hamilton et al. 2017a].

Consider a GNN with K layers and h(1)
v ,h(2)

v , ...,h(K)
v are the outputs of each of

these layers for each node v ∈ V . Also consider the message (MSG), aggregation (AGG)
and combination (COMB) operators [Wu et al. 2020]. Formally the k-th layer of the
GNN for a node v is formulated as follows:

m(k)
u =MSG(h(k−1)

u ), u ∈ {Nv ∪ v}
h(k)
v = COMB(AGG

(
m(k)

u |u ∈ Nv)
)
,m(k)

v ),
(1)

whereNv is the set of neighbors of node v. Each node v collects the messages of its neigh-
boring nodes u ∈ Nv using the MSG operator. These messages can be the neighbors’
attribute vectors or some transformation function of these vectors. The AGG operator ag-
gregates the messages of all neighbors of a given node v using, for example, sum, average,
or a nonlinear function. After aggregating the neighbors’ messages, the COMB operator
combines the result of the aggregation with the message of node v itself to update its own
representation in layer k using, for example, a linear transformation followed by a non-
linear activation function. The final representation of node v in the last layer is zv = h(K)

v

[Wu et al. 2020]. There are several classical architectures in the literature for the layers of
a GNN, among them are GCN (Graph Convolutional Networks) [Kipf and Welling 2017]
and GraphSage [Hamilton et al. 2017a].

2.2. Counterfactual Fairness

In this work, we focus on counterfactual fairness, a concept in fair machine learning that
ensures decisions made by a model are unbiased with respect to sensitive attributes (e.g.,
race, gender, age) when considering counterfactual scenarios. Counterfactual fairness is
closely related to the counterfactual learning concept [Kusner et al. 2017], as both rely on
counterfactual reasoning to analyze and predict outcomes in alternative scenarios. How-
ever, counterfactual learning uses these scenarios to optimize model performance, while
counterfactual fairness ensures ethical and unbiased decisions.

Counterfactual fairness is deeply connected to Judea Pearl’s structural causal
model (SCM) [Pearl 2009] because SCM provides the mathematical and conceptual
framework for reasoning about counterfactual and causal relationships. A causal model
consists of a causal graph and structural equations. The causal graph is a directed acyclic
graph in which each node represents a variable and each directed edge represents a causal
relationship. The structural equations describe these causal relationships between the
variables. The idea of counterfactual fairness is that if the value of the sensitive attribute
is changed in a counterfactual scenario, the predictions given by the algorithm remain the
same. The counterfactual value ŶS←s′ represents a hypothetical scenario for the output Ŷ
if the value of the sensitive attribute S had changed from s to s′.

2.3. Ensembles and Bagging

Ensemble learning in classification tasks is a machine learning technique that combines
the predictions of n hypotheses l1, l2, l3, ..., ln, often referred to as base learners, to im-
prove overall performance and robustness. Typically, these base learners are combined



using methods such as voting, averaging, or stacking, leveraging the diversity of the mod-
els to reduce errors and enhance generalization. Classical ensemble learning methods
include Bagging, Boosting, and Stacking. The framework proposed in this work is based
on Bagging.

Bagging [Breiman 1996], short for Bootstrap Aggregating, improves model accu-
racy and reduces overfitting by training multiple homogeneous base learners (same ma-
chine learning algorithms) on different subsets of the training data (D1, · · · , Dn), created
through random sampling with replacement from the original dataset D, and combining
their predictions, typically using averaging for regression or majority voting for classifica-
tion. Furthermore, Bagging is efficient because base learners can be computed in parallel.

Concerning GNNs, creating diversity in GNN ensembles is more challenging
compared to other types of neural networks. GNN predictions often resemble those of
the label propagation algorithm [Wang and Leskovec 2020], a semi-supervised learning
algorithm that spreads labels from labeled nodes to unlabeled nodes in a graph. This
occurs because GNN predictions are heavily influenced by the input graph’s topology
and the labeled nodes. Models trained on the same graph with the same training set are
likely to produce similar predictions and repeat the same errors [Nagarajan et al. 2022].
In Section 4 we propose a data augmentation procedure to mitigate this effect.

