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Abstract. Dehydration is a serious health issue that can lead to serious con-
sequences, making its accurate detection crucial to maintaining proper bodily
function. In this work, we propose a hybrid machine learning model that can
classify individuals into hydrated or dehydrated states. Our approach combines
a shallow convolutional neural network that extracts unsupervised local featu-
res with statistical characteristics of time series data obtained from sensors such
as Photoplethysmography (PPG) and Electrodermal Activity (EDA). The results
show that the proposed classification model achieves an accuracy of 73%, which
is superior to most existing works in the literature that use data extracted from
PPG and/or EDA signals for the classification of hydration.

Resumo. A desidratacdo é um sério problema de saiide que pode levar a con-
sequéncias graves, tornando sua detec¢do precisa crucial para manter a fun¢do
corporal adequada. Neste trabalho, nés propomos um modelo de aprendi-
zado de mdquina hibrido que pode classificar individuos em estados hidrata-
dos ou desidratados. Nossa abordagem combina uma rede neural convoluci-
onal rasa que extrai recursos locais ndo supervisionados com caracteristicas
estatisticas de dados de séries temporais obtidos de sensores como Fotopletis-
mografia (PPG) e Atividade Eletrodérmica (EDA). Os resultados mostram que
o modelo de classificacdo proposto alcanca uma precisdo de 73%, sendo supe-
rior a maioria dos trabalhos existentes na literatura que utiliza dados extraidos
dos sinais PPG e/ou EDA para classificagdo de hidratagdo.

1. Introducao

A 4gua € uma das principais substancias presentes no corpo humano, contribuindo cerca
de 63% do peso corporal e presente em 90% do plasma sanguineo. A dgua € fundamental
para digestdo, transporte de nutrientes e rejeitos e regulacao da temperatura, dentre outros
processo fisiologicos [Islam et al. 2025].

A falta de ingestdo de d4gua, bem como seu consumo excessivo, podem acarretar
sérios riscos a saude, tais como mau funcionamento dos rins [El-Sharkawy et al. 2015],
depressao [Lee and Kim 2024] e hipertensao [Li et al. 2024]. Embora seja de conheci-
mento comum a importancia de se manter hidratado, a desidratacdo ¢ um problema ig-
norado por muitas pessoas. De acordo com Gomes e Sousa (2019), a ingestdo de dgua



¢ frequentemente negligenciada devido ao ritmo acelerado da vida das pessoas. Além
disso, a desidratagdo é um problema recorrente em idosos. Alguns pacientes idosos com
demeéncia esquecem de beber dgua e alguns optam por ndo beber por medo de sofrer um
episddio de incontinéncia ou urinar com muita frequéncia. J4 pacientes com deméncia
podem ndo reconhecer os sintomas da sede ou terem dificuldade em comunicarem suas
necessidades [Theodoridis et al. 2025]. Portanto, o monitoramento do nivel de hidratacao
tem um papel vital na satide e no bem-estar das pessoas [Liaqat et al. 2022].

Para avaliar a hidratacao de seus pacientes, profissionais médicos geralmente con-
tam com métodos clinicos e métodos invasivos, como exames de sangue e andlise sa-
livar, relacionados a marcadores sensiveis do estado de hidratacio como osmolaridade
plasmatica (PO), caracteristicas da urina, osmolaridade salivar, analise da bioimpedancia
(BIA), nivel de dgua corporal total (TBW), medi¢do da pressao arterial e a taxa de
pulso [Liaqgat et al. 2020]. No entanto, esses métodos sdo ineficazes para o monitora-
mento continuo e fora do ambiente hospitalar. Neste contexto, o uso de dispositivos
vestiveis para monitorar a desidratacdo sem a necessidade de testes invasivos ou super-
visdo médica pode ser altamente benéfico. Técnicas de Aprendizado de Maquina (AM)
podem ser empregadas para analisar dados complexos de sensores ou de imagens em ta-
refas de classificacdo, por exemplo, para determinar se um individuo apresenta indicios
de desidratac@o ou para identificar quando uma pessoa estd realizando movimentos asso-
ciados ao ato de beber agua.

