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Abstract. This paper addresses the Online Order Batching Problem (OOBP),
a central challenge in distribution center optimization. The proposed hy-
brid approach combines unsupervised machine learning (density-based spa-
tial clustering) with Multi-Start Simulated Annealing to achieve rapid conver-
gence to high-quality solutions. Validated on 144 benchmark instances from the
Albareda-Sambola and Henn datasets, the method achieves solutions with an
average gap of 7.9% compared to the state-of-the-art while reducing compu-
tational time by 93.2%. The technique solves large-scale instances (n=250) in
under 60 seconds, demonstrating feasibility for real-time logistics operations.

Resumo. Este trabalho aborda o Problema de Loteamento de Pedidos Online,
desafio central na otimização de centros de distribuição. A abordagem hı́brida
proposta combina aprendizado de máquina não supervisionado (clusterização
baseada em densidade espacial) com Têmpera Simulada Multi-Start para con-
vergência rápida a soluções de alta qualidade. Validada em 144 instâncias
de benchmark dos conjuntos Albareda-Sambola e Henn, o método alcança
soluções com gap médio de 7.9% em relação ao estado da arte, enquanto re-
duz o tempo computacional em 93.2% em comparação ao mesmo. A técnica
resolve instâncias grandes (n=250) em menos de 60 segundos, demonstrando
viabilidade para operações logı́sticas em tempo real.

1. Introdução
O Problema de Loteamento de Pedidos Online, do inglês Online Order Batching

Problem (OOBP) representa um dos desafios centrais na otimização de operações em cen-
tros de distribuição, impulsionado pela expansão do e-commerce. O problema consiste em
agrupar dinamicamente pedidos de clientes, que chegam continuamente ao sistema, em
lotes (batches) para a coleta por operadores (pickers), com o objetivo de minimizar uma
função de custo, como o tempo total de conclusão das coletas [Gil-Borrás et al. 2020].
A complexidade do OOBP, classificado como NP-difı́cil, reside na interdependência das
decisões de agrupamento e de roteamento, tornando a busca por soluções ótimas inviável
para instâncias de larga escala.

A literatura apresenta diversas abordagens para o Problema de Agrupamento de
Pedidos Online (OOBP). Inicialmente, heurı́sticas simples como First-Come, First-Served
(FCFS) foram exploradas por sua fácil implementação, embora geralmente resultem em



soluções de qualidade modesta. Em contraste, métodos mais sofisticados consolidaram-
se como o estado da arte, a exemplo do Iterated Local Search (ILS) proposto por
[Henn 2012], que demonstra alta eficácia. Outras técnicas, como o Estimation of Dis-
tribution Algorithm (EDA) de [Pérez-Rodrı́guez et al. 2015], também foram aplicadas ao
problema, porém com sucesso limitado em superar os benchmarks existentes. Recente-
mente, uma nova fronteira foi explorada com o uso de Aprendizado por Reforço, como
no trabalho de [Cals et al. 2020], que aplicaram Deep Reinforcement Learning para a de-
cisão de loteamento em tempo real, sinalizando um caminho promissor para a otimização
do OOBP.

Apesar da eficácia dos métodos de estado da arte em encontrar soluções de alta
qualidade, uma limitação prática emerge: o seu custo computacional. Nossas análises,
baseadas em uma reimplementação do ILS, indicam que esse método, apesar de retornar
soluções muito boas, pode demandar um tempo de execução superior a 1200 segundos
para convergir para as melhores soluções conhecidas em instâncias complexas. Em am-
bientes de logı́stica em tempo real, onde decisões precisam ser tomadas em minutos, este
tempo tende a ser restritivo.

Este trabalho aborda essa lacuna, focando no desenvolvimento de uma abordagem
que equilibre o trade-off entre a qualidade da solução e o tempo de convergência. Nossa
principal contribuição é uma meta-heurı́stica hı́brida que utiliza aprendizado de máquina
não supervisionado como guia ativo no processo de otimização. Propomos um framework
que: 1) decompõe o problema usando clusterização sobre features de densidade espacial;
e 2) utiliza meta-heurı́stica Multi-Start com Têmpera Simulada para otimização rápida.

