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Abstract. Predictive maintenance cuts economic and safety risks in rotating
machinery by leveraging vibration and acoustic data, which machine-learning
models convert into intelligent fault detectors. Acoustic signals are especially
powerful for early fault detection and cooling fans, with simple rotational dy-
namics, are convenient proxies for complex rotors. Yet existing fan datasets lack
disturbance models and controlled conditions. We present CANDAS, a con-
trolled sound dataset featuring 28 h of recordings from two cooling fans under
five modeled disturbance conditions. Baseline experiments with three anomaly-
detection models validate its value, advancing reproducible research on acous-
tic fault detection in rotating machinery.

1. Introduction

Machine failure in the industrial sector can lead to social, economic, and environmen-
tal issues, jeopardizing worker safety, economic stability, and product availability for
society [Chinniah 2015]. As a result, machinery maintenance has prioritized predic-
tive approaches to avoid unexpected failures [Moura Filho et al. 2023]. Anomaly detec-
tion, with the advancements in machine learning and the industry’s growing demands,
has been widely explored in predictive maintenance by identifying abnormal machine
behavior [Chandola et al. 2009]. Machine learning models use sensor data, such as vi-
bration, temperature, pressure, and acoustic signals—acoustic emissions and sound—to
identify deviations from expected behavior and classify them as anomalous data. Acous-
tic signals, when compared with others sensors data, have enabled early anomaly detec-
tion. [Saufi et al. 2019].

Although the use of acoustic data in machine learning approaches is very impor-
tant for the anomaly detection task in rotating machines, there is a notable lack of acoustic



datasets that provide diverse and detailed information on observed rotating machines and
data acquisition processes. Including detailed information—such as voltage levels, op-
erational loads, and specific configurations related to anomalous behavior—improves the
utility of the data and supports fine-grained diagnostics. Clearly understanding the details
of the experimental setup and anomaly conditions is essential to improve the explain-
ability of the data set and ensure transparency in the data used with machine learning
approaches, fostering the advancement of solutions in the anomaly detection task.

Ensuring components are at the correct temperature is of great value to any system
in different contexts and applications. For this purpose, cooling fans are widely used
in computational systems and other contexts. They are designed by combining metal
heat sinks with a propeller to prevent high temperatures, dissipating the heat generated
by components such as processors and power supplies [Al-Hazmi 2020a]. In addition
to computing, rotating machinery, such as cooling fans, plays a key role in a variety
of applications, including the automotive, industrial, and refrigeration sectors. Due to
these widespread applications, advances in the research of anomaly detection in rotating
machines are very important to enhance their usefulness and useful life.

In this work, we present the creation of the CANDAS dataset, which contains
sounds captured from cooling fans, a simpler instance of rotating machinery that shares
fundamental characteristics with more complex systems such as drone propellers, indus-
trial fans, and wind turbines. Additionally, we propose a vibratory disturbance model
to support controlled experimentation and analysis. To corroborate our data, we used
the Multiple Time Series Analysis Framework (MTSA) [Silva et al. 2024]. The frame-
work has different state-of-the-art machine learning approaches, and we applied them to
our proposed dataset, performing structured validation in in-distribution (ID) and out-of-
distribution (OoD) scenarios. These two scenarios allow us to validate the robustness of
the models and how our data set works with them. The contribution of this paper is three-
fold. First, we created an open dataset containing sound data from commonly used types
of cooling fans, employing an easy-to-reproduce and low-cost setup. Second, we em-
ployed a vibratory disturbance model that introduces a range of disturbances with varying
levels of severity. Finally, we investigated different machine learning approaches using
our dataset to evaluate the performance of these models in detecting anomalies in cooling
fans.

2. Related Works

2.1. Anomaly detection in acoustic data

The anomaly detection has been widely explored in different contexts, such as fraud de-
tection [Roy and George 2017], Mars Science Laboratory (MSL) [Zhou et al. 2022], and
wind turbines [Roelofs et al. 2024]. In this task, most of the data is used to define the char-
acteristics of normal behavior, and what does not follow these characteristics is labeled as
abnormal. The multiple time series is commonly used in this task due to the number of
domains in which they appear, such as sensor data [Li et al. 2018] and health data. Given
X, where X = {X' X2 ..., X"}, the multiple time series is X" that contains a set of
N time series, in this case X', X2, ..., XV are the constituent series of the X'. Whether
due to the number of acoustic sensors or data resources, several acoustic time series are
often used to investigate rotating machines. This acoustic series are applied together with
machine learning approaches to detect anomalies in these machines [Li et al. 2016].