A literatura apresenta varias abordagens para detectar, inferir, e medir a
desidratacdo de individuos baseado em dados de sensores ndo invasivos existentes em
dispositivos vestiveis. Algumas abordagens usam sensores fisicos com o propdsito de
detectar um evento de beber ou para estimar a quantidade de liquido ingerido. Sensores
inerciais embarcados em dispositivos usados no pulso ou no corpo [Cergolj et al. 2025,
Gomes and Sousa 2019, Ortega Anderez et al. 2021] ou em contéineres inteligentes (e.g.
copos ou garrafas de dgua inteligentes) [Plecher et al. 2019, van Iterson et al. 2025] sao
exemplos disso. Outras abordagens, que visam medir o nivel de hidrata¢do do individuo,
costumam empregar sensores fisioldgicos ou biomarcadores para detectar mudangas cor-
porais como alteracdes na pressao sanguinea e no batimentos cardiacos, variabilidade da
condutividade da pele, temperatura, entre outros [Siyoucef et al. 2025, Armstrong 2007,
Popkin et al. 2010, Kulkarni et al. 2021].

Este trabalho utiliza caracteristicas extraidas de sinais de fotopletismografia
(PPG) e atividade eletrodérmica (EDA) para detectar indicios de desidratacdo. Estu-
dos anteriores avaliaram a desidratacdo produzida por atividades fisicas por meio do
uso de parametros obtidos da frequéncia cardiaca fornecidas pelo sinal PPG, da ativi-
dade eletrodérmica obtida pelo sinal EDA e da temperatura da pele [Liaqgat et al. 2020,
Sabry et al. 2022, Rizwan et al. 2020]. A vantagem do PPG e do EDA € que tratam-se de
sinais de facil coleta; em especial, existe uma grande quantidade de modelos baratos que
permitem a captura do sinal PPG em ambiente livre e doméstico

Para extrair caracteristicas dos sinais PPG e EDA, este trabalho adota uma ar-
quitetura baseada em redes neurais convolucionais (CNN). As CNNs aprendem filtros
que promovem extracdo de caracteristicas da entrada, permitindo identificar e capturar
padrdes locais e suas variagdoes. Esse aprendizado ndo supervisionado de caracteristica
acontece automaticamente nas camadas convolucionais da rede. As caracteristicas pro-



duzidas sdo entdo empregadas como entrada para uma rede densa, na qual o exemplo é
efetivamente classificado. Para melhorar o desempenho da rede, nds adicionamos uma
nova entrada composta por um conjunto de caracteristicas estatisticas basicas citadas na
literatura. Uma camada de fusdo é proposta para combinar as caracteristicas (extraidas
pela CNN e manualmente) em uma representacao unificada que € usada para classificar
o individuo como hidratado ou desidratado. O modelo proposto foi treinado e validado
usando uma base de dados publica [Sabry et al. 2022]. Os resultados mostram que o mo-
delo de classificacdo proposto alcanca uma precisdo de 73%, sendo superior a maioria
dos trabalhos existentes na literatura que utiliza dados extraidos dos sinais PPG e/ou EDA
para classificacao de hidratacao.

O restante do artigo esta organizado como segue: a Se¢do 2 descreve os traba-
lhos relacionados; a Secdo 3 apresenta uma descricdo da metodologia utilizada; a Secdo
4 descreve os experimentos e discute os resultados obtidos; por fim, na Se¢do 5 sdo apre-
sentadas as conclusdes e possibilidades de trabalhos futuros.

2. Trabalhos Relacionados

Manter os niveis ideais de hidratagdo no corpo humano € crucial para manter a sadde e
prevenir varias doencas. O uso de técnicas de aprendizagem de maquina e de sensores
fisioldgicos tem sido visto com uma ferramenta promissora para avaliagdo ndo invasiva e
precisa dos niveis de hidratagdao. Nesta se¢ao, nds revisamos estudos recentes que utilizam
os sensores PPG e/ou EDA e exploram o uso de técnicas de aprendizagem de maquina
para detec¢do do nivel de hidratacao.

