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Abstract. Automated Planning is a subarea of Artificial Intelligence (AI) that
studies the deliberative process of choosing actions for an agent to achieve its
goals. A planner is a problem-solving algorithm that takes as input a high-level
description of the agent and its environment (planning domain) and produces a
sequence of actions (plan) that moves the agent from an initial state to a goal
state. Acquiring a planning domain can be performed using algorithms that
learn the domain description from a kind of specific data (plan traces). Obtain-
ing such plan traces is difficult and a viable strategy is to extract it from Natural
Language information. This work aims to build a database of plan traces from
Natural Language dialogue data. These data represent conversations between
real users and a healthcare chatbot.

1. Introduction
Planning is an essential aspect of human behavior, enabling to select and organize ac-
tions to achieve specific goals. Automated Planning is a subarea of Artificial Intelli-
gence (AI) dedicated to the computational modeling and execution of planning processes
[Ghallab et al. 2004]. A planning domain is defined in terms of predicates and actions,
which represent the properties of the environment and the capabilities of the agent, re-
spectively. A planning problem is instantiated in a domain by defining an initial state and
a desired goal. A solution to a planning problem is a plan: a sequence of actions that trans-
forms the initial state into a state in which the goal is satisfied [Russell and Norvig 2009].

Classical Planning operates under the assumption of a deterministic environ-
ment, in which the outcomes of an agent’s actions are not subject to uncertainty
[Pereira and Barros 2007]. In real-world scenarios, this assumption often does not hold,
as actions may produce non-deterministic effects due to the inherent dynamic nature of
the environment. A solution to a non-deterministic planning problem is called a policy:
a mapping from states to actions that prescribes which action to take in each possible
state to achieve the goal, considering the uncertainty in outcomes. Planning domains and
problems are typically specified using PDDL (Planning Domain Definition Language)
[Haslum et al. 2019], a declarative language widely adopted by the planning community.

The acquisition of planning domain models is a complex task, as it demands spe-
cialized knowledge of the domain being modeled. In the literature of Knowledge Engi-
neering for Planning [Vallati and Kitchin 2020, kep 2024], domain acquisition paradigms



are typically categorized as either manual or automated. In automated approaches, the
fundamental data used to infer the underlying structure of the domain is referred to as
plan traces. These traces are generally composed of two main components: (a) the plan,
which corresponds to the sequence of executed actions; and (b) the state list, which cap-
tures the sequence of states traversed during the execution; these traces are difficult to
obtain. NLtoPDDL [Miglani and Yorke-Smith 2020] is a automatic approach for acquir-
ing planning domains that obtain plan traces from unstructured data in Natural Language.

Dialogue systems (or chatbots) may range from simple question–answer ex-
changes to more complex, goal-oriented conversations [Botea et al. 2019], such as sup-
port systems used in healthcare. During information processing, user utterances (i.e.,
responses at each interaction step) are classified into entities (domain-relevant variables)
and intents (categories corresponding to expressions identified in the text). In addition to
the general components of Natural Language understanding and generation, the dialogue
manager is a core component of these systems. It is responsible for identifying the current
dialogue state and selecting the next action to be executed [Teixeira and Dragoni 2022].

Plantão Coronavı́rus is a chatbot designed to provide guidance to the population
during the COVID-19 pandemic. It enabled citizens to access reliable information about
the virus and report symptoms, which were then evaluated by the system to determine
whether redirection to appropriate healthcare professionals, such as physicians, nurses
or psychologists. The chatbot played a relevant role during the most critical phases of
the pandemic (2020 and 2021). Previous work [Pinho 2024] introduced an AI Planning-
based approach to manage the chatbot’s behavior, adopting a manual planning domain
acquisition strategy derived from a limited set of dialogue samples.

In this work, we aim to extract plan traces from dialogues, which are essential for
the automatic acquisition of planning domains. We leverage a large dataset of approx-
imately 7,000 dialogues and apply Machine Learning algorithms to identify the set of
actions in the planning domain, as well as the corresponding paths reflected in real user
interactions. The main objective is to construct a structured database of plan traces from
unstructured Natural Language dialogues collected during real interactions with a health-
care chatbot. To achieve this, we follow a multi-step process: (i) extracting entities from
user utterances; (ii) deriving user predicates based on the identified entities and intents,
which constitute the state descriptions (part (b) of the plan trace); and (iii) extracting ac-
tion sequences from the dialogues, corresponding to the plans (part (a) of the plan trace).
We evaluated the quality of the resulting plan traces by comparing the induced paths with
those defined by the chatbot’s original management policy.

