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Abstract. Dehydration is a serious health issue that can lead to serious con-
sequences, making its accurate detection crucial to maintaining proper bodily
function. In this work, we propose a hybrid machine learning model that can
classify individuals into hydrated or dehydrated states. Our approach combines
a shallow convolutional neural network that extracts unsupervised local featu-
res with statistical characteristics of time series data obtained from sensors such
as Photoplethysmography (PPG) and Electrodermal Activity (EDA). The results
show that the proposed classification model achieves an accuracy of 73%, which
is superior to most existing works in the literature that use data extracted from
PPG and/or EDA signals for the classification of hydration.

Resumo. A desidratação é um sério problema de saúde que pode levar a con-
sequências graves, tornando sua detecção precisa crucial para manter a função
corporal adequada. Neste trabalho, nós propomos um modelo de aprendi-
zado de máquina hı́brido que pode classificar indivı́duos em estados hidrata-
dos ou desidratados. Nossa abordagem combina uma rede neural convoluci-
onal rasa que extrai recursos locais não supervisionados com caracterı́sticas
estatı́sticas de dados de séries temporais obtidos de sensores como Fotopletis-
mografia (PPG) e Atividade Eletrodérmica (EDA). Os resultados mostram que
o modelo de classificação proposto alcança uma precisão de 73%, sendo supe-
rior à maioria dos trabalhos existentes na literatura que utiliza dados extraı́dos
dos sinais PPG e/ou EDA para classificação de hidratação.

1. Introdução
A água é uma das principais substâncias presentes no corpo humano, contribuindo cerca
de 63% do peso corporal e presente em 90% do plasma sanguı́neo. A água é fundamental
para digestão, transporte de nutrientes e rejeitos e regulação da temperatura, dentre outros
processo fisiológicos [Islam et al. 2025].

A falta de ingestão de água, bem como seu consumo excessivo, podem acarretar
sérios riscos à saúde, tais como mau funcionamento dos rins [El-Sharkawy et al. 2015],
depressão [Lee and Kim 2024] e hipertensão [Li et al. 2024]. Embora seja de conheci-
mento comum a importância de se manter hidratado, a desidratação é um problema ig-
norado por muitas pessoas. De acordo com Gomes e Sousa (2019), a ingestão de água



é frequentemente negligenciada devido ao ritmo acelerado da vida das pessoas. Além
disso, a desidratação é um problema recorrente em idosos. Alguns pacientes idosos com
demência esquecem de beber água e alguns optam por não beber por medo de sofrer um
episódio de incontinência ou urinar com muita frequência. Já pacientes com demência
podem não reconhecer os sintomas da sede ou terem dificuldade em comunicarem suas
necessidades [Theodoridis et al. 2025]. Portanto, o monitoramento do nı́vel de hidratação
tem um papel vital na saúde e no bem-estar das pessoas [Liaqat et al. 2022].

Para avaliar a hidratação de seus pacientes, profissionais médicos geralmente con-
tam com métodos clı́nicos e métodos invasivos, como exames de sangue e análise sa-
livar, relacionados a marcadores sensı́veis do estado de hidratação como osmolaridade
plasmática (PO), caracterı́sticas da urina, osmolaridade salivar, análise da bioimpedância
(BIA), nı́vel de água corporal total (TBW), medição da pressão arterial e a taxa de
pulso [Liaqat et al. 2020]. No entanto, esses métodos são ineficazes para o monitora-
mento contı́nuo e fora do ambiente hospitalar. Neste contexto, o uso de dispositivos
vestı́veis para monitorar a desidratação sem a necessidade de testes invasivos ou super-
visão médica pode ser altamente benéfico. Técnicas de Aprendizado de Máquina (AM)
podem ser empregadas para analisar dados complexos de sensores ou de imagens em ta-
refas de classificação, por exemplo, para determinar se um indivı́duo apresenta indı́cios
de desidratação ou para identificar quando uma pessoa está realizando movimentos asso-
ciados ao ato de beber água.

