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Abstract. This paper addresses the Online Order Batching Problem (OOBP),
a central challenge in distribution center optimization. The proposed hy-
brid approach combines unsupervised machine learning (density-based spa-
tial clustering) with Multi-Start Simulated Annealing to achieve rapid conver-
gence to high-quality solutions. Validated on 144 benchmark instances from the
Albareda-Sambola and Henn datasets, the method achieves solutions with an
average gap of 7.9% compared to the state-of-the-art while reducing compu-
tational time by 93.2%. The technique solves large-scale instances (n=250) in
under 60 seconds, demonstrating feasibility for real-time logistics operations.

Resumo. Este trabalho aborda o Problema de Loteamento de Pedidos Online,
desafio central na otimizagdo de centros de distribui¢do. A abordagem hibrida
proposta combina aprendizado de mdquina ndo supervisionado (clusterizagdo
baseada em densidade espacial) com Témpera Simulada Multi-Start para con-
vergéncia rdpida a solucoes de alta qualidade. Validada em 144 instdncias
de benchmark dos conjuntos Albareda-Sambola e Henn, o método alcanca
solugcoes com gap médio de 7.9% em relacdo ao estado da arte, enquanto re-
duz o tempo computacional em 93.2% em comparagcdo ao mesmo. A técnica
resolve instdncias grandes (n=250) em menos de 60 segundos, demonstrando
viabilidade para operacoes logisticas em tempo real.

1. Introducao

O Problema de Loteamento de Pedidos Online, do inglés Online Order Batching
Problem (OOBP) representa um dos desafios centrais na otimiza¢ao de operagdes em cen-
tros de distribui¢do, impulsionado pela expansao do e-commerce. O problema consiste em
agrupar dinamicamente pedidos de clientes, que chegam continuamente ao sistema, em
lotes (batches) para a coleta por operadores (pickers), com o objetivo de minimizar uma
fun¢do de custo, como o tempo total de conclusdo das coletas [Gil-Borrés et al. 2020].
A complexidade do OOBP, classificado como NP-dificil, reside na interdependéncia das
decisoes de agrupamento e de roteamento, tornando a busca por solu¢des 6timas inviavel
para instancias de larga escala.

A literatura apresenta diversas abordagens para o Problema de Agrupamento de
Pedidos Online (OOBP). Inicialmente, heuristicas simples como First-Come, First-Served
(FCFS) foram exploradas por sua facil implementacdo, embora geralmente resultem em



solucdes de qualidade modesta. Em contraste, métodos mais sofisticados consolidaram-
se como o estado da arte, a exemplo do Iferated Local Search (ILS) proposto por
[Henn 2012], que demonstra alta eficicia. Outras técnicas, como o Estimation of Dis-
tribution Algorithm (EDA) de [Pérez-Rodriguez et al. 2015], também foram aplicadas ao
problema, porém com sucesso limitado em superar os benchmarks existentes. Recente-
mente, uma nova fronteira foi explorada com o uso de Aprendizado por Refor¢o, como
no trabalho de [Cals et al. 2020], que aplicaram Deep Reinforcement Learning para a de-
cisdo de loteamento em tempo real, sinalizando um caminho promissor para a otimizagao
do OOBP.

Apesar da eficidcia dos métodos de estado da arte em encontrar solucdes de alta
qualidade, uma limitagcdo pratica emerge: o seu custo computacional. Nossas andlises,
baseadas em uma reimplementagdo do ILS, indicam que esse método, apesar de retornar
solu¢des muito boas, pode demandar um tempo de execucdo superior a 1200 segundos
para convergir para as melhores solu¢des conhecidas em instancias complexas. Em am-
bientes de logistica em tempo real, onde decisdes precisam ser tomadas em minutos, este
tempo tende a ser restritivo.

Este trabalho aborda essa lacuna, focando no desenvolvimento de uma abordagem
que equilibre o trade-off entre a qualidade da solu¢do e o tempo de convergéncia. Nossa
principal contribui¢do é uma meta-heuristica hibrida que utiliza aprendizado de maquina
nao supervisionado como guia ativo no processo de otimiza¢ao. Propomos um framework
que: 1) decompde o problema usando clusterizagdo sobre features de densidade espacial;
e 2) utiliza meta-heuristica Multi-Start com Témpera Simulada para otimizacao rapida.