Siyoucef et al. (2025) propdem um sistema baseado em uma tela touchscreen,
semelhante a de um smartphone para monitoracdo do grau de desidratacdo. Os sensores
medem a capacitancia da pele, que varia conforme o grau de hidratacdo da pessoa. Os
dados foram coletados de voluntdrios sujeitos a desidratacdo em dois grupos: religiosos
que se encontravam em jejum durante o periodo do ramada e atletas; o grupo em jejum
realizou cinco coletas ao dia em diferentes niveis de desidratacdo, ao passo que atletas
realizaram coletas antes e depois de treinarem. Para classificar os dados, os autores em-
pregaram modelos de AM: regressdo logistica, miquina de vetores de suporte (SVM), k
Vizinhos mais Préximos (k-NN), florestas aleatdrias e arvore de decisdo. Um dos desafios
encontrados no trabalho foi o efeito que o suor causa na coleta dos dados; mesmo com
a limpeza dos sensores, o suor residual pode atrapalhar a leitura da capacitancia da pele.
N3ao obstante, os autores concluiram que o procedimento é adequado, especialmente para
classificacdo bindria (hidratado vs. desidratado).

Rizwan et al. (2020) propuseram uma abordagem ndo invasiva para estimativa
do nivel de hidratacdo usando a Atividade Eletrodérmica (EDA, anteriormente conhecida
como Resposta Galvénica da Pele ou GSR). Os autores usaram algoritmos de AM, in-
cluindo regressao linear e arvores de decisdo, para prever os niveis de hidratacdo com
base nas medi¢des de EDA. Esse estudo dividiu a base de dados em 3 grupos relaciona-
dos a postura dos voluntdrios durante a coleta, sentado ou em pé€. Um terceiro cenario
foi definido pela combinacdo de ambas as posturas e é rotulado como independente. A
abordagem que utilizou os dados de voluntérios sentados alcangcou uma precisao de 81%
na previsao dos niveis de hidratacdo. A abordagem com os dados de voluntdrios em
pé alcancou uma precisao de 76%. A abordagem proposta com dados de postura inde-



pendente alcancou uma precisdo de 71% na previsdao dos niveis de hidratacdo, na qual
demonstrou seu potencial para monitoramento do nivel de hidratacdo em tempo real.

Reljin et al. (2018) desenvolveram um sistema automatico de deteccao de desidra-
tacdo usando maquinas de vetores de suporte (SVMs). O sistema usa sensores ndo inva-
sivos para medir a variabilidade da frequéncia cardiaca e prevé os niveis de desidratacdo
com base nessas medi¢des. Os autores demonstraram a eficicia de sua abordagem em um
pequeno estudo piloto, alcancando uma precisao de 67,91% na deteccdo de desidratagao.

Posada-Quintero et al. (2019) propuseram uma abordagem baseada em apren-
dizado de mdquina para identificar desidratacdo leve usando respostas autondmicas ao
estresse cognitivo. Os autores usaram modelos de aprendizado raso, tais como SVMs,
k-vizinhos mais proximos (KNN) e Andlise de Discriminacao Quadrética (QDA), para
classificar os individuos em grupos hidratados e desidratados com base em respostas fi-
sioldgicas, como frequéncia cardiaca e atividade eletrodérmica. O estudo dividiu a base
de dados em quatro casos diferentes: 1) apenas medidas coletadas durante descanso; 2)
apenas medidas coletadas durante o teste de estresse cognitivo; 3) a diferenca entre as
medidas de repouso e teste; 4) medidas de repouso e teste. Para o caso 1, utilizou-se um
algoritmo de KNN que alcangou 86,7% de precisdo. No caso 2 foi aplicado em um SVM
que obteve uma precisdo de 73,9%. Um algoritmo de KNN foi aplicado para o caso 3 e
obteve 68,2% de precisdo. No caso 4 foi aplicado um algoritmo de QDA que alcangou
90% de precisao.

Liaqgat et. al. (2020) utilizaram uma abordagem nao invasiva para detec¢do do
nivel de hidratacdo da pele observando cendrios onde a pessoa se encontra sentada e
em pé. Os autores usaram diversos algoritmos de aprendizagem de maquina, incluindo
regressao logistica, floresta aleatoria, K-vizinhos proximos, Naive Bayes, arvores de de-
cisdo, andlise do discriminante linear e AdaBoost para classificar o nivel de hidratacao de
uma pessoa baseado nas medi¢des obtidas pela atividade eletrodérmica (EDA). Os autores
obtiveram com essa abordagem uma precisdao de 93% para classificacdo de desidratacao
utilizando o algoritmo floresta aleatoria.