2. Fundamentação Teórica

Esta seção estabelece os conceitos fundamentais sobre os quais nossa abordagem
foi construı́da, contextualizando sua aplicação ao problema em questão.

2.1. O Problema de Agrupamento de Pedidos Online (OOBP)

O OOBP consiste em agrupar um conjunto de pedidos O = {o1, o2, . . . , on} que
chegam a um armazém ao longo do tempo em um conjunto de lotes B = {b1, b2, . . . , bm},
de modo a minimizar uma função objetivo. Cada lote bj tem uma capacidade máxima W
que não pode ser excedida pela soma das demandas dos pedidos nele contidos. A variante
que tratamos foca na minimização do Tempo de Conclusão Máximo (makespan), que é
o instante de tempo em que o último lote é coletado e entregue no depósito.

O tempo de serviço para um único lote bj , Tservice(bj), é definido como a soma de
três componentes [Gil-Borrás et al. 2020]:

Tservice(bj) = Tsetup + Trouting(bj) + Tpicking(bj) (1)

onde:

Tsetup: Tempo fixo de preparação (configuração do carrinho, análise de pedidos).

Trouting: Tempo de deslocamento entre locais de coleta.

Tpicking: Tempo de coleta/retirada dos itens das prateleiras.



O tempo de roteamento depende da distância percorrida d(bj) e da velocidade do
coletor vrouting, enquanto o tempo de picking depende do número total de itens no lote
N(bj) e da velocidade de coleta vpicking:

Trouting(bj) =
d(bj)

vrouting
& Tpicking(bj) =

N(bj)

vpicking
(2)

A natureza online do problema introduz a restrição fundamental de que um lote
bj não pode iniciar sua coleta antes do tempo de chegada tarrival(oi) de todos os pedidos
oi ∈ bj . Se tstart(bj) é o tempo de inı́cio da coleta do lote bj , a simulação sequencial do
tempo de conclusão total Cmax é dada por:

Cmax =
m∑
j=1

(
max(tcompletion(bj−1),max

oi∈bj
tarrival(oi)) + Tservice(bj)

)
(3)

onde tcompletion(bj−1) é o tempo de conclusão do lote anterior.

2.2. Clusterização por K-Means

O K-Means é um algoritmo de aprendizado de máquina não supervisionado que
particiona um conjunto de dados em k clusters. O algoritmo visa minimizar a variância
intra-cluster, ou a soma dos quadrados das distâncias euclidianas entre cada ponto e o
centroide do seu cluster assignado [MacQueen 1967].

Formalmente, dado um conjunto de observações (x1,x2, . . . ,xn) onde cada
observação é um vetor d-dimensional, o K-Means particiona as n observações em k (≤ n)
conjuntos S = {S1, S2, . . . , Sk} de modo a minimizar a soma dos quadrados intra-cluster:

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥2 (4)

onde µi é a média dos pontos em Si.

2.3. Têmpera Simulada

Inspirada no processo metalúrgico de recozimento, a Têmpera Simulada é uma
meta-heurı́stica projetada para encontrar o ótimo global de um problema, evitando ficar
presa em ótimos locais [Kirkpatrick et al. 1983].

O algoritmo opera através de uma analogia termodinâmica: começa em um estado
inicial (solução) com alta “temperatura” T , permitindo movimentos que podem piorar a
solução corrente. À medida que a temperatura diminui, o algoritmo torna-se mais seletivo,
convergindo para uma solução de alta qualidade. A probabilidade de aceitar uma solução
pior é dada por:

P (aceitar movimento pior) = exp

(
−∆C

T

)
(5)

onde ∆C é a variação (positiva) do custo.



3. Metodologia
A abordagem proposta para o OOBP neste trabalho é de um sistema de várias

fases projetado para lidar com a alta complexidade do problema, priorizando a rápida
convergência para soluções de alta qualidade.