3. Related Work
3.1. Graph counterfactual fairness

NIFTY is the most effective framework that deals with graph counterfactual fairness.
and generates embeddings that are fair and stable [Agarwal et al. 2021]. To achieve this
goal, NIFTY uses optimization with regularization in which a triple objective function
maximizes the similarity of the embeddings of the input graph G and the counterfac-
tual and noisy graphs created. To maximize this similarity, a Siamese network is used,
which is a neural network architecture composed of two or more identical networks that
share the same weights and parameters [Bromley et al. 1993]. In addition, Lipschitz
normalization is used in the layers of the GNN to improve the message passing mech-
anism. In experiments, NIFTY incorporates several GNN architectures, such as GCN
[Kipf and Welling 2017] and GraphSAGE [Hamilton et al. 2017a].

To generate NIFTY’s counterfactual graph, node sensitive attributes are flipped
to ensure counterfactual fairness (if the value of the sensitive attribute is changed in a
counterfactual scenario, the predictions given by the algorithm should remain the same).

To generate NIFTY’s noisy graph, the attributes of the original nodes in G are
slightly perturbed and edges are randomly dropped using DropEdge [Rong et al. 2019].
To add node attribute noise, xv (attributes of node v) are perturbed using a mask vector r ∈
{0, 1}d that follows a Bernoulli distribution, i.e. r ∼ B(pn), such that pn is the probability
of independently perturbing each attribute (except the sensitive attribute). Thus, the new
attribute vector generated is x̃v = xv + r ◦ δ, where the symbol ◦ is the element-wise
multiplication operator and δ ∈ Rd is sampled from a normal distribution. In other words,
r indicates which attributes will be perturbed, and r ◦ δ has the value of the noise that will
be added to the attribute vector. DropEdge uses a random binary mask from a Bernoulli
distribution, i.e., Re ∼ B(1−pe), such that Re ∈ {0, 1}N×N and pe denotes the probability
with which an edge is dropped from G. Thus, the new adjacency matrix is Ã = A ◦ Re.



This perturbations ensure stability.

Biased Edge Dropout [Franco et al. 2024] modifies NIFTY’s DropEdge strategy
that is focused on enforcing only stability. To also enforce fairness, Biased Edge Dropout
generates a noisy graph with a desired homophily rate (i.e., edges that connect nodes with
the same values of the sensitive attributes). According to Spinelli et al. (2021), removing
homophilous edges can help improve group fairness. Biased Edge Dropout is a variation
of FairDrop algorithm [Spinelli et al. 2021] and introduces a new hyperparameter, the ho-
mophilous rate ρ, that specifies the maximum ratio of allowed homophilous connections.
Given the new adjacency matrix Ã for the noisy graph and the original adjacency matrix
A, let EA be the set of edges not dropped by NIFTY’s DropEdge and EÃ be the set of
edges dropped by NIFTY’s DropEdge. Using EA, the percentage of homophilous edges
is computed. If this percentage is greater than ρ, homophilous connections in EA are
replaced with heterophilous connections in EÃ until ρ is reached [Franco et al. 2024].

3.2. Ensemble learning in GNNs
There are works in the literature that use GNN ensembles for applications in specific do-
mains [Kosasih et al. 2021, Chakravarty et al. 2020]. They experimentally showed that
the use of GNN ensembles brings benefits, obtaining better algorithmic performance
than individual GNNs. Among the GNN ensemble frameworks that have been pro-
posed are GEENI [Nagarajan et al. 2022], GNN-Ensemble [Wei et al. 2023] and GEL
[Lin et al. 2022]. GEENI uses several models of different GNN architectures that are
trained using different hyperparameters and regularizers. For each of these models, a
score is calculated for how much the model improves the diversity and accuracy of the
ensemble. GNN-Ensemble combines hundreds of base learners using the Bagging method
and performs three steps. First, substructures are randomly selected from the topological
space of the input graph and a subset of attributes are randomly selected from the original
attribute space. Second, different base learners are trained with these subgraphs and at-
tribute subsets. Third, to perform the final classification, the decisions of the base learners
are aggregated using different voting methods. In GEL, a loss function is proposed that
takes into account the transfer of knowledge between the base learners. Two strategies
are adopted to aggregate the predictions: (i) serialized ensemble (similar to Boosting) and
(ii) parallel ensemble (similar to Bagging). None of these ensemble approaches consider
algorithmic fairness, focusing solely on predictive performance.