Alaslani et al. (2024) coletaram dados de PPG utilizando a cimera de um
smartphone. Os dados foram coletados de um grupo de 25 pessoas em jejum du-
rante o ramadd. Experimentos foram realizados em duas modalidades: um problema
de classificagdao multipla (hidratado, levemente desidratado, desidratado ou severamente
desidratado) e um problema de classificacao binaria. O sinal de PPG foi pré-processado
com filtro Butterworth e frequéncia de corte de 10Hz, normalizado e segmentado em sub-
janelas de 3 segundos. Além disso, os autores empregaram aumento de dados adicionando
ruido gaussiano as janelas, promovendo diferentes experimentos nas quais os dados foram
aumentados em duas, trés e quatro vezes o numero original de instancias. Foram testa-
dos modelos rasos (k-NN, SVM e florestas aleatdrias), modelos de sequéncia (LSTM e
BiLSTM-FCN) e transformers (DistilBERT e ViT). Para todos os modelos, os autores
reportaram melhoria dos resultados (em acurdcia) com aumento de dados, sendo que os
melhores resultados foram obtidos com dados aumentados em quatro vezes a quantidade
original de instancias. Os autores concluem que os modelos de aprendizado profundo e
os transformers apresentam os melhores desempenhos dentre todos os analisados.

Diferentemente das abordagens discutidas acima, este trabalho propde uma arqui-



tetura que combina uma CNN rasa para extracdo de caracteristicas locais nio supervisio-
nadas, juntamente com caracteristicas estatisticas que codificam informacdes globais das
séries temporais utilizadas (dados dos sinais PPG e EDA). Além disso, durante o processo
de valida¢ao uma abordagem hold-out por individuo foi adotada para evitar vazamento de
dados.

3. Materias e Método

Este trabalho tem como objetivo propor um método para detec¢do de desidratacdo utili-
zando dados de sensores fisioldgicos e uma arquitetura hibrida de aprendizado profundo,
com a finalidade de contribuir para o monitoramento de desidratacdo. Detalhes sobre o
conjunto de dados, pré-processamento dos dados e arquitetura de rede sdo apresentados a
seguir.

3.1. Conjunto de dados

Este estudo utilizou a base de dados publica proposta por Sabry et al. (2022), que in-
clui sinais inerciais e fisioldgicos coletados de 11 individuos durante um periodo de je-
jum. Nesta pesquisa foram selecionados apenas os sinais fisiologicos de Atividade Ele-
trodérmica (EDA) e Fotopletismografia (PPG). Os dados foram coletados a partir da uni-
dade Shimmer Galvanic Skin Response (GSR), com seus eletrodos de resposta galvanica
nos dedos indicador e médio da mao esquerda e o clipe de fotopletismografia atrelado
ao 16bulo da orelha esquerda. Foram considerados dois cendrios de jejum: o primeiro
durante o periodo de jejum do Ramada e o segundo durante um periodo de jejum inter-
mitente sem ingestdao de sélidos ou liquidos, registrando o tltimo evento de ingestdo de
agua ou comida. Os individuos ndo foram restritos em relagdo a movimentos ou horarios
de uso do dispositivo vestivel, a fim de representar um cendrio real de uso durante ativi-
dades do dia-a-dia, embora a maioria dos dados tenha sido coletada enquanto os usudrios
estavam sentados.

3.2. Tratamento dos dados

Nesta etapa, os dados foram preparados para serem utilizados em um modelo
de predicdo. Para isso, os dados foram segmentados em janelas deslizantes de
4 minutos [Sabry et al. 2022], com sobreposicio de 50% entre janelas adjacentes.
Essa técnica de sobreposi¢ao é comumente adotada em andlise de séries temporais,
pois permite capturar informagdes de continuidade e mudangas graduais nos dados
[Posada-Quintero et al. 2019].

Os dados brutos do PPG foram preparados para andlise, passando por diferentes
etapas de processamento. Primeiro, os valores dos dados brutos foram normalizados. Em
seguida, os dados normalizados foram submetidos a um filtro de passa-baixa Butterworth
para remover as frequéncias acima de 8 Hz e abaixo de 0,5 Hz, mantendo apenas as
frequéncias relevantes para a analise, conforme sugerido em [Akar et al. 2013].