This paper is organized as follows. Section 2 presents the theoretical foundation.
Section 3 discusses related work. Section 4 describes the methodology adopted to extract
plan traces from dialogues, including the data processing and Machine Learning tech-
niques employed. Section 5 presents and analyzes the results obtained. Finally, Section 6
concludes the paper and outlines directions for future work.

2. Theoretical Foundations
2.1. Automated Planning
Automated Planning is a subrea of AI concerned with the representation and gener-
ation of a sequence of actions that enables an intelligent agent to achieve its goals



[Russell and Norvig 2009]. The classical planning approach assumes that the environ-
ment evolves in a deterministic way. Thus, the actions executed by the agent are not
influenced by external environmental factors [Pereira and Barros 2007]. In this context, a
classical planning domain can be represented by a state-transition model. In this model,
a state is a specific configuration of the environment labeled by a set of propositions, and
actions trigger transitions that cause the environment to evolve from one state to another.
Thus, a specific problem within the domain is defined by the addition of an initial state
and a goal. A plan is the sequence of actions performed to achieve the agent’s goal.

PDDL (Planning Domain Definition Language) [McDermott et al. 1998] is a lan-
guage widely adopted as the standard for specifying planning domains and problems. In
this language, each action is represented by preconditions and effects, which define the
state of the agent and the environment before and after the action is executed, respectively.
The preconditions of actions are sets of propositional atoms that define the propositions
that must be true for an action to be executed in a given state. The effects consist of the
outcome of the execution, with their respective propositions added or removed, which
alter the current state of the environment [Ghallab et al. 2004]. In PDDL, action schemas
are used, which are representations with variables that are instantiated by propositional
atoms. Given a planning problem, a planner performs a search, generating a state transi-
tion graph on demand from the action language, aiming to find a path that leads from the
initial state to a goal state [Pereira and Barros 2007].

In real-world problems, the agent’s actions exhibit uncertain effects, meaning the
actions can be non-deterministic [Pereira and Barros 2007]. A non-deterministic plan-
ning domain is a model that accounts for uncertainties in nature and the environment
[Pereira and Barros 2007]. Each action has a set of possible effects representing different
configurations. A solution to a non-deterministic planning problem is characterized in
terms of the possible executions of a plan, defined as a policy [Cimatti et al. 2003].

2.2. Planning Domain Acquisition
The domain acquisition process is a complex activity, primarily because it requires
extensive knowledge about the problems to be modeled and their respective char-
acteristics [Segura-Muros et al. 2021]. In this context, obtaining a domain model
for real-world planning problems requires collaborations between Subject Matter Ex-
perts (SMEs) and Knowledge Engineers (KEs). However, this results in a time-
consuming process that is prone to errors and difficult to understand. According to
[Miglani and Yorke-Smith 2020], the main paradigms for acquiring planning domain
models can be summarized into three types of approaches: (i) the manual approach, (ii)
the automatic approach from structured data (plan traces), and (iii) the automatic approach
based on unstructured data (from Natural Language).

The manual approach involves the active participation of subject matter experts,
as it requires specific knowledge about the domains that can only be provided by these
professionals. Thus, they are responsible for the entire knowledge engineering process,
dealing with the acquisition, formulation, validation, and maintenance of planning for the
production of the domain model [Shah et al. 2014]. The main issue with this approach is
the potential errors introduced through manual coding, as the knowledge of real-world do-
mains is often limited by human perspective, and the success of planning systems entirely
depends on the skills of the expert defining the model [Arora et al. 2018].



Figure 1. Example of plan trace in the blocks world domain.
(a) Plan

Start End Action

s9 s6 unstack C A
s6 s7 stack B C
s7 s11 stack A B

(b) List of states
State Predicates

s9 (on A table) ∧ (on C A) ∧ (on B table) ∧ (clear B) ∧ (clear C)
s6 (on A table) ∧ (on B table) ∧ (on C table) ∧ (clear A) ∧ (clear B) ∧ (clear C)
s7 (on A table) ∧ (on C table) ∧ (on B C) ∧ (clear A) ∧ (clear B)
s11 (on C table) ∧ (on B C) ∧ (on A B) ∧ (clear A)

The automatic approach from structured data learns the domain model through
plan histories, also referred to as plan traces. With previously defined information about
intermediate states, a plan trace consists of a sequence of actions and intercalated states
[Miglani and Yorke-Smith 2020]. Each action is associated with two states: one repre-
senting the world at the beginning of the action (pre-state) and another representing the
world after the execution of the action (post-state). It is possible to have partial informa-
tion regarding the pre-state and post-state.