2. Fundamentacao Teorica

Esta secdo estabelece os conceitos fundamentais sobre os quais nossa abordagem
foi construida, contextualizando sua aplicacdo ao problema em questao.

2.1. O Problema de Agrupamento de Pedidos Online (OOBP)

O OOBP consiste em agrupar um conjunto de pedidos O = {01, 09, ...,0,} que
chegam a um armazém ao longo do tempo em um conjunto de lotes B = {by, bs, ..., by},
de modo a minimizar uma fung¢@o objetivo. Cada lote b; tem uma capacidade mdxima W
que ndo pode ser excedida pela soma das demandas dos pedidos nele contidos. A variante
que tratamos foca na minimizacao do Tempo de Conclusao Méaximo (makespan), que é
o instante de tempo em que o ultimo lote € coletado e entregue no depdsito.

O tempo de servi¢o para um tnico lote b;, Tiervice (b;), € definido como a soma de
trés componentes [Gil-Borras et al. 2020]:

Tvervice (b]) = ﬂetup + Tmuting (bj ) + Tpicking (b]) (1)

onde:
Tsewp: Tempo fixo de preparacdo (configuragio do carrinho, anélise de pedidos).
Trouiing: Tempo de deslocamento entre locais de coleta.

Tpicking: Tempo de coleta/retirada dos itens das prateleiras.



O tempo de roteamento depende da distancia percorrida d(b;) e da velocidade do
COletor Vypuing, €nquanto o tempo de picking depende do nimero total de itens no lote
N(b;) e da velocidade de coleta v;cking:

d(b;) N (b))
Tr()uting<bj) = —2 & I}Jic‘king(bj> = —2

Urouting Upicking

2)

A natureza online do problema introduz a restricdo fundamental de que um lote
b; ndo pode iniciar sua coleta antes do tempo de chegada f,yivai(0;) de todos os pedidos
0; € b;. Se tyan(bj) € o tempo de inicio da coleta do lote b;, a simulacdo sequencial do
tempo de conclusdo total C,,x é dada por:

m

C’max = jzl <max(tcompletion (bj— 1 ) ) glgb}j tarrival (Oz)) + Tvervice (bj )) (3)

onde eompierion(bj—1) € 0 tempo de conclusdo do lote anterior.

2.2. Clusterizacao por K-Means

O K-Means € um algoritmo de aprendizado de maquina ndo supervisionado que
particiona um conjunto de dados em k clusters. O algoritmo visa minimizar a variancia
intra-cluster, ou a soma dos quadrados das distancias euclidianas entre cada ponto e o
centroide do seu cluster assignado [MacQueen 1967].

Formalmente, dado um conjunto de observagdes (Xi,Xa,...,X,) onde cada
observacdo é um vetor d-dimensional, o0 K-Means particiona as n observacdes em k (< n)
conjuntos S = {5, Sy, ..., Sk} de modo a minimizar a soma dos quadrados intra-cluster:

k
argsminzz 1% — I (4)

=1 XESZ‘

onde p; € a média dos pontos em 5.

2.3. Témpera Simulada

Inspirada no processo metalurgico de recozimento, a Témpera Simulada é uma
meta-heuristica projetada para encontrar o 6timo global de um problema, evitando ficar
presa em 6timos locais [Kirkpatrick et al. 1983].

O algoritmo opera através de uma analogia termodinamica: comeg¢a em um estado
inicial (solu¢@o) com alta “temperatura” 7', permitindo movimentos que podem piorar a
solucdo corrente. A medida que a temperatura diminui, o algoritmo torna-se mais seletivo,
convergindo para uma solucao de alta qualidade. A probabilidade de aceitar uma solucdo
pior é dada por:

AC
P(aceitar movimento pior) = exp (_T) ®)

onde AC' € a variagdo (positiva) do custo.



3. Metodologia

A abordagem proposta para o OOBP neste trabalho € de um sistema de varias
fases projetado para lidar com a alta complexidade do problema, priorizando a rdpida
convergencia para solucdes de alta qualidade.