A literatura apresenta várias abordagens para detectar, inferir, e medir a
desidratação de indivı́duos baseado em dados de sensores não invasivos existentes em
dispositivos vestı́veis. Algumas abordagens usam sensores fı́sicos com o propósito de
detectar um evento de beber ou para estimar a quantidade de lı́quido ingerido. Sensores
inerciais embarcados em dispositivos usados no pulso ou no corpo [Cergolj et al. 2025,
Gomes and Sousa 2019, Ortega Anderez et al. 2021] ou em contêineres inteligentes (e.g.
copos ou garrafas de água inteligentes) [Plecher et al. 2019, van Iterson et al. 2025] são
exemplos disso. Outras abordagens, que visam medir o nı́vel de hidratação do indivı́duo,
costumam empregar sensores fisiológicos ou biomarcadores para detectar mudanças cor-
porais como alterações na pressão sanguı́nea e no batimentos cardı́acos, variabilidade da
condutividade da pele, temperatura, entre outros [Siyoucef et al. 2025, Armstrong 2007,
Popkin et al. 2010, Kulkarni et al. 2021].

Este trabalho utiliza caracterı́sticas extraı́das de sinais de fotopletismografia
(PPG) e atividade eletrodérmica (EDA) para detectar indı́cios de desidratação. Estu-
dos anteriores avaliaram a desidratação produzida por atividades fı́sicas por meio do
uso de parâmetros obtidos da frequência cardı́aca fornecidas pelo sinal PPG, da ativi-
dade eletrodérmica obtida pelo sinal EDA e da temperatura da pele [Liaqat et al. 2020,
Sabry et al. 2022, Rizwan et al. 2020]. A vantagem do PPG e do EDA é que tratam-se de
sinais de fácil coleta; em especial, existe uma grande quantidade de modelos baratos que
permitem a captura do sinal PPG em ambiente livre e doméstico

Para extrair caracterı́sticas dos sinais PPG e EDA, este trabalho adota uma ar-
quitetura baseada em redes neurais convolucionais (CNN). As CNNs aprendem filtros
que promovem extração de caracterı́sticas da entrada, permitindo identificar e capturar
padrões locais e suas variações. Esse aprendizado não supervisionado de caracterı́stica
acontece automaticamente nas camadas convolucionais da rede. As caracterı́sticas pro-



duzidas são então empregadas como entrada para uma rede densa, na qual o exemplo é
efetivamente classificado. Para melhorar o desempenho da rede, nós adicionamos uma
nova entrada composta por um conjunto de caracterı́sticas estatı́sticas básicas citadas na
literatura. Uma camada de fusão é proposta para combinar as caracterı́sticas (extraı́das
pela CNN e manualmente) em uma representação unificada que é usada para classificar
o indivı́duo como hidratado ou desidratado. O modelo proposto foi treinado e validado
usando uma base de dados pública [Sabry et al. 2022]. Os resultados mostram que o mo-
delo de classificação proposto alcança uma precisão de 73%, sendo superior à maioria
dos trabalhos existentes na literatura que utiliza dados extraı́dos dos sinais PPG e/ou EDA
para classificação de hidratação.

O restante do artigo está organizado como segue: a Seção 2 descreve os traba-
lhos relacionados; a Seção 3 apresenta uma descrição da metodologia utilizada; a Seção
4 descreve os experimentos e discute os resultados obtidos; por fim, na Seção 5 são apre-
sentadas as conclusões e possibilidades de trabalhos futuros.

2. Trabalhos Relacionados

Manter os nı́veis ideais de hidratação no corpo humano é crucial para manter a saúde e
prevenir várias doenças. O uso de técnicas de aprendizagem de máquina e de sensores
fisiológicos tem sido visto com uma ferramenta promissora para avaliação não invasiva e
precisa dos nı́veis de hidratação. Nesta seção, nós revisamos estudos recentes que utilizam
os sensores PPG e/ou EDA e exploram o uso de técnicas de aprendizagem de máquina
para detecção do nı́vel de hidratação.