Figure 1 illustrates a plan trace of a plan in the blocksworld domain
[Nilsson 1980]. In the plan trace: (a) shows the sequence of executed actions, with
the Start and End columns indicating the names of the states associated before and after
the application of a specific action; (b) displays the set of intermediate states associated
with each action in the plan during its execution.

2.3. Natural Language Processing (NLP)
Natural Language Processing (NLP) is a subarea of AI aimed at enabling machines to
understand, interpret, and manipulate human language [Jurafsky and Martin 2021]. Ac-
cording to [IBM 2024], among the tasks of NLP, Named Entity Recognition (NER) stands
out. The NER task is to identify named entities present in texts and classify them into
predefined categories, such as person, location, or organization. For example, consider-
ing the sentence “My name is John and I study at the Cool School” traditional NER labels
identify the words “John” and “Cool School” as person and organization, respectively.

State-of-the-art NER systems employ Machine Learning algorithms
[Rauber 2005] that are pre-trained using language models. The use of such models,
such as OpenAI GPT [Radford et al. 2018] and BERT [Devlin et al. 2019], significantly
improves the performance of many NLP tasks and also reduces the amount of labeled
data needed for learning. spaCy [AI 2024] is one of the most popular libraries for NLP
and has the capability to perform NER.

2.4. Dialogue Systems
Dialogue systems, commonly known as chatbots, are intelligent agents focused on inter-
acting with users. They are designed to interpret questions and respond to them, reinforc-



ing the illusion that the conversation is taking place between two human beings.

The construction of dialogue is typically designed with three main components
[Teixeira and Dragoni 2022]: (i) the component responsible for Natural Language Un-
derstanding (NLU), which receives user input and is able to interpret it; (ii) the dialogue
manager, which perceives the current state of the dialogue and decides the next action to
be executed; and (iii) the Natural Language Generation (NLG) component, which con-
verts the action into a response that is understandable by the end user.

In a dialogue, the user utterance refers to the text typed by the user in the sys-
tem’s interface. For processing this information, the utterances are classified into intents,
which define the categories of expressions used by the user. For example, a statement
like “I would like to book a flight to Bucharest” can be classified under the “FLIGHT-
BOOKING-REQUEST” intent. Additionally, entities are defined as the representative do-
main variables present in the user’s utterances, which can either be general (places, dates,
people) or specific to the domain in question. In the example statement, “Bucharest” could
represent an assignment to the entity “$PLACE”. These pieces of information (intents and
entities), along with the dialogue history, help build the context of the conversation, which
contains relevant data up to a specific point in the dialogue [Botea et al. 2019].

The Figure 2 shows the general architecture of a dialogue system. The Chat mod-
ule in the diagram is responsible for receiving the user’s utterance and establishing com-
munication. The utterance is then sent to the Conversation Service (CS) module, where
the components responsible for understanding (NLU) and generating (NLG) the Natural
Language data process the sentences into categories and perform the necessary transla-
tions for understanding by both the machine and the user. It is within the CS that the
user’s utterances are classified into intents and the entities are recognized according to the
dialogue characteristics, thereby extracting the context of the conversation.

Figure 2. Dialogue system architecture [McTear 2020].

The Dialogue Manager (DM) module is the central component of a dialogue agent,
as it handles the intents, entities, and context in a way that controls the flow of the con-
versation and produces response messages to the user [McTear 2020]. Computationally, a
dialogue can be interpreted as a series of communicative actions used to achieve specific
goals. Thus, each utterance can be treated as an action by the dialogue manager, which
addresses the problem of identifying the current status of the conversation in order to de-
cide the next action to be executed in a given state [Teixeira and Dragoni 2022]. After the
action is chosen, the DM sends it to the Conversation Service (CS), where text translation



and response dispatch to the Chat module occur.