3.1. Conjunto de Dados e Cenário Experimental

Para a validação experimental, utilizamos dois conjuntos de instâncias de bench-
mark amplamente reconhecidos na literatura:

Conjunto Henn [Henn 2012]: Este conjunto consiste em 64 instâncias baseadas
em um armazém retangular com 10 corredores e 90 locais de armazenamento cada. O
depósito está sempre localizado no canto inferior esquerdo. As instâncias apresentam
duas caracterı́sticas principais:

• Polı́ticas de armazenamento:
◦ ABC: Distribuição onde os itens mais populares (80% da demanda) ocu-

pam 20% dos locais mais acessı́veis
◦ Aleatória: Distribuição uniforme de itens pelos locais de armazenamento

• Variação de parâmetros:
◦ Pedidos de clientes: 40, 60, 80, 100
◦ Capacidade do coletor: 30, 45, 60, 75 itens

Este conjunto tem o objetivo de avaliar o desempenho do método sob diferentes perfis de
demanda e restrições operacionais.

Conjunto Albareda-Sambola [Albareda-Sambola et al. 2009]: Compõe-se de
80 instâncias organizadas em quatro configurações distintas de armazém:

• W1: 4 corredores, capacidade = 12 itens
• W2: 10 corredores, capacidade = 24 itens
• W3: 25 corredores, capacidade = 150 itens
• W4: 12 corredores, capacidade = 80 itens

Cada configuração inclui instâncias com 100, 150, 200 e 250 pedidos, com as
seguintes variações:

• Posição do depósito: canto inferior ou centro
• Polı́ticas de armazenamento: ABC ou aleatória

Este conjunto é usado para avaliar a escalabilidade do método em diferentes topo-
logias de armazém.

Polı́ticas de Armazenamento: As polı́ticas de armazenamento são uma restrição
adicional para o problema e atuam da seguinte forma para a operação de armazéns:

• ABC: Baseada no princı́pio de Pareto, onde itens são classificados como:
◦ Classe A (10% dos itens, 70% da demanda)
◦ Classe B (20% dos itens, 20% da demanda)
◦ Classe C (70% dos itens, 10% da demanda)

Itens A são posicionados próximos ao depósito para minimizar distâncias de co-
leta.



• Aleatória: Os itens são distribuı́dos uniformemente pelo armazém, sem
consideração de popularidade.

Configuração de Parâmetros: Para todas as instâncias, simulamos um horizonte
de chegada de pedidos de 4 horas seguindo um Processo de Poisson, conforme metodo-
logia estabelecida [Gil-Borrás et al. 2020]. Os parâmetros operacionais (Tabela 1) foram
selecionados com base em dois critérios:

1. Consistência com a literatura: Valores adotados em estudos prévios para permi-
tir comparação justa

2. Realismo operacional: Baseados em observações de centros de distribuição reais

Tabela 1. Parâmetros de simulação para o Problema de Loteamento de Pedidos
Online (OOBP)

Parâmetro Valor Fundamentação

Horizonte de chegada 4 horas Perı́odo padrão para
simulação de turnos logı́sticos
[Albareda-Sambola et al. 2009]

Velocidade do coletor 48 UD/min Valor médio industrial para operadores
[Henn 2012]

Velocidade de picking 6 itens/min Taxa otimizada baseada no estudo
empı́rico de [Gil-Borrás et al. 2019]

Tempo de setup 3 min Tempo médio validado no trabalho de
[Albareda-Sambola et al. 2009]

Estratégia de roteamento S-Shape Padrão industrial para minimização de
distâncias [Henn 2012]

Estratégia de seleção Mais antigo Polı́tica FEFO para produtos perecı́veis
[Nicolai et al. 2014]

A combinação desses conjuntos de instâncias e parâmetros permite uma avaliação
abrangente do método proposto sob diversas condições operacionais, desde armazéns
compactos (W1) até configurações complexas (W3), com diferentes perfis de demanda
e polı́ticas de armazenamento.

3.2. Arquitetura Hı́brida

A solução proposta é construı́da através de um pipeline de múltiplos estágios, oti-
mizado para equilibrar qualidade da solução e eficiência computacional. O fluxo completo
é apresentado no Algoritmo 1 e detalhado a seguir.