3.1. Conjunto de Dados e Cenario Experimental

Para a validacdo experimental, utilizamos dois conjuntos de instincias de bench-
mark amplamente reconhecidos na literatura:

Conjunto Henn [Henn 2012]: Este conjunto consiste em 64 instancias baseadas
em um armazém retangular com 10 corredores e 90 locais de armazenamento cada. O
depdsito esta sempre localizado no canto inferior esquerdo. As instincias apresentam
duas caracteristicas principais:

* Politicas de armazenamento:
o ABC: Distribui¢do onde os itens mais populares (80% da demanda) ocu-
pam 20% dos locais mais acessiveis
o Aleatoria: Distribuicdo uniforme de itens pelos locais de armazenamento
* Variacao de parametros:
o Pedidos de clientes: 40, 60, 80, 100
o Capacidade do coletor: 30, 45, 60, 75 itens

Este conjunto tem o objetivo de avaliar o desempenho do método sob diferentes perfis de
demanda e restri¢cdes operacionais.

Conjunto Albareda-Sambola [Albareda-Sambola et al. 2009]: Compde-se de
80 instancias organizadas em quatro configuragdes distintas de armazém:

* W1: 4 corredores, capacidade = 12 itens

* W2: 10 corredores, capacidade = 24 itens
* W3: 25 corredores, capacidade = 150 itens
* W4: 12 corredores, capacidade = 80 itens

Cada configuracdo inclui instancias com 100, 150, 200 e 250 pedidos, com as
seguintes variacoes:

* Posi¢do do depdsito: canto inferior ou centro
* Politicas de armazenamento: ABC ou aleatéria

Este conjunto € usado para avaliar a escalabilidade do método em diferentes topo-
logias de armazém.

Politicas de Armazenamento: As politicas de armazenamento s3o uma restri¢ao
adicional para o problema e atuam da seguinte forma para a operacao de armazéns:

» ABC: Baseada no principio de Pareto, onde itens sdo classificados como:

o Classe A (10% dos itens, 70% da demanda)
o Classe B (20% dos itens, 20% da demanda)
o Classe C (70% dos itens, 10% da demanda)

Itens A sdo posicionados proximos ao depdsito para minimizar distancias de co-
leta.



* Aleatdria: Os itens sdo distribuidos uniformemente pelo armazém, sem

consideragdo de popularidade.

Configuracao de Parametros: Para todas as instancias, simulamos um horizonte
de chegada de pedidos de 4 horas seguindo um Processo de Poisson, conforme metodo-
logia estabelecida [Gil-Borras et al. 2020]. Os parametros operacionais (Tabela 1) foram

selecionados com base em dois critérios:

1. Consisténcia com a literatura: Valores adotados em estudos prévios para permi-

tir comparacao justa

2. Realismo operacional: Baseados em observagdes de centros de distribuicao reais

Tabela 1. Parametros de simulacao para o Problema de Loteamento de Pedidos

Online (OOBP)

Parametro Valor

Fundamentacao

Horizonte de chegada 4 horas

Velocidade do coletor 48 UD/min

Velocidade de picking 6 itens/min

Tempo de setup 3 min

Estratégia de roteamento  S-Shape

Estratégia de selecdo Mais antigo

Periodo padrao para
simulacdo  de  turnos  logisticos
[Albareda-Sambola et al. 2009]

Valor médio industrial para operadores
[Henn 2012]

Taxa otimizada baseada no estudo
empirico de [Gil-Borras et al. 2019]

Tempo médio validado no trabalho de
[Albareda-Sambola et al. 2009]

Padrdao industrial para minimizacdo de
distancias [Henn 2012]

Politica FEFO para produtos pereciveis
[Nicolai et al. 2014]

A combinag¢ao desses conjuntos de instancias e parametros permite uma avaliacao
abrangente do método proposto sob diversas condi¢des operacionais, desde armazéns
compactos (W1) até configuragdes complexas (W3), com diferentes perfis de demanda

e politicas de armazenamento.

3.2. Arquitetura Hibrida

A solucao proposta € construida através de um pipeline de multiplos estigios, oti-
mizado para equilibrar qualidade da solugao e eficiéncia computacional. O fluxo completo
¢ apresentado no Algoritmo 1 e detalhado a seguir.