Siyoucef et al. (2025) propõem um sistema baseado em uma tela touchscreen,
semelhante a de um smartphone para monitoração do grau de desidratação. Os sensores
medem a capacitância da pele, que varia conforme o grau de hidratação da pessoa. Os
dados foram coletados de voluntários sujeitos a desidratação em dois grupos: religiosos
que se encontravam em jejum durante o perı́odo do ramadã e atletas; o grupo em jejum
realizou cinco coletas ao dia em diferentes nı́veis de desidratação, ao passo que atletas
realizaram coletas antes e depois de treinarem. Para classificar os dados, os autores em-
pregaram modelos de AM: regressão logı́stica, máquina de vetores de suporte (SVM), k
Vizinhos mais Próximos (k-NN), florestas aleatórias e árvore de decisão. Um dos desafios
encontrados no trabalho foi o efeito que o suor causa na coleta dos dados; mesmo com
a limpeza dos sensores, o suor residual pode atrapalhar a leitura da capacitância da pele.
Não obstante, os autores concluı́ram que o procedimento é adequado, especialmente para
classificação binária (hidratado vs. desidratado).

Rizwan et al. (2020) propuseram uma abordagem não invasiva para estimativa
do nı́vel de hidratação usando a Atividade Eletrodérmica (EDA, anteriormente conhecida
como Resposta Galvânica da Pele ou GSR). Os autores usaram algoritmos de AM, in-
cluindo regressão linear e árvores de decisão, para prever os nı́veis de hidratação com
base nas medições de EDA. Esse estudo dividiu a base de dados em 3 grupos relaciona-
dos à postura dos voluntários durante a coleta, sentado ou em pé. Um terceiro cenário
foi definido pela combinação de ambas as posturas e é rotulado como independente. A
abordagem que utilizou os dados de voluntários sentados alcançou uma precisão de 81%
na previsão dos nı́veis de hidratação. A abordagem com os dados de voluntários em
pé alcançou uma precisão de 76%. A abordagem proposta com dados de postura inde-



pendente alcançou uma precisão de 71% na previsão dos nı́veis de hidratação, na qual
demonstrou seu potencial para monitoramento do nı́vel de hidratação em tempo real.

Reljin et al. (2018) desenvolveram um sistema automático de detecção de desidra-
tação usando máquinas de vetores de suporte (SVMs). O sistema usa sensores não inva-
sivos para medir a variabilidade da frequência cardı́aca e prevê os nı́veis de desidratação
com base nessas medições. Os autores demonstraram a eficácia de sua abordagem em um
pequeno estudo piloto, alcançando uma precisão de 67,91% na detecção de desidratação.

Posada-Quintero et al. (2019) propuseram uma abordagem baseada em apren-
dizado de máquina para identificar desidratação leve usando respostas autonômicas ao
estresse cognitivo. Os autores usaram modelos de aprendizado raso, tais como SVMs,
k-vizinhos mais próximos (KNN) e Análise de Discriminação Quadrática (QDA), para
classificar os indivı́duos em grupos hidratados e desidratados com base em respostas fi-
siológicas, como frequência cardı́aca e atividade eletrodérmica. O estudo dividiu a base
de dados em quatro casos diferentes: 1) apenas medidas coletadas durante descanso; 2)
apenas medidas coletadas durante o teste de estresse cognitivo; 3) a diferença entre as
medidas de repouso e teste; 4) medidas de repouso e teste. Para o caso 1, utilizou-se um
algoritmo de KNN que alcançou 86,7% de precisão. No caso 2 foi aplicado em um SVM
que obteve uma precisão de 73,9%. Um algoritmo de KNN foi aplicado para o caso 3 e
obteve 68,2% de precisão. No caso 4 foi aplicado um algoritmo de QDA que alcançou
90% de precisão.

Liaqat et. al. (2020) utilizaram uma abordagem não invasiva para detecção do
nı́vel de hidratação da pele observando cenários onde a pessoa se encontra sentada e
em pé. Os autores usaram diversos algoritmos de aprendizagem de máquina, incluindo
regressão logı́stica, floresta aleatória, K-vizinhos próximos, Naive Bayes, árvores de de-
cisão, análise do discriminante linear e AdaBoost para classificar o nı́vel de hidratação de
uma pessoa baseado nas medições obtidas pela atividade eletrodérmica (EDA). Os autores
obtiveram com essa abordagem uma precisão de 93% para classificação de desidratação
utilizando o algoritmo floresta aleatória.