4. FairGNN-Bagging
We introduce a novel framework, FairGNN-Bagging, designed to strike an improved bal-
ance between fairness and predictive performance in node classification tasks. This ap-
proach leverages ensemble learning, with NIFTY framework to train base learners.

Our approach is guided by two key assumptions:(1) Bagging techniques reduce
variance and improve the robustness of statistical models [Breiman 1996], and (2) ensem-
bles of models trained directly on the same graph dataset tend to present little variability
[Wei et al. 2023], hence the need for a data augmentation mechanism. To address this,
our framework uses three concepts: (1) data augmentation from the perturbation of non-
sensitive attributes and DropEdge (or Biased Edge Dropout), that are techniques that drop
edges to generate variability in the population of models in the ensemble, (2) parallelized
training of n models with the NIFTY framework, and (3) aggregation of the responses of
the ensemble models through majority voting or fairness-aware selective voting.
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Figure 1. The FairGNN-Bagging framework where n different perturbed graphs
G′

i are created from the input graph G. For example, to obtain G′
1, a ho-

mophilous edge (a connection between two nodes with the same sensi-
tive attribute was randomly dropped) and all non-sensitive attributes were
slightly perturbed. Each G′

i is fed into the NIFTY framework to train base
learners, whose predictions are combined to form the ensemble using ma-
jority voting or fairness-aware selective voting.

4.1. Data augmentation.

To generate diversity in the ensemble, its members should be diverse; for this, as we
commented before, we create an augmented graph-dataset to train an ensemble of GNNs.
This prevents overfitting to a specific data distribution. To create the augmented graph-
dataset we use the same strategy presented in NIFTY [Agarwal et al. 2021] to generate
the perturbed (noisy) graph. We add node attribute noise using pn as the probability of in-
dependently perturbing each attribute (except the sensitive attribute). We also use two al-
ternative strategies to drop edges: (1) DropEdge using p′e as the probability with which an
edge is randomly dropped from G, and (2) Biased Edge Dropout to balance homophilous
and heterophilous sensitive connections using ρ to specify the maximum ratio of allowed
homophilous connections in the graph G and also using p′e. The FairGNN-Bagging frame-
work is showed in Fig. 1 where n different perturbed graphs G′i = (V,E′, X̃) are created
adding attribute noise and dropping the edges of the input graph G using DropEdge or
Biased Edge Dropout.

4.2. Parallelized training and aggregation.

Each perturbed graph G′i is fed into the NIFTY framework to train base learners, which
are them combined to form the ensemble. After training multiple NIFTY models on the
augmented graph dataset, we combined their predictions using (i) majority voting, where
each base learner casts a vote for a class, and the most frequent label is assigned to each
node or (ii) fairness-aware selective voting, where test-time predictions are made using



Table 1. Methods used in the experiments and its acronyms

Method Acronym
GCN [Kipf and Welling 2017], baseline architecture for graph-based tasks GCN
NIFTY [Agarwal et al. 2021] incorporated into GCN that uses DropEdge NIFTY
FairGNN-Bagging using DropEdge, evaluated with n=10 and majority voting NE10
FairGNN-Bagging using DropEdge, evaluated with n=20 and majority voting NE20
FairGNN-Bagging using DropEdge, evaluated with n=10 and fairness-aware selective voting sNE10
FairGNN-Bagging using DropEdge, evaluated with n=20 and fairness-aware selective voting sNE20
NIFTY [Agarwal et al. 2021] incorporated into GCN that used Biased Edge Dropout beNIFTY
FairGNN-Bagging using Biased Edge Dropout, evaluated with n=10 and majority voting beNE10
FairGNN-Bagging using Biased Edge Dropout, evaluated with n=20 and majority voting beNE20
FairGNN-Bagging using Biased Edge Dropout, evaluated with n=10 and fairness-aware selective voting sbeNE10
FairGNN-Bagging using Biased Edge Dropout, evaluated with n=20 and fairness-aware selective voting sbeNE20

only a percentage ψ of base learners that achieved the highest counterfactual fairness
scores during training (see Fig. 1). For example, if n = 20 and ψ = 80%, only the
16 best base learners will participate in the voting. Finally, we evaluated the predictive
performance and fairness metrics.