2.2. Acoustic dataset

Compared to other types of data, previous studies have shown that acoustic data—acoustic
emissions, in particular—allow for earlier anomaly detection [Saufi et al. 2019]. Despite
this, there is a shortage of acoustic datasets, which has motivated the development of
solutions in this context. This type of dataset has been extremely important for fault
detection in industrial machines, optimizing preventive maintenance. Previous works fol-
low this direction by proposing acoustic data datasets. For example, the MIMII dataset
provides sound data for four different industrial machines—slide rails, valves, pumps,
and fans—operating under normal and anomalous conditions. Additionally, the dataset
includes, for each machine, four different IDs representing four distinct models of the
same machine [Purohit et al. 2019]. The lack of diversity and details regarding how the
data were collected, the environment characteristics, and the experimental setup moti-
vated the creation of other versions of this dataset [Tanabe et al. 2021, Dohi et al. 2022],
in which different aspects of the environment and machine conditions were presented,
such as heat, noise, operating speed, and machine load. In addition to MIMII and its
versions, other works in this direction have been proposed. The ToyADMOS dataset
presents acoustic data from simple mechanical systems, aiming to provide systematically
controlled data, offering explainability in the understanding of normal and anomalous
conditions [Koizumi et al. 2019]. Another work presents the SOUND-BASED DRONE
FAULT dataset, which captures data from drones in normal conditions and anomalous
conditions caused by propeller failures and motor issues [Yi et al. 2023]. These works
demonstrate the creation of acoustic datasets in different contexts and the application of
machine learning to these data for anomaly detection in mechanical systems, highlighting
the importance of improving the quality, availability, and diversity of this type of data.

2.3. Cooling fans

Cooling fans are widely used in electronic systems as one of the main devices to dissipate
the heat generated by machine components, such as processors, graphics cards, and solid-
state drivers. These devices combine metallic heat sinks with fans to increase thermal
transfer flow, ensuring that the components operate within safe temperature ranges. The
study of these devices is of great importance in fields such as electronics, the automotive
sector, climate control, and manufacturing, as efficient cooling directly impacts the health
condition of machinery components [Al-Hazmi 2020b]. Recently, cooling fans have been
the subject of research on efficiency and operational failures. In one study, the effect of
vibrational disturbances caused by the introduction of weights on the blades of the cool-
ing fan was analyzed [Scalabrini Sampaio et al. 2019], considering vibrational for failure
analysis. In another study, failure analysis was carried out using vibration data caused by
holes in the cooling fan blades [Alhazmi et al. 2025]. The mechanical dynamics observed
in cooling fans are not too different when we compare them with more complex rotating
machines, such as aircraft turbines—cooling fans can be seen as an instance of these com-
plex machines, and we can use them to gain insights that support a broader understanding
of rotating machines.

2.4. Data processing

Acoustic data has rich information that cannot be identified when the raw signal
data is analyzed, losing information that can help identify patterns in these data.



To address this issue, signal processing strategies are frequently employed in ma-
chine learning pipelines. Techniques such as log-Mel spectrogram [Purohit et al. 2019],
Mel-Frequency Cepstral Coefficients (MFCC) [Silva et al. 2024], and statistical fea-
tures [Bortoni and Jaskowiak 2024] of the signal have gained attention due to successful
applications and feature extraction capacity. In particular, MFCC has been widely ex-
ploited in problems using acoustic data, such as fake speech detection, speaker recogni-
tion, and language and dialect recognition tasks [Abdul and Al-Talabani 2022]. It extracts
the most significant features from acoustic data, reducing the data dimension of the sig-
nal, which will only have relevant information. Usually, state-of-the-art machine learning
models don’t work well for acoustic data, and using MFCC in their pipelines, we can
significantly improve the performance of these models for tasks involving acoustic data.

3. Dataset Construction

To build the dataset, we first describe the data collection protocol (Subsection 3.1). Fol-
lowed by the vibratory disturbance model used (Subsection 3.2) and the setup for data
collection (Subsection 3.3).

3.1. Recording Protocol

The recording protocol was conducted in a quiet laboratory dedicated solely to data col-
lection, with only ambient noise present. Sounds were collected using a sampling rate of
44.1 kHz and a duration of 10 seconds per recording. Each recording was saved in .wav
format. Each cooling fan was recorded separately.