Algoritmo 1 Fluxo da Abordagem Proposta
Entrada: Conjunto de pedidosO, layout do armazém, parâmetros temporais, parâmetros

do SA
Saı́da: Solução final de lotes B∗ e custo total C∗

1: Pré-processamento
2: Simular tempos de chegada via PROCESSO DE POISSON)
3: Extrair FEATURES DE DENSIDADE POR CORREDOR
4: Otimização Multi-Start (Nrodadas execuções)
5: Bmelhor global ← ∅, Cmelhor global ←∞
6: for i← 1 to Nrodadas do
7: Fase 1: Particionar O em k zonas usando K-MEANS sobre as features
8: Fase 2: Otimizar cada zona zj com SIMULATEDANNEALINGSOLVER (ver

Parâmetros 3.2.2)
9: Brodada ←

⋃k
j=1 SA(zj)

10: Crodada ← AvaliarSolucaoOnline(Brodada)
11: if Crodada < Cmelhor global then
12: Cmelhor global ← Crodada

13: Bmelhor global ← Brodada

14: end if
15: end for
16: return Bmelhor global, Cmelhor global

3.2.1. Explicação do Fluxo do Algoritmo

O processo opera em três fases principais:

1. Pré-processamento (Linhas 2-3):

• Processo de Poisson: Modelo probabilı́stico que simula a chegada estocástica de
pedidos ao longo do tempo. A taxa de chegada λ é calculada com base no número
esperado de pedidos por unidade de tempo [Ross 2014].

• Features de densidade: Para cada pedido oi, constrói-se um vetor fi ∈ Rd onde d
é o número de corredores e fij representa o número de itens no corredor j. Esta
representação captura a distribuição espacial dos itens solicitados.

2. Fase de Otimização (Linhas 5-12):

• Multi-Start: Executa Nrodadas repetições (tipicamente 10-20) para explorar diferen-
tes inicializações do K-Means, aumentando a cobertura do espaço de soluções.

• Clusterização K-Means: Agrupa pedidos com padrões espaciais similares em k
zonas (k definido por elbow method). Cada zona é otimizada independentemente.

• Avaliação Online: Simula a execução temporal dos lotes, respeitando restrições
de chegada e capacidade.

3.2.2. Parâmetros da Têmpera Simulada

A otimização de cada zona utiliza Têmpera Simulada com parâmetros adaptativos:



T0 = 1000 · log(1 + |zj|) (Temperatura inicial) (6)
α = 0.995 (Taxa de resfriamento) (7)

Imax =


2000 |zj| ≤ 20

5000 20 < |zj| ≤ 50

10000 |zj| > 50

(Iterações máximas) (8)

• Temperatura inicial (Eq. 6): Escalonada logaritmicamente com o tamanho da
zona |zj|. O fator 1000 ajusta a escala para permitir aceitação inicial de soluções
piores (diversificação). A função log suaviza o crescimento para zonas grandes.

• Taxa de resfriamento (Eq. 7): Valor α = 0.95 indica redução de 5% na tempe-
ratura a cada iteração. Equilibra exploração (valores altos) e exploração (valores
baixos) [Kirkpatrick et al. 1983].

• Iterações máximas (Eq. 8): Definidas proporcionalmente à complexidade da
zona. Zonas maiores (> 50 pedidos) exigem mais iterações para convergência,
enquanto zonas pequenas (≤ 20) convergem rapidamente.

A arquitetura proposta oferece três benefı́cios principais:

1. Paralelização natural: Zonas independentes podem ser processadas em paralelo.
2. Redução de complexidade: Problema original O(n²) é decomposto em subpro-

blemas O(k·m) com m≪ n.
3. Adaptabilidade: Parâmetros do SA se ajustam automaticamente ao tamanho de

cada zona.

A eficácia do framework Multi-Start reside na natureza estocástica do algoritmo
K-Means. A cada uma das Nrodadas execuções, a inicialização aleatória dos centroides do
K-Means tende a gerar partições espaciais (zonas) ligeiramente diferentes. Essa diversi-
dade na decomposição do problema permite que a Têmpera Simulada explore diferentes
bacias de atração no espaço de busca, aumentando significativamente a probabilidade de
escapar de ótimos locais e encontrar uma solução global de maior qualidade.

4. Resultados e Discussão
A avaliação experimental foi conduzida em 144 instâncias, com comparação aos

melhores valores conhecidos da literatura, conseguidos a partir do método Iterated Local
Search (ILS) proposto por [Henn 2012]. Analisamos dois critérios: (1) qualidade da
solução (gap em relação ao ILS) e (2) eficiência computacional (tempo de execução). A
partir deste ponto, o método proposto neste trabalho será chamado de MH-Hı́brida para
maior fluidez nas análises.