We demonstrate that training multiple NIFTY models in parallel captures diverse
biases, and combining their predictions enhances predictive performance, improves fair-
ness without sacrificing predictive performance.

5. Experiments

This section presents a comparison among the methods shown in Table 1.

5.1. Datasets and Metrics

The datasets German credit [Dua et al. 2017], Recidivism [Jordan and Freiburger 2015]
and Credit defaulter [Yeh and hui Lien 2009] were used. In these datasets, the sen-
sitive attributes are binary and the task is binary node classification. These datasets
have attribute bias and structural bias that affects information propagation in GNNs
[Dong et al. 2022]. The graph of the German credit dataset [Dua et al. 2017] has 1,000
nodes representing customers that are connected based on the similarity of their credit
accounts and has 22,242 edges. The gender of the customers is the sensitive attribute and
the task is to differentiate customers with good credit risk from bad credit risk. The graph
of the Recidivism dataset [Jordan and Freiburger 2015] has 18,876 nodes representing
defendants who were released on bail in US state courts (1990-2009). The defendants are
connected based on the similarity of their criminal records and demographics. The graph
has 321,308 edges. The sensitive attribute is race, and the goal is to classify defendants
into bail (i.e. unlikely to commit a violent crime if released) vs. no bail (i.e. likely to
commit a violent crime). The Credit defaulter dataset graph has 30,000 nodes represent-
ing customers who are connected based on similar spending and payment patterns. The
graph has 1,436,858 edges. Customer age is the sensitive attribute (customers over 25 and
customers under or equal to 25 years of age). The task is to classify whether a customer
will default on credit card payments.

Following the evaluation criteria used in [Agarwal et al. 2021], the AUROC and
F1-score metrics are used to evaluate node classification performance. Two metrics are
used to quantify group fairness: Demographic Parity (∆DP = |P (Ŷv = 1|s = 0) −
P (Ŷv = 1|s = 1)|) and Equal Opportunity (∆EO = |P (Ŷv = 1|Yv = 1, s = 0)− P (Ŷv =
1|Yv = 1, s = 1)|). In addition, to measure counterfactual fairness, the CF score is used as



the percentage of test nodes for which the node class prediction changes when the node’s
sensitive attribute is flipped. Finally, the Instability score is represented as the percentage
of test nodes for which the node class prediction changed when random noise was added
to the node attributes.

5.2. Experimental Setup

NIFTY, base learners of NEn and sNEn were trained using the hyperparameter values
guided in [Agarwal et al. 2021], that are, pn = 0.1 and pe = 0.001, using Adam as the
optimizer, a learning rate λ = 0.001, 1000 epochs and using a GCN as the NIFTY’s
encoder. In NEn, sNEn, beNEn and sbeNEn, for creating G′i, the probability of inde-
pendently perturbing each attribute of xv was also set to pn = 0.1, and the probability of
randomly drop edges was set to p′e = 0.3. We used this p′e value to generate more diversity
for the ensemble, thus eliminating more edges. The number of base learners, n, for NEn,
sNEn, beNEn and sbeNEn was set to {10, 20}. beNIFTY and each base learner used in
beNEn and sbeNEn use pn = 0.1 and pe = 0.3. We set ρ (homophilous rate) to 0.3 for
enforcing more heterophilous connections in the graphs created and use a high value of
p′e = 0.3 to allow the swap between homophilous and heterophilous edges in Biased Edge
Dropout. We use ψ = 80% to select the base learners that achieved the highest counter-
factual fairness scores during training for sNEn and sbeNEn. GCN, NIFTY, beNIFTY
and each base learner in the ensembles configurations were configured with single-layer
GNN encoder with hidden dimensionality set to 16, and we used 50%, 25% and 25%
of nodes for training, validation and test following the setup used in the original NIFTY
paper [Agarwal et al. 2021].