3.2. Vibratory disturbance model

A model of vibrational disturbances was employed using neodymium magnets as weights,
motivated by recent works on the creation of cooling fan datasets with the introduction of
weights on the cooling fan blades [Scalabrini Sampaio et al. 2019]. In this model, a mag-
net is fixed to each blade of the cooling fan using superglue, forming a layer of magnets.
This first layer makes it possible for new magnets to be stacked on top of the existing
ones, creating new configurations of weight distribution. We arranged the magnets in
four different ways. Each of these arrangements represents an anomaly configuration.
The anomaly configurations were labeled as follows: Config 2, Config 3, Config 4, and
Config 5. In Config 1, there are no extra magnets attached to the cooling fan blades—only
the first layer, with one magnet on each propeller—so it is considered the normal config-
uration. Although the anomaly configurations are physically different from each other,
we performed a signal analysis to understand the nuances of the signal that we captured
and the differences between the signal from normal and abnormal configurations. For
this purpose, we selected 40 random normal files and 40 random abnormal files, and then
we calculated the FFT difference between random pairs of normal and abnormal files. Fi-
nally, we applied the bootstrapping technique to get a 95% confidence interval from the 40
FFT differences. Our finding is shown in Figure 2. Figure 1 illustrates all configurations.

3.3. Data Collection Setup

The equipment listed in Table 1 was selected to support the sound collection in a con-
trolled environment. The combination of signal acquisition, actuation, and structural ele-
ments allows the simulation of realistic mechanical behaviors. Cooling fans were chosen
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Figure 1. Vibratory disturbance model proposed
by [Scalabrini Sampaio et al. 2019]. The black dots represent first-
layer magnets attached to the cooling fan blades, while the blue dots
indicate additional magnets stacked on top. It is possible to design both
balanced configurations (i.e., Config 1) and severely unbalanced ones
(i.e., Config 5).
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Figure 2. Relative differences in the magnitudes of normal and abnormal data,
compared to the magnitude of normal data. Although there are some over-
laps, each pair of cooling fan configurations and voltages is distinctly dif-
ferent when comparing the anomalous configurations (configs 2, 3, 4, and
5) to the normal configuration (config 1).



as the main device for data collection, as they are widely used in electronic components
for temperature regulation. Magnets were used to introduce configurable perturbations.
The sensor used for data collection was a condenser microphone with an amplifier to en-
hance the capture of the data. The collection platform ensured stability and repeatability
throughout the experiments. In Figure 3, we show the complete setup to record all the

data.

Table 1. Equipment used in the experimental setup.

Equipment Model Amount
Raspberry Pi Model B 1
Microphone Audio-Technica AT2020 1
External Source Icel PS-3005 1
Amplifier Focusrite Scarlett Solo 1
Cooling Fan Delta AUC0912D 1
Cooling Fan Intel AUC0912D 1
Collection Platform  6mm MDF Support Structure 1
Magnet Neodymium 12x1 mm 100

(a) Amplifier (¢) Raspberry 4
R
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-

o
(b) Collection Platform

Figure 3. Controlled sound acquisition from cooling fans. The platform (b) in-
cludes four labeled slots (A1-A4), each housing a different cooling fan (e).
A microphone (d) captures audio signals, which are routed through an am-
plifier (a) and processed by a Raspberry Pi 4 (c). An external power source
(f) provides a stable voltage.

4. Experimental

4.1. Setup

The experimental setup was carefully designed to collect sounds from cooling fans under
different weight configurations and voltage levels. To compose our experimental setup,
we selected two models of cooling fans: the Delta AUC0912D, referred to as A2, and the
Intel AUC0912D, referred to as A3—both commonly found in electronic devices. In order
to obtain a greater variety of sounds, an experimental arrangement was defined in which
five weight configurations were applied to each cooling fan, under two voltage levels: 9



Volts and 12 Volts. For sound processing and storage in .wav files, we used a Raspberry Pi
4 and a microphone connected to it for data acquisition. For better reproducibility and ma-
nipulation of the machine learning approaches in our proposed dataset, we employed the
MTSA framework in our experimental setup. The framework has models ranging from
simple to complex, and it allows us to easily compare and do experiments with them in
both scenarios: in-distribution (ID) and out-of-distribution (OoD). We prioritized the most
explainable and simple models within the framework. The models that we used are Isola-
tion Forest [Liu et al. 2008], OSVM [Scholkopf et al. 2001], and Hitachi [Purohit et al. ].
To extract the most important features of the signal, we employed the MFCC feature
extraction strategy in the pipeline of all models implemented in the framework.