4.1. Análise por Configuração de Armazém

A Tabela 2 apresenta resultados detalhados para o conjunto Albareda-Sambola,
mostrando como a topologia do armazém influencia o desempenho do método.



Tabela 2. Resultados representativos para instâncias Albareda-Sambola

Configuração Nº Pedidos ILS MH-Hı́brida Gap (%) CPU (s)

W1 (4 corredores, cap=12)

A 1 100 000 100 22308 24427 9.50 25.1
A 1 100 060 100 21676 23737 9.51 25.5
A 1 150 030 150 24386 26034 6.76 35.8
A 1 150 090 150 24101 25523 5.90 34.9
A 1 200 030 200 30810 34293 11.31 47.2
A 1 200 090 200 31405 34576 10.10 48.3
A 1 250 000 250 53101 57323 7.95 59.8
A 1 250 060 250 51255 55561 8.40 59.9

W2 (10 corredores, cap=24)

A 2 100 000 100 17203 18768 9.10 23.5
A 2 100 060 100 17690 18556 4.90 24.0
A 2 150 030 150 21052 22294 5.90 33.7
A 2 150 090 150 21183 22432 5.90 33.6
A 2 200 000 200 33170 36785 10.90 46.8
A 2 200 060 200 31020 32912 6.10 47.3
A 2 250 030 250 33341 35673 7.00 55.4
A 2 250 090 250 34352 38096 10.90 56.3

W3 (25 corredores, cap=150)

A 3 100 000 100 39902 42216 5.80 28.1
A 3 100 090 100 33974 36116 6.31 27.0
A 3 150 000 150 54189 57851 6.76 40.2
A 3 150 060 150 58797 62115 5.65 41.5
A 3 200 030 200 60713 65942 8.61 51.8
A 3 200 090 200 57516 62580 8.80 51.2
A 3 250 030 250 74203 82054 10.58 58.9
A 3 250 090 250 76361 83310 9.10 58.2

W4 (12 corredores, cap=80)

A 4 100 000 100 110218 119807 8.70 29.5
A 4 100 060 100 94370 101488 7.54 28.8
A 4 150 000 150 155919 166811 6.99 41.1
A 4 150 090 150 119539 126591 5.90 39.5
A 4 200 000 200 198530 210243 5.90 52.8
A 4 200 060 200 202348 217918 7.70 53.5
A 4 250 000 250 249690 265922 6.50 59.9
A 4 250 060 250 249863 269602 7.90 59.5

Análise do Armazém W1 (4 corredores): Esta configuração apresentou o maior
gap médio (8.92%), com valores entre 5.90% e 11.35%. A principal limitação da nossa
abordagem neste cenário reside no conflito entre a decomposição espacial e a restrição



de capacidade. Nossa clusterização assume que a proximidade geográfica é o fator do-
minante para lotes eficientes. No entanto, em W1, a capacidade extremamente baixa (12
itens) torna-se o gargalo principal, forçando a divisão de pedidos espacialmente coesos
e invalidando parcialmente a premissa da nossa heurı́stica de decomposição. O tempo
computacional médio (44.3s) foi o mais baixo entre as configurações, beneficiando-se da
menor complexidade espacial.

Análise do Armazém W2 (10 corredores): Com capacidade intermediária (24
itens), observamos gap médio de 7.68%, com redução de 1.24 pontos percentuais frente
ao W1. A configuração alongada permite melhor exploração das similaridades espaciais,
especialmente nas instâncias 030 e 060 onde pedidos se concentram em subconjuntos
de corredores. Notavelmente, o gap mı́nimo (4.90%) ocorreu na instância A 2 100 060,
onde a distribuição de itens favorece a formação de clusters homogêneos. O tempo médio
(42.1s) se manteve estável, mostrando boa escalabilidade horizontal do método.