5.3. Results

The results of the experiments comparing all the methods are shown in Table 2. For each
metric, the mean and standard deviation were calculated considering 10 simulations with
different random seeds. As expected, for all datasets, CF, ∆DP , ∆EO and Instability score
of GCN are much worse than the others GNNs that lead with fairness.

In the German Credit dataset, ensemble-based models outperformed individual
baselines across all fairness and stability metrics, while maintaining or improving predic-
tive performance. Moreover, sbeNE20 reported the lowest instability, demographic parity
(∆DP ), and equal opportunity (∆EO) and also achieved perfect counterfactual fairness,
demonstrating the effectiveness of fairness-aware selective voting. These models also
showed consistent performance across multiple runs, indicating improved robustness.
Overall, these results confirm that FairGNN-Bagging, particularly with fairness-aware
selective voting and Biased Edge Dropout, improves counterfactual and group fairness
without compromising predictive performance and leads to more stable predictions.

For Recidivism, one of the ensemble variants has the best mean result for Instabil-
ity score (sNE10), ∆DP (NE20) and ∆EO (NE10). The Recidivism dataset exhibits less
structural and attribute bias [Dong et al. 2022] compared to the other datasets employed
in this study, limiting the effect of fairness methods. This characteristic may account for
the degradation in predictive performance metrics observed in fairness-oriented methods
when compared to GCN. The performance loss is particularly notable in the F1-score.
While GCN achieved the highest AUROC and F1-score, it exhibited the worst fairness
and instability metrics.



Table 2. Comparison of method metrics. The arrow ↑ indicates that the higher the
value is better, while ↓ indicates that the lower the value is better.

Dataset Method AUROC (↑) F1-score (↑) CF (↓) Instability (↓) ∆DP (↓) ∆EO (↓)
GCN 67.62±3.52 80.39±1.99 3.88±2.16 8.08±4.68 5.45±5.57 4.23±3.96
NIFTY 68.07±2.59 82.06±0.38 0.96±0.98 1.64±0.94 3.11±2.04 1.80±1.70
NE10 70.44±1.35 82.44±0.22 0.12±0.18 0.48±0.75 1.66±1.55 1.54±2.08

German NE20 69.92±0.52 82.63±0.28 0.00±0.00 0.24±0.32 0.95±0.52 1.83±1.38
sNE10 69.85±1.89 82.38±0.28 0.00±0.00 0.08±0.16 0.90±0.90 0.74±1.02
sNE20 69.32±0.88 82.81±0.27 0.04±0.12 0.16±0.27 1.12±0.74 0.49±0.4
beNIFTY 66.57±4.65 81.76±0.61 1.82±2.17 2.36±1.71 2.64±2.10 2.36±2.03
beNE10 68.25±3.65 81.66±1.07 1.04±0.84 2.76±2.22 4.59±3.96 4.15±3.61
beNE20 70.52±1.37 82.39±0.33 0.52±0.54 1.20±1.01 2.51±2.27 2.72±3.31
sbeNE10 69.55±2.88 82.21±0.58 0.04±0.12 0.36±0.38 0.90±1.05 1.58±3.17
sbeNE20 68.92±2.30 82.56±0.26 0.00±0.00 0.08±0.16 0.68±0.77 0.25±0.39
GCN 93.65±0.21 83.44±0.63 5.08±0.47 18.03±0.81 6.55±0.16 5.30±0.19
NIFTY 85.93±0.54 64.92±4.49 0.88±0.56 8.50±0.93 3.49±0.39 1.30±0.87
NE10 88.28±0.66 63.10±4.81 1.66±0.50 7.74±0.96 3.04±0.22 0.57±0.32