4.2. Training and Testing

For the training and testing data split, all the anomalous segments were reserved as the
test dataset, an equal number of normal segments was randomly selected and reserved
as the test dataset, and all the rest of the normal segments were reserved as the training
dataset. The training and testing were carried out using the cross-validation strategy, in
which parts of the training data are selected individually, and for each of these parts,
an instance of the model M; with corresponding parameters 6; is trained and evaluated
using the AUC-ROC metric with the same test data. The AUC-ROC relates true positive
rate and false positive rate, and the area under the curve measures how well the model is
classifying true positives compared to false positives. This metric was selected to capture
the overall performance of the models.
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Figure 4. The unsupervised pipeline employed uses cooling fan data, along with
machine learning models and features implemented in the MTSA frame-
work.

4.3. Out-of-Distribution Evaluation

For a comprehensive performance analysis, we evaluated the models in both in-
distribution (ID) and out-of-distribution (OoD) settings. The ID evaluation involved test
data drawn from the same or a very similar distribution as the training data. In this case,
training and testing were performed on the same cooling fan model. For the OoD eval-
uation, we trained the model on A2 and tested it on A3, which comes from a different
distribution.

5. Results

All results accomplished by the machine learning approaches with the CANDAS dataset
are presented in Table 2. At the end of the data collection process, a total of 10,200 .wav
files were obtained, which corresponds to approximately 28.33 hours of recording.



Table 2. 95% Confidence Intervals for the AUC-ROC of models trained on Config
1. For In-Distribution, models were trained and tested in the cooling fan
type. For Out-of-Distribution, models were trained on A2 but tested on A3.

Config Volts Model ID-(A2, A2) ID-(A3, A3) OO0OD-(A2, A3)

Hitachi 0.91 (0.91,0.91) 0.86 (0.86,0.86) 0.81 (0.81, 0.82)
9V Isolation Forest 0.85(0.84,0.85) 0.76 (0.73,0.79) 0.59 (0.53, 0.64)
One-Class SVM  0.86 (0.86, 0.86) 0.79 (0.79, 0.80) 0.50 (0.50, 0.50)

Hitachi 1.00 (1.00, 1.00) 0.97 (0.97,0.98) 0.97 (0.97, 0.97)
12V Isolation Forest 0.92(0.92,0.93) 0.84 (0.82,0.86) 0.60 (0.57, 0.64)
One-Class SVM  0.91 (0.90, 0.91) 0.89 (0.88,0.90) 0.50 (0.50, 0.50)

Hitachi 0.91 (0.90,0.91) 0.96 (0.96,0.96) 0.81 (0.80, 0.81)
9V Isolation Forest 0.80 (0.79,0.81) 0.87 (0.86,0.87) 0.50 (0.43, 0.55)
One-Class SVM  0.86 (0.86, 0.86) 0.90 (0.90,0.91) 0.50 (0.50, 0.50)

Hitachi 0.96 (0.96,0.96) 1.00 (1.00, 1.00) 0.96 (0.96, 0.97)
12V TIsolation Forest 0.94 (0.94, 0.95) 0.94 (0.94,0.95) 0.77 (0.73, 0.79)
One-Class SVM  0.89 (0.88, 0.90) 0.89 (0.88, 0.89) 0.50 (0.50, 0.50)

Hitachi 0.98 (0.98,0.98) 0.94 (0.94,0.94) 0.79 (0.79, 0.80)
9V Isolation Forest 0.86 (0.85,0.86) 0.88 (0.88,0.89) 0.61 (0.55, 0.67)
One-Class SVM  0.88 (0.88, 0.89) 0.89 (0.88, 0.89) 0.50 (0.50, 0.50)

Hitachi 0.99 (0.99, 0.99) 1.00 (1.00, 1.00) 0.89 (0.82, 0.97)
12V Isolation Forest  0.96 (0.96, 0.96) 0.95 (0.94,0.95) 0.74 (0.70, 0.78)
One-Class SVM  0.89 (0.88, 0.90) 0.89 (0.88,0.89) 0.50 (0.50, 0.50)