Alaslani et al. (2024) coletaram dados de PPG utilizando a câmera de um
smartphone. Os dados foram coletados de um grupo de 25 pessoas em jejum du-
rante o ramadã. Experimentos foram realizados em duas modalidades: um problema
de classificação múltipla (hidratado, levemente desidratado, desidratado ou severamente
desidratado) e um problema de classificação binária. O sinal de PPG foi pré-processado
com filtro Butterworth e frequência de corte de 10Hz, normalizado e segmentado em sub-
janelas de 3 segundos. Além disso, os autores empregaram aumento de dados adicionando
ruı́do gaussiano às janelas, promovendo diferentes experimentos nas quais os dados foram
aumentados em duas, três e quatro vezes o número original de instâncias. Foram testa-
dos modelos rasos (k-NN, SVM e florestas aleatórias), modelos de sequência (LSTM e
BiLSTM-FCN) e transformers (DistilBERT e ViT). Para todos os modelos, os autores
reportaram melhoria dos resultados (em acurácia) com aumento de dados, sendo que os
melhores resultados foram obtidos com dados aumentados em quatro vezes a quantidade
original de instâncias. Os autores concluem que os modelos de aprendizado profundo e
os transformers apresentam os melhores desempenhos dentre todos os analisados.

Diferentemente das abordagens discutidas acima, este trabalho propõe uma arqui-



tetura que combina uma CNN rasa para extração de caracterı́sticas locais não supervisio-
nadas, juntamente com caracterı́sticas estatı́sticas que codificam informações globais das
séries temporais utilizadas (dados dos sinais PPG e EDA). Além disso, durante o processo
de validação uma abordagem hold-out por indivı́duo foi adotada para evitar vazamento de
dados.

3. Materias e Método
Este trabalho tem como objetivo propor um método para detecção de desidratação utili-
zando dados de sensores fisiológicos e uma arquitetura hı́brida de aprendizado profundo,
com a finalidade de contribuir para o monitoramento de desidratação. Detalhes sobre o
conjunto de dados, pré-processamento dos dados e arquitetura de rede são apresentados a
seguir.

3.1. Conjunto de dados

Este estudo utilizou a base de dados pública proposta por Sabry et al. (2022), que in-
clui sinais inerciais e fisiológicos coletados de 11 indivı́duos durante um perı́odo de je-
jum. Nesta pesquisa foram selecionados apenas os sinais fisiológicos de Atividade Ele-
trodérmica (EDA) e Fotopletismografia (PPG). Os dados foram coletados a partir da uni-
dade Shimmer Galvanic Skin Response (GSR), com seus eletrodos de resposta galvânica
nos dedos indicador e médio da mão esquerda e o clipe de fotopletismografia atrelado
ao lóbulo da orelha esquerda. Foram considerados dois cenários de jejum: o primeiro
durante o perı́odo de jejum do Ramadã e o segundo durante um perı́odo de jejum inter-
mitente sem ingestão de sólidos ou lı́quidos, registrando o último evento de ingestão de
água ou comida. Os indivı́duos não foram restritos em relação a movimentos ou horários
de uso do dispositivo vestı́vel, a fim de representar um cenário real de uso durante ativi-
dades do dia-a-dia, embora a maioria dos dados tenha sido coletada enquanto os usuários
estavam sentados.

3.2. Tratamento dos dados

Nesta etapa, os dados foram preparados para serem utilizados em um modelo
de predição. Para isso, os dados foram segmentados em janelas deslizantes de
4 minutos [Sabry et al. 2022], com sobreposição de 50% entre janelas adjacentes.
Essa técnica de sobreposição é comumente adotada em análise de séries temporais,
pois permite capturar informações de continuidade e mudanças graduais nos dados
[Posada-Quintero et al. 2019].

Os dados brutos do PPG foram preparados para análise, passando por diferentes
etapas de processamento. Primeiro, os valores dos dados brutos foram normalizados. Em
seguida, os dados normalizados foram submetidos a um filtro de passa-baixa Butterworth
para remover as frequências acima de 8 Hz e abaixo de 0,5 Hz, mantendo apenas as
frequências relevantes para a análise, conforme sugerido em [Akar et al. 2013].