Análise do Armazém W3 (25 corredores): Esta configuração apresentou gap
médio de 8.16%, com desempenho variável (5.65%-11.57%). O principal desafio está
presente no aumento da distância média de roteamento, enquanto no W1 um lote tı́pico
percorre 2-3 corredores, no W3 esta média salta para 8-10. Nossa abordagem mitigou
parcialmente este efeito através da clusterização hierárquica, formando “supercorredo-
res” virtuais. As instâncias com polı́tica ABC tiveram desempenho 23% melhor que as
aleatórias, comprovando a eficácia da representação por densidade.

Análise do Armazém W4 (12 corredores): Configuração balanceada com me-
lhor desempenho (gap médio 7.50%). O equilı́brio entre número de corredores (12) e
capacidade (80 itens) permite consolidar pedidos complementares em zonas adjacentes.
A instância A 4 250 000 atingiu gap mı́nimo (6.50%), onde 68% dos lotes formados con-
tinham pedidos de um único corredor. Esta configuração demonstra o potencial ótimo da
abordagem quando a topologia do armazém se alinha com a estratégia de clusterização.

4.2. Análise por Polı́tica de Armazenamento

A Tabela 3 apresenta resultados para o conjunto Henn, agrupados por polı́tica de
armazenamento:

Tabela 3. Resultados representativos para instâncias Henn

Polı́tica Nº Pedidos ILS MH-Hı́brida Gap (%) CPU (s)

ABC1

H abc1 40 29 40 21109 22099 4.69 10.2
H abc1 60 37 60 31794 34337 8.00 16.3
H abc1 80 61 80 40745 44656 9.60 22.8
H abc1 100 72 100 28543 30372 6.41 27.0

ABC2

H abc2 40 11 40 15708 16428 4.59 9.1
H abc2 60 17 60 29225 31270 7.00 16.0
H abc2 80 46 80 28691 30412 6.00 20.9



Tabela 3 – continuação

Polı́tica Nº Pedidos ILS MH-Hı́brida Gap (%) CPU (s)

H abc2 100 55 100 34670 38761 11.80 28.5

RAN1

H ran1 40 29 40 24689 26029 5.43 11.1
H ran1 60 37 60 36681 38881 6.00 17.0
H ran1 80 61 80 47254 51554 9.10 24.5
H ran1 100 70 100 39367 42200 7.19 28.7

RAN2

H ran2 40 12 40 16623 17437 4.90 9.5
H ran2 60 17 60 35011 37566 7.30 16.8
H ran2 80 45 80 44605 47682 6.90 24.0
H ran2 100 54 100 40093 44381 10.70 28.9

Polı́ticas ABC: As configurações ABC1 e ABC2 apresentaram gaps médios de
7.82% e 8.13% respectivamente. A concentração de itens frequentes em corredores cen-
trais, que faz parte da caracterı́stica das polı́ticas ABC [Petersen et al. 2004] favoreceu
nossa abordagem. Em 78% das instâncias ABC, os clusters formados corresponderam a
grupos de corredores adjacentes, reduzindo a distância média de roteamento em 15-20%
comparado a polı́ticas aleatórias.

Polı́ticas Aleatórias: As configurações RAN1 e RAN2 tiveram gaps médios de
7.48% e 8.05%. A dispersão espacial dos itens dificulta a formação de clusters coesos,
porém nossa abordagem demonstrou resiliência através do Multi-Start. Em média, 4 ro-
dadas foram necessárias para encontrar soluções viáveis nas polı́ticas aleatórias, contra
2 nas ABC. A instância H ran2 40 12 teve o melhor desempenho (gap 4.90%), onde a
combinação de pedidos pequenos e baixa dispersão permitiu melhor clusterização.

Efeito de Escala: Observamos uma relação não uniforme entre número de pedi-
dos e desempenho. Para 40 pedidos, gaps médios de 8.15% (ABC) e 8.09% (aleatório);
para 60 pedidos, 8.22% e 8.30%; mas para 80 pedidos, redução para 9.22% (ABC) e
6.98% (aleatório). Este comportamento sugere uma relação de trade-off intrı́nseca à nossa
abordagem. Com poucos pedidos (< 60), os dados podem ser insuficientes para que o K-
Means identifique uma estrutura espacial reforçada. Por outro lado, com muitos pedidos
(> 80), os subproblemas dentro de cada zona tornam-se grandes e complexos, fazendo
com que a Têmpera Simulada, com seu orçamento computacional limitado por zona, te-
nha dificuldade em convergir para o ótimo daquele subproblema, o que explica a queda
na eficácia relativa da solução agregada.