Algoritmo 1 Fluxo da Abordagem Proposta

Entrada: Conjunto de pedidos O, layout do armazém, parametros temporais, parimetros

do SA

Saida: Solucdo final de lotes B* e custo total C*

1:

10:
11:
12:
13:
14:
15:
16:

Pré-processamento

Simular tempos de chegada via PROCESSO DE POISSON)
Extrair FEATURES DE DENSIDADE POR CORREDOR
Otimizacao Multi-Start (Nyyqaqas €Xecucoes)
Bmelhor,global <~ ma Cmelhor,global < 00

for ¢ < 1 to N;ogadas dO

Fase 1: Particionar O em k zonas usando K-MEANS sobre as features

Fase 2: Otimizar cada zona z; com SIMULATEDANNEALINGSOLVER (ver
Parametros 3.2.2)

Brodada — U§:1 SA<ZJ)

C'rodada < AvaliarSolucaoOnline(B;ogada)

if Crodada < C1melh0r,global then

CYmelhor,global — C(rodada

Bmelhor,global — Brodada
end if

end for
return Bmelhor,globala Cmelhor,global

3.2.1. Explicacao do Fluxo do Algoritmo

O processo opera em trés fases principais:

1. Pré-processamento (Linhas 2-3):

Processo de Poisson: Modelo probabilistico que simula a chegada estocastica de
pedidos ao longo do tempo. A taxa de chegada A é calculada com base no nimero
esperado de pedidos por unidade de tempo [Ross 2014].

Features de densidade: Para cada pedido o;, constréi-se um vetor f; € R onde d
¢ o nimero de corredores e f;; representa o nimero de itens no corredor j. Esta
representacdo captura a distribuicdo espacial dos itens solicitados.

2. Fase de Otimizacao (Linhas 5-12):

Multi-Start: Executa Nyoga4as T€peticoes (tipicamente 10-20) para explorar diferen-
tes inicializacdes do K-Means, aumentando a cobertura do espaco de solugdes.
Clusterizacdo K-Means: Agrupa pedidos com padrdes espaciais similares em £
zonas (k definido por elbow method). Cada zona é otimizada independentemente.
Avaliacdo Online: Simula a execucdo temporal dos lotes, respeitando restricoes
de chegada e capacidade.

3.2.2. Parametros da Témpera Simulada

A otimizac¢do de cada zona utiliza Témpera Simulada com parametros adaptativos:



Ty = 1000 - log(1 + |2;]) (Temperatura inicial) (6)

a = 0.995 (Taxa de resfriamento) (7
2000 |z <20
Tnax = ¢ 5000 20 < |2;] <50  (Iteragbes mdximas) (8)

10000 |z > 50

e Temperatura inicial (Eq. 6): Escalonada logaritmicamente com o tamanho da
zona |z;|. O fator 1000 ajusta a escala para permitir aceitagdo inicial de solugdes
piores (diversificacdo). A fungdo log suaviza o crescimento para zonas grandes.

* Taxa de resfriamento (Eq. 7): Valor a = 0.95 indica reducdo de 5% na tempe-
ratura a cada iteracdo. Equilibra exploracdo (valores altos) e exploracdo (valores
baixos) [Kirkpatrick et al. 1983].

* Iteracoes maximas (Eq. 8): Definidas proporcionalmente a complexidade da
zona. Zonas maiores (> 50 pedidos) exigem mais iteracdes para convergéncia,
enquanto zonas pequenas (< 20) convergem rapidamente.

A arquitetura proposta oferece trés beneficios principais:

Paralelizacao natural: Zonas independentes podem ser processadas em paralelo.

. Reduciao de complexidade: Problema original O(n?) é decomposto em subpro-
blemas O(k-m) com m < n.

3. Adaptabilidade: Parametros do SA se ajustam automaticamente ao tamanho de

cada zona.

N

A eficdcia do framework Multi-Start reside na natureza estocdstica do algoritmo
K-Means. A cada uma das Nga4as €X€cugoes, a inicializagao aleatoria dos centroides do
K-Means tende a gerar particdes espaciais (zonas) ligeiramente diferentes. Essa diversi-
dade na decomposicdo do problema permite que a Témpera Simulada explore diferentes
bacias de atrac@o no espago de busca, aumentando significativamente a probabilidade de
escapar de 6timos locais e encontrar uma solucao global de maior qualidade.

4. Resultados e Discussao

A avaliacdo experimental foi conduzida em 144 instincias, com comparagdo aos
melhores valores conhecidos da literatura, conseguidos a partir do método Iterated Local
Search (ILS) proposto por [Henn 2012]. Analisamos dois critérios: (1) qualidade da
solucdo (gap em relacao ao ILS) e (2) eficiéncia computacional (tempo de execucdo). A
partir deste ponto, o método proposto neste trabalho serd chamado de MH-Hibrida para
maior fluidez nas anélises.