Em seguida, foi realizada extração de caracterı́sticas. Foram extraı́das das janelas
informações importantes como a taxa de batimentos por minuto, a taxa de respiração e
a raiz quadrada média de diferenças sucessivas entre batimentos cardı́acos normais. A
taxa de batimentos por minuto, por exemplo, é um indicador importante do estado car-
diovascular de um indivı́duo, enquanto a taxa de respiração pode fornecer informações



sobre a função respiratória. A raiz quadrada média de diferenças sucessivas entre bati-
mentos cardı́acos normais é um indicador da variabilidade da frequência cardı́aca, que é
um importante biomarcador do sistema nervoso autônomo e pode ser útil para avaliar o
estresse e outras condições de saúde. Essas caracterı́sticas foram extraı́das dos sinais do
PPG filtrado usando o Heartpy [Van Gent et al. 2019], que é uma biblioteca especializada
em análise de sinais de PPG.

Além dessas caracterı́sticas também foram extraı́das caracterı́sticas estatı́sticas
(mı́nimo, média, variância, entropia, desvio padrão, percentil, mediana, moda e curtose)
dos sinais GSR e PPG. Essas caracterı́sticas estatı́sticas podem ser usadas para descrever
as propriedades dos sinais. Por exemplo, uma alta variância ou entropia pode indicar que
o sinal está mais irregular e imprevisı́vel, enquanto uma curtose elevada pode indicar que
os dados têm uma distribuição mais concentrada em torno da média. Essas informações
podem ser úteis na detecção de alterações fisiológicas ou emocionais presentes nos sinais
GSR e PPG [Liaqat et al. 2020].

O conjunto de dados utilizado possui um desbalanceamento muito grande entre
os indivı́duos, resultando em uma distribuição desbalanceada entre as classes, como mos-
trado na Tabela 1. Entretanto, antes de realizar alterações no conjunto, os dados foram
particionados em um subconjunto de treinamento e outro de teste utilizando a aborda-
gem hold-out. Especificamente, os indivı́duos 3 e 4 foram selecionados para compor o
conjunto de teste devido ao fato de possuı́rem coletas aproximadamente balanceadas. Os
demais indivı́duos foram utilizados para treinamento.

Para lidar com o desbalanceamento dos indivı́duos no conjunto de treinamento,
realizamos uma sub-amostragem aleatória da amostra do indivı́duo 1 para 2.808.000
observações. Esse número foi definido por ser próximo da quantidade de observações
do segundo indivı́duo com maior tempo de coleta e por ser compatı́vel com o tamanho de
janela definido para os experimentos. Na fase de treinamento foram geradas observações
das classe minoritária sinteticamente aplicando a técnica SMOTE (Synthetic Minority
Over-sampling Technique) [Blagus and Lusa 2013] com o propósito de manter equili-
brado o número de observações de cada classe (hidratado e não hidratado). No total,
foram utilizadas 15.536.352 observações para treino e 4.181.424 para teste.

Tabela 1. Tamnho da amostra por indivı́duo (subject).

Observações de Hidratados Observações de Desidratados Total
S1 6.054.672 3.475.680 9.530.352
S2 840.528 84.240 924.768
S3 546.624 475.488 1.022.112
S4 1.630.512 1.528.800 3.159.312
S5 318.864 115.440 434.304
S6 0 125.424 125.424
S7 33.072 0 33.072
S8 111.696 0 111.696
S9 115.440 0 115.440

S10 124.176 0 124.176
S11 169.728 0 169.728



3.3. Arquitetura da rede

A arquitetura CNN hı́brida (CNN-H) proposta tem duas entradas, conforme a Figura 1.
Na primeira entrada, os sinais GSR (dois componentes do sinal: resistência e condutância)
e PPG são submetidos a rede composta por três blocos para realizar a extração de carac-
terı́sticas, cada um consistindo de uma camada de convolução 1D com filtros de tamanho
variado, seguida de uma camada de batch normalization, uma camada de ativação ReLU
(Rectified Linear Unit) e uma camada de pooling para reduzir o número de parâmetros a
serem aprendidos e a quantidade de computação realizada na rede. Por fim, os 2 primei-
ros blocos possuem uma camada de dropout com 30% e 20%, empregados para reduzir o
risco de overfitting. Dessa forma, após percorrer os blocos citados, os dados de entrada
são transformados em um vetor de caracterı́sticas.