Recidivism NE20 88.91±0.46 63.73±3.08 2.14±0.38 8.33±0.80 2.93±0.19 0.71±0.39
sNE10 87.55±0.41 59.25±5.61 1.29±0.44 6.95±1.20 2.96±0.31 0.64±0.46
sNE20 88.12±0.52 60.76±2.71 1.83±0.49 7.57±0.93 2.97±0.22 0.61±0.40
beNIFTY 85.65±0.51 63.74±3.26 0.82±0.59 7.94±0.71 3.77±0.51 2.20±1.24
beNE10 88.00±0.38 62.94±3.03 1.01±0.26 7.59±0.71 3.42±0.28 1.33±0.61
beNE20 88.82±0.40 62.71±2.20 1.14±0.14 7.41±0.78 3.44±0.18 1.29±0.59
sbeNE10 87.53±0.25 61.81±2.97 0.95±0.32 7.52±0.90 3.40±0.15 1.31±0.58
sbeNE20 88.27±0.57 60.66±3.48 1.23±0.28 7.04±0.70 3.18±0.22 0.89±0.40
GCN 69.28±0.33 87.67±0.12 5.58±1.50 6.47±2.15 5.81±0.87 3.05±0.73
NIFTY 68.56±0.14 87.59±0.05 0.75±0.63 3.46±0.47 1.96±1.12 1.18±0.64
NE10 69.05±0.06 87.60±0.04 0.12±0.08 2.65±0.57 1.06±0.62 0.65±0.30

Credit NE20 69.14±0.02 87.58±0.02 0.06±0.07 2.33±0.36 0.89±0.13 0.38±0.11
sNE10 69.06±0.08 87.59±0.03 0.08±0.05 2.31±0.50 0.97±0.32 0.53±0.13
sNE20 69.16±0.02 87.57±0.02 0.03±0.02 2.12±0.39 0.82±0.11 0.36±0.08
beNIFTY 68.61±0.15 87.61±0.06 0.76±0.67 3.64±0.55 1.79±0.93 1.17±0.64
beNE10 69.11±0.04 87.61±0.02 0.11±0.07 2.44±0.25 0.88±0.28 0.47±0.27
beNE20 69.19±0.02 87.59±0.02 0.06±0.02 2.13±0.20 0.93±0.11 0.46±0.05
sbeNE10 69.09±0.04 87.59±0.02 0.09±0.06 2.42±0.29 0.98±0.62 0.55±0.32
sbeNE20 69.17±0.02 87.57±0.01 0.05±0.03 2.17±0.20 0.84±0.06 0.38±0.09

In the Credit Defaulter dataset, FairGNN-Bagging models achieved the best over-
all trade-off between predictive performance and fairness. Ensemble variants reached
low counterfactual fairness, low instability, and small values in ∆DP and ∆EO. Impor-
tantly, these gains were achieved without degrading AUROC or F1-score, which remained
comparable to GCN. The ensemble models also produced consistent outcomes across dif-
ferent runs. Additionally, the results show that the use of DropEdge alone was sufficient
to promote diversity and fairness improvements, with Biased Edge Dropout offering only
marginal gains in this particular dataset. Fairness-aware selective voting and DropEdge
(sNE20) achieves the best fairness and instability metrics without compromising predic-
tive performance.

6. Conclusion

In this work, we proposed FairGNN-Bagging, an ensemble-based framework designed to
improve the trade-off between predictive performance and algorithmic fairness in node
classification tasks on graphs. By leveraging the NIFTY framework with structured graph
perturbations and Bagging, our method generates diverse and fairness-aware base mod-
els, which are then aggregated using majority or selective voting. We also introduced a
selective voting strategy based on counterfactual fairness scores during training, allowing
only the most fair base learners to participate in the ensemble decision.

Experimental results on three real-world datasets demonstrated that FairGNN-



Bagging consistently reduces counterfactual fairness, group fairness and instability, while
maintaining or even enhancing predictive performance compared to traditional GNN and
NIFTY baselines. The framework proves particularly effective in scenarios where fair-
ness and reliability are critical. Furthermore, our results show that DropEdge or Biased
Edge Dropout offer improvements depending on the datasets. These findings highlight
the potential of ensemble learning to produce fairer and more stable predictions.
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