Em seguida, foi realizada extrac@o de caracteristicas. Foram extraidas das janelas
informacdes importantes como a taxa de batimentos por minuto, a taxa de respiracdo e
a raiz quadrada média de diferencas sucessivas entre batimentos cardiacos normais. A
taxa de batimentos por minuto, por exemplo, € um indicador importante do estado car-
diovascular de um individuo, enquanto a taxa de respiracao pode fornecer informagdes



sobre a fungdo respiratéria. A raiz quadrada média de diferencas sucessivas entre bati-
mentos cardiacos normais € um indicador da variabilidade da frequéncia cardiaca, que é
um importante biomarcador do sistema nervoso autdbnomo e pode ser util para avaliar o
estresse e outras condi¢des de satde. Essas caracteristicas foram extraidas dos sinais do
PPG filtrado usando o Heartpy [Van Gent et al. 2019], que € uma biblioteca especializada
em andlise de sinais de PPG.

Além dessas caracteristicas também foram extraidas caracteristicas estatisticas
(minimo, média, variancia, entropia, desvio padrao, percentil, mediana, moda e curtose)
dos sinais GSR e PPG. Essas caracteristicas estatisticas podem ser usadas para descrever
as propriedades dos sinais. Por exemplo, uma alta variancia ou entropia pode indicar que
o sinal estd mais irregular e imprevisivel, enquanto uma curtose elevada pode indicar que
os dados t€ém uma distribui¢cdo mais concentrada em torno da média. Essas informagdes
podem ser uteis na detecc¢do de alteragdes fisiologicas ou emocionais presentes nos sinais
GSR e PPG [Liaqgat et al. 2020].

O conjunto de dados utilizado possui um desbalanceamento muito grande entre
os individuos, resultando em uma distribui¢ao desbalanceada entre as classes, como mos-
trado na Tabela 1. Entretanto, antes de realizar alteracdes no conjunto, os dados foram
particionados em um subconjunto de treinamento e outro de teste utilizando a aborda-
gem hold-out. Especificamente, os individuos 3 e 4 foram selecionados para compor o
conjunto de teste devido ao fato de possuirem coletas aproximadamente balanceadas. Os
demais individuos foram utilizados para treinamento.

Para lidar com o desbalanceamento dos individuos no conjunto de treinamento,
realizamos uma sub-amostragem aleatéria da amostra do individuo 1 para 2.808.000
observacdes. Esse nimero foi definido por ser proximo da quantidade de observacdes
do segundo individuo com maior tempo de coleta e por ser compativel com o tamanho de
janela definido para os experimentos. Na fase de treinamento foram geradas observagdes
das classe minoritdria sinteticamente aplicando a técnica SMOTE (Synthetic Minority
Over-sampling Technique) [Blagus and Lusa 2013] com o propodsito de manter equili-
brado o nimero de observacoes de cada classe (hidratado e ndo hidratado). No total,
foram utilizadas 15.536.352 observagdes para treino e 4.181.424 para teste.

Tabela 1. Tamnho da amostra por individuo (subject).

Observacoes de Hidratados Observacoes de Desidratados Total

S1 6.054.672 3.475.680 9.530.352
S2 840.528 84.240 924.768
S3 546.624 475.488 1.022.112
S4 1.630.512 1.528.800 3.159.312
S5 318.864 115.440 434.304
S6 0 125.424 125.424
S7 33.072 0 33.072
S8 111.696 0 111.696
S9 115.440 0 115.440
S10 124.176 0 124.176
S11 169.728 0 169.728




3.3. Arquitetura da rede

A arquitetura CNN hibrida (CNN-H) proposta tem duas entradas, conforme a Figura 1.
Na primeira entrada, os sinais GSR (dois componentes do sinal: resisténcia e condutancia)
e PPG sdo submetidos a rede composta por trés blocos para realizar a extracdo de carac-
teristicas, cada um consistindo de uma camada de convolucao 1D com filtros de tamanho
variado, seguida de uma camada de batch normalization, uma camada de ativagdo ReLU
(Rectified Linear Unit) e uma camada de pooling para reduzir o nimero de parametros a
serem aprendidos e a quantidade de computagdo realizada na rede. Por fim, os 2 primei-
ros blocos possuem uma camada de dropout com 30% e 20%, empregados para reduzir o
risco de overfitting. Dessa forma, apds percorrer os blocos citados, os dados de entrada
sdo transformados em um vetor de caracteristicas.