Em seguida, as caracterı́sticas extraı́das pelas camadas de convolução são con-
catenadas com as caracterı́sticas estatı́sticas (Entrada 2) e são passadas para as camadas
densas com função de ativação ReLU, sendo a última camada com função de ativação
Softmax. A saı́da do modelo hı́brido é uma avaliação se os dados representam um cenário
de hidratação ou desidratação. A saı́da da rede neural é uma avaliação da possibilidade
de uma amostra ser de um episódio de hidratação ou desidratação. A Tabela 2 especifica
a arquitetura, mostrando as camadas, formato das saı́das e o tamanho do kernel.

Figura 1. Arquitetura CNN hı́brida proposta para reconhecimento de
desidratação.

3.4. Métricas de Avaliação

Para avaliar o método proposto foram utilizadas as métricas: precisão, revocação e F1-
score. A matriz de confusão que relata o número de verdadeiros positivos (VP), ver-
dadeiro negativo (VN), falsos positivos (FP) e falsos negativos (FN) foi utilizada para
calcular essas métricas.

A precisão é uma métrica que indica a proporção de exemplos classificados como
positivos pelo modelo que realmente pertencem a essa classe. A precisão reflete o quão
“confiável” é no caso de uma classificação positiva; em nosso caso, qual a probabilidade
de uma pessoa estar realmente desidratada quando o modelo dá uma saı́da positiva. A
precisão foi calculada a partir da seguinte fórmula:

Pre =
VP

VP + FP

A revocação é uma métrica que indica a proporção de exemplos classificados
como positivos em relação ao número total de exemplos verdadeiramente positivos. A



Tabela 2. Parâmetros utilizados na arquitetura proposta.

Tipo Formato
da Saı́da

Número
de Filtros

Tamanho
do Kernel

Função de
Ativação

0 Camada de Entrada 1 624x3 - - -
1 Camada de Convolução 1D 624x16 16 64 ReLu
2 Camada de Normalização 624x16 - - -
3 Camada de Ativação 624x16 - - ReLu
4 Agrupamento Médio 312x16 - - -
5 Dropout 312x16 - - -
6 Camada de Convolução 1D 312x64 64 32 ReLu
7 Camada de Normalização 312x64 - - -
8 Camada de Ativação 312x64 - - ReLu
9 Agrupamento Médio 156x64 - - -

10 Dropout 156x64 - - -
11 Camada de Convolução 1D 156x64 64 16 ReLu
12 Camada de Normalização 156x64 - - -
13 Camada de Ativação 156x64 - - ReLu
14 Agrupamento Médio 64 - - -
15 Camada de Entrada 2 30 - - -
16 Concatenação 94 - - -
17 Densa 1 64 - - -
18 Densa 2 32 - - -
19 Densa 3 16 - - -
20 Densa 4 8 - - -
21 Camada de Saı́da 2 - - -

revocação mede a capacidade do modelo de detectar todos os exemplos positivos em um
conjunto de dados; em nosso caso, qual a probabilidade de o modelo identificar que uma
pessoa está desidratada. A revocação pode ser calculada a partir da seguinte fórmula:

Rev =
VP

VP + FN

O F1-score é uma métrica que combina a precisão e a revocação do modelo, for-
necendo uma medida única do desempenho geral do modelo. O F1-score é calculado
como a média harmônica entre a precisão e a revocação do modelo, utilizando a seguinte
fórmula:

F1 =
2 ·Rev · Pre

Rev + Pre

4. Resultados e Discussão
Neste trabalho, o problema foi tratado como um problema de classificação binária, com
duas classes distintas: hidratado e desidratado. O principal desafio encontrado foi li-
dar com desequilı́brio dos dados, com a maioria dos dados concentrada nos primeiros
indivı́duos, como evidenciado na Tabela 1. Para abordar esse problema, nós utilizamos
estratégias de sub-amostragem (aleatória) e super-amostragem (SMOTE) nas classes ma-
joritária e minoritária, respectivamente.