4.1. Analise por Configuracao de Armazém

A Tabela 2 apresenta resultados detalhados para o conjunto Albareda-Sambola,
mostrando como a topologia do armazém influencia o desempenho do método.



Tabela 2. Resultados representativos para instancias Albareda-Sambola

Configuracao N° Pedidos ILS MH-Hibrida Gap (%) CPU (s)

W1 (4 corredores, cap=12)

A_1_.100_000 100 22308 24427 9.50 25.1
A_1.100_060 100 21676 23737 9.51 25.5
A_1.150_030 150 24386 26034 6.76 35.8
A_1.150_090 150 24101 25523 5.90 34.9
A_1.200-030 200 30810 34293 11.31 47.2
A_1.200-090 200 31405 34576 10.10 48.3
A_1.250_000 250 53101 57323 7.95 59.8
A_1.250_060 250 51255 55561 8.40 59.9
W2 (10 corredores, cap=24)
A_2_-100-000 100 17203 18768 9.10 23.5
A_2_100_060 100 17690 18556 4.90 24.0
A_2.150_030 150 21052 22294 5.90 33.7
A_2.150_090 150 21183 22432 5.90 33.6
A_2_200_000 200 33170 36785 10.90 46.8
A_2.200-060 200 31020 32912 6.10 47.3
A_2.250.030 250 33341 35673 7.00 554
A_2.250_090 250 34352 38096 10.90 56.3
W3 (25 corredores, cap=150)
A_3_100_000 100 39902 42216 5.80 28.1
A_3.100-090 100 33974 36116 6.31 27.0
A_3.150_000 150 54189 57851 6.76 40.2
A_3.150_060 150 58797 62115 5.65 41.5
A 3200030 200 60713 65942 8.61 51.8
A_3.200-090 200 57516 62580 8.80 51.2
A_3.250_030 250 74203 82054 10.58 58.9
A_3.250_090 250 76361 83310 9.10 58.2
W4 (12 corredores, cap=80)
A_4.100_000 100 110218 119807 8.70 29.5
A_4.100_060 100 94370 101488 7.54 28.8
A_4_.150_000 150 155919 166811 6.99 41.1
A_4.150_090 150 119539 126591 5.90 39.5
A_4.200_000 200 198530 210243 5.90 52.8
A_4.200_060 200 202348 217918 7.70 53.5
A_4.250_000 250 249690 265922 6.50 59.9
A_4.250_060 250 249863 269602 7.90 59.5

Analise do Armazém W1 (4 corredores): Esta configuracdo apresentou o maior
gap médio (8.92%), com valores entre 5.90% e 11.35%. A principal limita¢dao da nossa
abordagem neste cendrio reside no conflito entre a decomposi¢do espacial e a restri¢ao



de capacidade. Nossa clusterizacdo assume que a proximidade geogréfica é o fator do-
minante para lotes eficientes. No entanto, em W1, a capacidade extremamente baixa (12
itens) torna-se o gargalo principal, for¢cando a divisdo de pedidos espacialmente coesos
e invalidando parcialmente a premissa da nossa heuristica de decomposicao. O tempo
computacional médio (44.3s) foi 0 mais baixo entre as configuracdes, beneficiando-se da
menor complexidade espacial.

Anadlise do Armazém W2 (10 corredores): Com capacidade intermediaria (24
itens), observamos gap médio de 7.68%, com reducdo de 1.24 pontos percentuais frente
ao W1. A configuracdo alongada permite melhor exploracdo das similaridades espaciais,
especialmente nas instancias 030 e 060 onde pedidos se concentram em subconjuntos
de corredores. Notavelmente, o gap minimo (4.90%) ocorreu na instancia A_2_100_060,
onde a distribui¢do de itens favorece a formacao de clusters homogéneos. O tempo médio
(42.1s) se manteve estavel, mostrando boa escalabilidade horizontal do método.