Em seguida, as caracteristicas extraidas pelas camadas de convolugdo sdo con-
catenadas com as caracteristicas estatisticas (Entrada 2) e sdo passadas para as camadas
densas com funcdo de ativagao ReLU, sendo a ultima camada com funcdo de ativagao
Softmax. A saida do modelo hibrido é uma avaliacdo se os dados representam um cenario
de hidratacdo ou desidratacdo. A saida da rede neural é uma avaliacdo da possibilidade
de uma amostra ser de um episddio de hidratacdo ou desidratacdo. A Tabela 2 especifica
a arquitetura, mostrando as camadas, formato das saidas e o tamanho do kernel.
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Figura 1. Arquitetura CNN hibrida proposta para reconhecimento de

desidratacao.

3.4. Métricas de Avaliacao

Para avaliar o método proposto foram utilizadas as métricas: precisdo, revocagdo e F1-
score. A matriz de confusdo que relata o nimero de verdadeiros positivos (VP), ver-
dadeiro negativo (VN), falsos positivos (FP) e falsos negativos (FN) foi utilizada para
calcular essas métricas.

A precisdo é uma métrica que indica a propor¢ao de exemplos classificados como
positivos pelo modelo que realmente pertencem a essa classe. A precisdo reflete o quao
“confidvel” € no caso de uma classificac@o positiva; em nosso caso, qual a probabilidade
de uma pessoa estar realmente desidratada quando o modelo d4 uma saida positiva. A
precisao foi calculada a partir da seguinte férmula:

A revocagdo € uma métrica que indica a propor¢do de exemplos classificados
como positivos em relacdo ao numero total de exemplos verdadeiramente positivos. A



Tabela 2. Parametros utilizados na arquitetura proposta.

Tipo Formato Numero Tamanho  Funcao de
da Saida de Filtros do Kernel Ativacao

0 Camada de Entrada 1 624x3 - - -

1 Camadade Convolucao 1D 624x16 16 64 ReLu
2 Camada de Normalizagdo  624x16 - - -

3 Camada de Ativagao 624x16 - - ReLu
4 Agrupamento Médio 312x16 - - -

5 Dropout 312x16 - - -

6 Camadade Convolucao 1D 312x64 64 32 ReLu
7 Camada de Normalizagdo  312x64 - - -

8 Camada de Ativagdo 312x64 - - ReLu
9  Agrupamento Médio 156x64 - - -

10 Dropout 156x64 - - -

11 Camadade Convolugdo 1D  156x64 64 16 ReLu
12 Camada de Normalizacdo  156x64 - - -

13 Camada de Ativagao 156x64 - - ReLu
14 Agrupamento Médio 64 - - -

15 Camada de Entrada 2 30 - - -

16 Concatenacao 94 - - -

17 Densa 1 64 - - -

18 Densa?2 32 - - -

19 Densa3 16 - - -
20 Densa4 8 - - -
21 Camada de Saida 2 - - -

revocacao mede a capacidade do modelo de detectar todos os exemplos positivos em um
conjunto de dados; em nosso caso, qual a probabilidade de o modelo identificar que uma
pessoa esta desidratada. A revocagdo pode ser calculada a partir da seguinte férmula:

VP

Rev— ——~
T VPLEN

O Fl-score € uma métrica que combina a precisao e a revocacao do modelo, for-
necendo uma medida dnica do desempenho geral do modelo. O Fl-score é calculado
como a média harmonica entre a precisdo e a revocacao do modelo, utilizando a seguinte

férmula:
2- Rev - Pre

Rev + Pre

1=

4. Resultados e Discussao

Neste trabalho, o problema foi tratado como um problema de classificagdo bindria, com
duas classes distintas: hidratado e desidratado. O principal desafio encontrado foi li-
dar com desequilibrio dos dados, com a maioria dos dados concentrada nos primeiros
individuos, como evidenciado na Tabela 1. Para abordar esse problema, nés utilizamos
estratégias de sub-amostragem (aleatoria) e super-amostragem (SMOTE) nas classes ma-
joritdria e minoritria, respectivamente.