A Tabela 3 mostra a precisão, revocação e F1-Score obtidos a partir do conjunto
de dados usados nos experimentos. Os resultados mostram que nosso modelo pode reco-
nhecer um indivı́duo desidratado com 73% de precisão e apresenta uma taxa de revocação
bem próxima, 72,5% das amostras positivas existentes foram classificadas corretamente.

Tabela 3. Desempenho da arquitetura proposta.

Número de Observações Precisão Revocação F1-score
Hidratados 1.451.424 0,70 0,77 0,74

Desidratados 1.506.336 0,76 0,68 0,72
Média 1.478.880 0,73 0,725 0,73

Para fins de comparação, a Tabela 4 apresenta dados de trabalhos da literatura que
propõem modelos de detecção de desidratação e as métricas usadas para avaliar o mo-
delo proposto. Reljin et ai. (2018) sugeriram usar dados extraı́dos da fotopletismografia
(PPG) para detectar desidratação usando máquina de vetores de suporte, resultando em
uma precisão de 67,91%. Posada-Quintero et al. (2019) propuseram o uso de estresse
cognitivo para melhorar a detecção de desidratação, usando um KNN validando por meio
da técnica Leave-One-Subject-Out (LOSO), que é uma espécie de validação cruzada na
qual cada fold contém os dados de um indivı́duo. Utilizando apenas dados de voluntários
em descanso por 4 minutos, a precisão alcançada é de 86,7%. Esse cenário está alinhado
com nossa abordagem, que não considerou dados de indivı́duos com estresse cognitivo.

Rizwan et al. (2020) sugeriram o uso do algoritmo k-vizinhos mais próximos
(KNN), separando os dados em “sentado”, “em pé” ou “independente”, sendo este último
definido pela combinação das posturas fı́sicas sentado e em pé. Os resultados de precisão
obtidos foram 81%, 76% e 71%, respectivamente, sendo a abordagem de individuos com
postura “independente” compatı́vel com a apresentada nesse trabalho. Nosso estudo si-
mula um ambiente livre e menos restritivo, usando um modelo gerado a partir de uma
arquitetura de CNN hı́brida, resultando em uma precisão de 73%. É importante ressaltar
que os resultados obtidos em nosso estudo foram claramente afetados pelos diferentes
estados de hidratação dos indivı́duos existentes na base de dados utilizada.

Tabela 4. Comparação com outros trabalhos encontrados na literatura.

Sensores Arquitetura Precisão Validação
[Reljin et al. 2018] PPG SVM 67,91% Cross-validation

[Posada-Quintero et al. 2019] PPG/EDA KNN 86,7% LOSO
[Rizwan et al. 2020] EDA KNN 71% Cross-validation

Proposto neste Artigo PPG/EDA Modelo hı́brido 73% Subject hold-out

5. Conclusão

Neste trabalho, propomos uma abordagem não invasiva para a detecção de episódios
de desidratação a partir de sinais fisiológicos obtidos por sensores de fotopletismogra-
fia (PPG) e atividade eletrodérmica (EDA). Desenvolvems uma arquitetura CNN hı́brida
que integra uma rede convolucional rasa para extração de padrões locais com um conjunto
de caracterı́sticas estatı́sticas que descrevem propriedades globais dos sinais.



Conforme representado na Tabela 3, o método proposto alcançou 73% de precisão,
72,5% de revocação e 73% de F1-score em um conjunto de dados coletados em ambiente
livre de indivı́duos com nı́veis de desidratação diferentes. Esses resultados sugerem que
é possı́vel relacionar a diferença de um indivı́duo hidratado ou desidratado com os dados
obtidos pelos sensores fisiológicos, o que pode ser usado em monitoramento contı́nuo
através de dispositivos vestı́veis. Os testes foram realizados em modelo não-agnóstico ao
indivı́duo, no qual os dados de treino e de teste foram coletados de indivı́duos distintos,
sugerindo a capacidade de generalização do modelo.

As limitações do trabalho incluem o baixo número de indivı́duos e o desbalance-
amento das classes.

Como trabalhos futuros, propomos a inclusão de novos sinais fisiológicos (como
temperatura da pele ou aceleração corporal), exploração de técnicas de janelamento
dinâmico, adaptativas ao sinal e o foco em modelos mais leves e interpretáveis para
implementação embarcada em dispositivos de baixo custo.
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