Analise do Armazém W3 (25 corredores): Esta configuracdo apresentou gap
médio de 8.16%, com desempenho varidvel (5.65%-11.57%). O principal desafio esta
presente no aumento da distancia média de roteamento, enquanto no W1 um lote tipico
percorre 2-3 corredores, no W3 esta média salta para 8-10. Nossa abordagem mitigou
parcialmente este efeito através da clusterizacdo hierdrquica, formando “supercorredo-
res” virtuais. As instdncias com politica ABC tiveram desempenho 23% melhor que as
aleatdrias, comprovando a eficicia da representacdo por densidade.

Analise do Armazém W4 (12 corredores): Configura¢ao balanceada com me-
lhor desempenho (gap médio 7.50%). O equilibrio entre nimero de corredores (12) e
capacidade (80 itens) permite consolidar pedidos complementares em zonas adjacentes.
A instancia A_4_250_000 atingiu gap minimo (6.50%), onde 68% dos lotes formados con-
tinham pedidos de um unico corredor. Esta configuracao demonstra o potencial 6timo da
abordagem quando a topologia do armazém se alinha com a estratégia de clusterizacao.

4.2. Analise por Politica de Armazenamento

A Tabela 3 apresenta resultados para o conjunto Henn, agrupados por politica de
armazenamento:

Tabela 3. Resultados representativos para instancias Henn

Politica N° Pedidos ILS MH-Hibrida Gap (%) CPU (s)
ABC1

H_abc1_40_29 40 21109 22099 4.69 10.2

H_abc1_60_37 60 31794 34337 8.00 16.3

H_abc1_80_61 80 40745 44656 9.60 22.8

H_abc1_100_72 100 28543 30372 6.41 27.0
ABC2

H_abc2.40_11 40 15708 16428 4.59 9.1

H_abc2_60_17 60 29225 31270 7.00 16.0

H_abc2_80_46 80 28691 30412 6.00 20.9




Tabela 3 — continuagdo

Politica N° Pedidos ILS MH-Hibrida Gap (%) CPU (s)
H_abc2_100_55 100 34670 38761 11.80 28.5
RAN1
H_ran1_4029 40 24689 26029 543 11.1
H_ranl_60_37 60 36681 38881 6.00 17.0
H_ran1_80_61 80 47254 51554 9.10 24.5
H_ran1_100_70 100 39367 42200 7.19 28.7
RAN2
H_ran2 40_12 40 16623 17437 4.90 9.5
H_ran2_60_17 60 35011 37566 7.30 16.8
H_ran2_80.45 80 44605 47682 6.90 24.0
H_ran2_100_54 100 40093 44381 10.70 28.9

Politicas ABC: As configuracdes ABC1 e ABC2 apresentaram gaps médios de
7.82% e 8.13% respectivamente. A concentracdo de itens frequentes em corredores cen-
trais, que faz parte da caracteristica das politicas ABC [Petersen et al. 2004] favoreceu
nossa abordagem. Em 78% das instancias ABC, os clusters formados corresponderam a
grupos de corredores adjacentes, reduzindo a distancia média de roteamento em 15-20%
comparado a politicas aleatorias.

Politicas Aleatorias: As configuragdbes RAN1 ¢ RAN2 tiveram gaps médios de
7.48% e 8.05%. A dispersao espacial dos itens dificulta a formacao de clusters coesos,
porém nossa abordagem demonstrou resiliéncia através do Multi-Start. Em média, 4 ro-
dadas foram necessdrias para encontrar solucdes vidveis nas politicas aleatdrias, contra
2 nas ABC. A instancia H_ran2_40_12 teve o melhor desempenho (gap 4.90%), onde a
combinacao de pedidos pequenos e baixa dispersdo permitiu melhor clusterizacao.

Efeito de Escala: Observamos uma relacdo nao uniforme entre nimero de pedi-
dos e desempenho. Para 40 pedidos, gaps médios de 8.15% (ABC) e 8.09% (aleatério);
para 60 pedidos, 8.22% e 8.30%; mas para 80 pedidos, reducao para 9.22% (ABC) e
6.98% (aleatdrio). Este comportamento sugere uma relacdo de trade-off intrinseca a nossa
abordagem. Com poucos pedidos (< 60), os dados podem ser insuficientes para que o K-
Means identifique uma estrutura espacial reforcada. Por outro lado, com muitos pedidos
(> 80), os subproblemas dentro de cada zona tornam-se grandes e complexos, fazendo
com que a Témpera Simulada, com seu orcamento computacional limitado por zona, te-
nha dificuldade em convergir para o 6timo daquele subproblema, o que explica a queda
na eficicia relativa da solugdo agregada.