A Tabela 3 mostra a precisdo, revocagdo e F1-Score obtidos a partir do conjunto
de dados usados nos experimentos. Os resultados mostram que nosso modelo pode reco-
nhecer um individuo desidratado com 73% de precisdo e apresenta uma taxa de revocacao
bem préxima, 72,5% das amostras positivas existentes foram classificadas corretamente.

Tabela 3. Desempenho da arquitetura proposta.

Numero de Observacoes Precisao Revocacio F1-score

Hidratados 1.451.424 0,70 0,77 0,74
Desidratados 1.506.336 0,76 0,68 0,72
Média 1.478.880 0,73 0,725 0,73

Para fins de comparacao, a Tabela 4 apresenta dados de trabalhos da literatura que
propdem modelos de detec¢do de desidratacdo e as métricas usadas para avaliar o mo-
delo proposto. Reljin et ai. (2018) sugeriram usar dados extraidos da fotopletismografia
(PPG) para detectar desidratacdo usando méquina de vetores de suporte, resultando em
uma precisao de 67,91%. Posada-Quintero et al. (2019) propuseram o uso de estresse
cognitivo para melhorar a deteccao de desidratacdo, usando um KNN validando por meio
da técnica Leave-One-Subject-Out (LOSO), que € uma espécie de validag¢ao cruzada na
qual cada fold contém os dados de um individuo. Utilizando apenas dados de voluntarios
em descanso por 4 minutos, a precisao alcancada é de 86,7%. Esse cendrio estd alinhado
com nossa abordagem, que nao considerou dados de individuos com estresse cognitivo.

Rizwan et al. (2020) sugeriram o uso do algoritmo k-vizinhos mais proximos
(KNN), separando os dados em “sentado”, “em pé” ou “independente”, sendo este ultimo
definido pela combinacdo das posturas fisicas sentado e em pé. Os resultados de precisao
obtidos foram 81%, 76% e 71%, respectivamente, sendo a abordagem de individuos com
postura “independente” compativel com a apresentada nesse trabalho. Nosso estudo si-
mula um ambiente livre € menos restritivo, usando um modelo gerado a partir de uma
arquitetura de CNN hibrida, resultando em uma precisio de 73%. E importante ressaltar
que os resultados obtidos em nosso estudo foram claramente afetados pelos diferentes

estados de hidratag@o dos individuos existentes na base de dados utilizada.

Tabela 4. Comparacao com outros trabalhos encontrados na literatura.

Sensores  Arquitetura  Precisao Validacao

[Reljin et al. 2018] PPG SVM 67,91% Cross-validation
[Posada-Quintero et al. 2019] PPG/EDA KNN 86,7% LOSO
[Rizwan et al. 2020] EDA KNN 71%  Cross-validation

Proposto neste Artigo PPG/EDA Modelo hibrido 73%  Subject hold-out

5. Conclusao

Neste trabalho, propomos uma abordagem ndo invasiva para a deteccdo de episddios
de desidratacdo a partir de sinais fisiolégicos obtidos por sensores de fotopletismogra-
fia (PPQG) e atividade eletrodérmica (EDA). Desenvolvems uma arquitetura CNN hibrida
que integra uma rede convolucional rasa para extracao de padrdes locais com um conjunto
de caracteristicas estatisticas que descrevem propriedades globais dos sinais.



Conforme representado na Tabela 3, o método proposto alcangou 73% de precisio,
72,5% de revocagao e 73% de F1-score em um conjunto de dados coletados em ambiente
livre de individuos com niveis de desidratacdo diferentes. Esses resultados sugerem que
€ possivel relacionar a diferenca de um individuo hidratado ou desidratado com os dados
obtidos pelos sensores fisiol6gicos, o que pode ser usado em monitoramento continuo
através de dispositivos vestiveis. Os testes foram realizados em modelo ndo-agndstico ao
individuo, no qual os dados de treino e de teste foram coletados de individuos distintos,
sugerindo a capacidade de generalizacdo do modelo.

As limitagdes do trabalho incluem o baixo nimero de individuos e o desbalance-
amento das classes.

Como trabalhos futuros, propomos a inclus@o de novos sinais fisiologicos (como
temperatura da pele ou aceleragdo corporal), exploracdo de técnicas de janelamento
dindmico, adaptativas ao sinal e o foco em modelos mais leves e interpretdveis para
implementag¢do embarcada em dispositivos de baixo custo.
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