Hitachi 0.95(0.95,0.95) 0.97 (0.96,0.97) 0.92(0.92, 0.92)
9V Isolation Forest 0.87 (0.87,0.88) 0.87 (0.86,0.88) 0.56 (0.54, 0.59)
One-Class SVM  0.88 (0.88, 0.89) 0.90 (0.90,0.91) 0.50 (0.50, 0.50)

Hitachi 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.53 (0.51, 0.57)
12V Tsolation Forest 0.96 (0.96, 0.96) 0.96 (0.96,0.97) 0.86 (0.84, 0.88)
One-Class SVM  0.89 (0.88,0.90) 0.88 (0.88, 0.89) 0.50 (0.50, 0.50)

Config 2

Config 3

Config 4

Config 5

5.1. In-Distribution Evaluation

Figure 5 shows the performance of all models, with Hitachi showing the best overall
result. When we examine the simpler models—specifically, the One-Class Support Vector
Machine (OSVM) and Isolation Forest—we can observe better results for some specific
cooling fan models and voltage. The isolation forest model seems more interesting for
the cooling fan A2 at 12 volts, accomplishing AUC-ROC values greater than 92 with a
very low variance. The same happens with the cooling fan A3 at 12 volts, in which the
Isolation Forest accomplishes superior results than OSVM. However, the OSVM model
shows superior performance across all cooling fans operating at 9 volts in comparison to
Isolation Forest. These results suggest that the most effective model can vary depending
on the specific scenario.

5.2. Out-of-Distribution Evaluation by Machines

The results presented in Figure 6 show the performance of all models in the Out-of-
distributions scenario. It allows us to analyze the robustness of the model against changes
in the distribution of the data when we compare it with the training data. In an overall
perspective, the Hitachi model has the best AUC-ROC values. Conversely, the OSVM
model is on the random line of all OoD results, representing the worst performance in all
OoD scenarios. Remarkably, despite not performing so well in the OoD 9-volt scenario,
the Isolation Forest shows a better performance in configuration 5 in the OoD 12-volt
scenario, even when compared with the autoencoder Hitachi. These results highlight that
in some scenarios, simpler models can be more robust than more complex models, being
more resistant to shifts in the data. The Hitachi, along with the other models, showed the
smallest difference in AUC ROC between the OoD and ID scenarios.
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Figure 5. The AUC-ROC analysis of models trained and evaluated on Config1,
using the same cooling fan type for both training and testing.
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Figure 6. The AUC-ROC analysis of models trained and evaluated on Config 1,
in an out-of-distribution scenario where models were trained on A2 and
tested on A3.

6. Conclusion and Future Works

This study introduced CANDAS [Lima et al. 2025], a novel sound dataset featuring mod-
eled disturbances and controlled experimental conditions using sounds of cooling fans.
The dataset enables the evaluation of different cooling fan types and a variety of anomaly
configurations, allowing for a systematic analysis of model performance across diverse
scenarios. Our results suggest that, in specific contexts, simpler machine learning models
can perform comparably to more complex ones. In addition, by capturing data at differ-
ent voltage levels, CANDAS provides the opportunity to assess how model performance
varies when applied to the same cooling fan type under different voltages. These devices,
due to their structural simplicity and widespread presence in computing and industrial
environments, serve as an effective pilot platform for accelerating the development of
machine learning models aimed at predictive maintenance.

Our findings, obtained through multiple anomaly configurations and a range of
machine learning models, demonstrate that even relatively simple approaches can achieve
high performance. Furthermore, the out-of-distribution evaluations highlight the dataset’s
potential for testing the generalization capability of anomaly detection models across dif-
ferent operating conditions. By publicly releasing the CANDAS dataset, we support the
machine learning and signal processing research communities in designing and bench-
marking robust models. The use of cooling fans as a testbed offers a cost-effective and
reproducible strategy to foster a broader understanding of rotating machines and techno-
logical maturity in predictive maintenance solutions.

Future work will focus on three main research directions. First, we intend to
expand experimental validations to include other types of rotating machinery—such as
pumps, turbines, and compressors—to improve the reliability and broaden the applica-
bility of the models to real-world industrial equipment. Second, we plan to enhance our
recording setup and equipment, and to explore additional sensors—such as acoustic emis-



sion sensors—alongside various machine learning models to develop predictive mainte-
nance pipelines that are both fast and cost-effective. Lastly, we aim to investigate the
use of deep learning architectures tailored for fault diagnosis tasks, combining robustness
with explainability to enhance model interpretability and practical deployment.
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