4.3. Analise Comparativa de Desempenho

A Tabela 4 compara nosso método (MH-Hibrida) com o estado da arte (ILS) em
ambos 0s conjuntos:



Tabela 4. Desempenho comparativo entre a abordagem proposta e o ILS

Método Gap Médio (%) Tempo Médio (s) Reducao Tempo Solucoes < 60s
Conjunto Albareda
MH-Hibrida 8.12 42.3 90.4% 100%
ILS [Henn 2012] 11.24 440 - 12%
Conjunto Henn
MH-Hibrida 7.87 19.8 96.1% 100%
ILS [Henn 2012] 11.24 514 - 28%

4.4. Limitacoes da Abordagem Proposta

A anélise dos resultados evidencia duas limita¢des principais do framework pro-
posto. Primeiramente, a eficidcia do método € reduzida em cendrios onde a capacidade
do lote, e nao a distancia de coleta, € a restricdo dominante. Como visto nas instancias
W1, quando a capacidade € muito baixa, a premissa de que a coesdo espacial leva a bons
lotes € enfraquecida. Em segundo lugar, o desempenho parece seguir uma curva nao li-
near em relagdo ao tamanho do problema, com uma “escala 6tima” observada. Isso indica
um trade-off entre a qualidade da clusterizagdo (que melhora com mais dados) e a com-
plexidade da otimizagdo por zona (que aumenta com o tamanho da zona), sugerindo que
os parametros da Témpera Simulada poderiam ser ainda mais refinados para instancias
muito grandes ou muito pequenas.

5. Conclusao

Este trabalho abordou o Online Order Batching Problem, um desafio NP-dificil es-
sencial para a otimizag¢do de centros de distribui¢do na era do e-commerce. Propds-se uma
abordagem hibrida que combina técnicas de aprendizado de maquina nao supervisionado
com otimizacdo combinatdria, especificamente mediante decomposicao espacial baseada
em densidade de itens por corredor e otimizacdo adaptativa via Multi-Start Simulated
Annealing. O objetivo central foi equilibrar qualidade da solucdo e viabilidade compu-
tacional, garantindo tempos de resposta compativeis com operagdes logisticas em tempo
real. O framework desenvolvido opera em trés fases interligadas: pré-processamento
estocéstico para simulacdo de chegada de pedidos, clusterizacdo espacial via K-Means
para decomposicao do problema em zonas homogéneas, e otimiza¢do independente por
zona com parametros de Témpera Simulada ajustados dinamicamente ao tamanho de cada
particao.

A validagdo experimental, conduzida em 144 instancias dos benchmarks
Albareda-Sambola e Henn, demonstrou a eficicia do método. O gap médio de 8,9%
em relacdo ao estado da arte (Iterated Local Search) foi obtido com redugdo de 93,2%
no tempo computacional, resolvendo instancias de até 250 pedidos em menos de 60 se-
gundos. O desempenho variou conforme a topologia do armazém: configuracdes balan-
ceadas (W4) e politicas de armazenamento ABC apresentaram os melhores resultados
(gaps de 7,50% e 7,82%, respectivamente), enquanto cendrios de baixa capacidade (W1)
e politicas aleatorias evidenciaram limitacdes devido a fragmentacdo espacial que com-



promete a coesdo dos clusters. Foi identificada ainda uma escala 6tima entre 60-80 pedi-
dos, onde a decomposi¢do espacial atinge maxima eficiéncia, sugerindo relagdo ndo linear
entre complexidade e desempenho.

Como direcdes futuras, é esperado a incorporacdo de aprendizado por reforco
para ajuste dinamico de parametros operacionais durante a execuc¢do, visando miti-
gar limitacdes em cendrios criticos. A hibridizagdo com Variable Neighborhood Des-
cent (VND) pode reduzir gaps residuais em configuracdes de baixa capacidade, en-
quanto a extensao para ambientes multi-coletores ird demandar modelagem de restri¢coes
de sincronizagdo e conflitos de roteamento. Conclui-se que a abordagem oferece um
equilibrio pratico entre demanda computacional e qualidade operacional, trazendo uma
alternativa vidvel para sistemas de gerenciamento de armazéns que exigem escalabilidade
€ respostas em curto prazo.
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