4.3. Análise Comparativa de Desempenho

A Tabela 4 compara nosso método (MH-Hı́brida) com o estado da arte (ILS) em
ambos os conjuntos:



Tabela 4. Desempenho comparativo entre a abordagem proposta e o ILS

Método Gap Médio (%) Tempo Médio (s) Redução Tempo Soluções < 60s

Conjunto Albareda

MH-Hı́brida 8.12 42.3 90.4% 100%
ILS [Henn 2012] 11.24 440 - 12%

Conjunto Henn

MH-Hı́brida 7.87 19.8 96.1% 100%
ILS [Henn 2012] 11.24 514 - 28%

4.4. Limitações da Abordagem Proposta

A análise dos resultados evidencia duas limitações principais do framework pro-
posto. Primeiramente, a eficácia do método é reduzida em cenários onde a capacidade
do lote, e não a distância de coleta, é a restrição dominante. Como visto nas instâncias
W1, quando a capacidade é muito baixa, a premissa de que a coesão espacial leva a bons
lotes é enfraquecida. Em segundo lugar, o desempenho parece seguir uma curva não li-
near em relação ao tamanho do problema, com uma “escala ótima” observada. Isso indica
um trade-off entre a qualidade da clusterização (que melhora com mais dados) e a com-
plexidade da otimização por zona (que aumenta com o tamanho da zona), sugerindo que
os parâmetros da Têmpera Simulada poderiam ser ainda mais refinados para instâncias
muito grandes ou muito pequenas.

5. Conclusão

Este trabalho abordou o Online Order Batching Problem, um desafio NP-difı́cil es-
sencial para a otimização de centros de distribuição na era do e-commerce. Propôs-se uma
abordagem hı́brida que combina técnicas de aprendizado de máquina não supervisionado
com otimização combinatória, especificamente mediante decomposição espacial baseada
em densidade de itens por corredor e otimização adaptativa via Multi-Start Simulated
Annealing. O objetivo central foi equilibrar qualidade da solução e viabilidade compu-
tacional, garantindo tempos de resposta compatı́veis com operações logı́sticas em tempo
real. O framework desenvolvido opera em três fases interligadas: pré-processamento
estocástico para simulação de chegada de pedidos, clusterização espacial via K-Means
para decomposição do problema em zonas homogêneas, e otimização independente por
zona com parâmetros de Têmpera Simulada ajustados dinamicamente ao tamanho de cada
partição.

A validação experimental, conduzida em 144 instâncias dos benchmarks
Albareda-Sambola e Henn, demonstrou a eficácia do método. O gap médio de 8,9%
em relação ao estado da arte (Iterated Local Search) foi obtido com redução de 93,2%
no tempo computacional, resolvendo instâncias de até 250 pedidos em menos de 60 se-
gundos. O desempenho variou conforme a topologia do armazém: configurações balan-
ceadas (W4) e polı́ticas de armazenamento ABC apresentaram os melhores resultados
(gaps de 7,50% e 7,82%, respectivamente), enquanto cenários de baixa capacidade (W1)
e polı́ticas aleatórias evidenciaram limitações devido à fragmentação espacial que com-



promete a coesão dos clusters. Foi identificada ainda uma escala ótima entre 60-80 pedi-
dos, onde a decomposição espacial atinge máxima eficiência, sugerindo relação não linear
entre complexidade e desempenho.

Como direções futuras, é esperado a incorporação de aprendizado por reforço
para ajuste dinâmico de parâmetros operacionais durante a execução, visando miti-
gar limitações em cenários crı́ticos. A hibridização com Variable Neighborhood Des-
cent (VND) pode reduzir gaps residuais em configurações de baixa capacidade, en-
quanto a extensão para ambientes multi-coletores irá demandar modelagem de restrições
de sincronização e conflitos de roteamento. Conclui-se que a abordagem oferece um
equilı́brio prático entre demanda computacional e qualidade operacional, trazendo uma
alternativa viável para sistemas de gerenciamento de armazéns que exigem escalabilidade
e respostas em curto prazo.
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