The management of dialogue systems can be classified into two categories: (i)
those that use dialogue trees and (ii) those that use Machine Learning [Botea et al. 2019].
Dialogue trees structure the conversation into a complex series of branches that depend on
the user’s responses. As the configurations become more complex, the tree grows quickly,
with many similar dialogue interactions that are difficult to track. Moreover, systems
using dialogue trees rely on the costly manual description of all possible conversation
paths. On the other hand, systems that use Machine Learning for management employ
techniques to calculate the next response using examples as a starting point, allowing
for the rapid development of complex dialogue from training data. This characteristic,
however, may lead to limitations regarding the quality of the data and the capacity of the
simulators used in the process. Furthermore, the approach is not fully capable of providing
explanations for the paths taken in the resulting decisions [Teixeira and Dragoni 2022].

Considering dialogue as a path to achieving a specific goal through the selection
of actions, the Automated Planning approach can be a promising alternative for dialogue
management tasks [Teixeira and Dragoni 2022]. By anticipating the outcome of each of
these actions, a planner can identify the states that can be reached and choose an efficient
path that leads to the dialogue’s goal [Teixeira et al. 2019]. The planner assesses the
conversation’s context and decides which action should be taken. Dialogue systems must
be designed in a way that enables them to explain their reasoning, in order to justify their
choices to users and comply with ethical standards [DEEP-DIAL 2021].

3. Related Work

The NLtoPDDL approach [Miglani and Yorke-Smith 2020] aims to perform the auto-
matic acquisition of planning domains from unstructured data, specifically Natural Lan-
guage texts. The inputs used are process manuals that present data in the form of instruc-
tional lines. The process of domain acquisition is divided into two subproblems: (i) the
extraction of action sequences for subsequent plan extraction from unstructured data, and
(ii) the automated acquisition of the planning domain using the structured data obtained
in the previous phase. The algorithm associates words in the text with labels such as ac-
tions and states, seeking to extract words that may represent actions or action arguments.
The [Miglani and Yorke-Smith 2020] approach is similar to the one proposed in this work
regarding the automatic acquisition of planning domains from unstructured data. How-
ever, the authors perform the complete domain acquisition process, unlike this research,
where we focus on the first stage of the study, which is the acquisition of structured data
in the form of plan traces from real texts in Natural Language, using data analysis tools
for classification and information extraction.

In the work of [Segura-Muros et al. 2021], the authors propose a planning domain
acquisition process based on Machine Learning techniques from structured data, named
PlanMiner. The approach enables the acquisition of a domain with numerical predicates
and logical-arithmetic relations between predicates expressed in PDDL, using plan traces
with partially known states as input. PlanMiner addresses the domain learning problem
by describing it as a classification task. In order to model an action, it is essential to
identify its preconditions and effects. Based on this, the authors argue that the classifica-
tion approach is suitable, as these properties correspond to the configurations of pre-states



(states where the action is applied) and post-states (resulting states after the action execu-
tion). The learning process in PlanMiner is divided into the following phases: (i) Dataset
extraction: A set of plan traces is received as input and used to generate a collection
of datasets; (ii) Discovery of new information: PlanMiner applies regression techniques
[Manly and Alberto 2016] to infer new knowledge and enrich the datasets; (iii) Acquisi-
tion of classification models: The generated datasets are used as input for a classification
algorithm; and (iv) Generation of the planning domain: The classification models are
processed to produce a set of action models. The final output of PlanMiner is a PDDL
domain formed by the combination of the learned action models.

Considering the [Segura-Muros et al. 2021] approach for domain acquisition,
while the authors use as input the previously structured data in the form of plan traces,
without identifying how they were obtained, the present work focuses on using unstruc-
tured data in Natural Language from dialogues to obtain the plan traces, as a prior step
to domain acquisition. The difference between the studied domains should also be men-
tioned, as the PlanMiner authors focus on benchmark domains in the planning area and
the NLtoPDDL approach focuses on diverse applications, while this work aims to study
domains that assist in the task of dialogue management.

4. Methodology

The aim of this work is to extract plan traces (structured data) from dialogue data, which
are inherently unstructured and expressed in Natural Language. These inputs correspond
to conversations from a healthcare chatbot. By structuring this data, it becomes possible
to automatically acquire the chatbot’s planning domain, which will be used in the context
of dialogue management. The information handled is confidential; therefore, in order to
protect user privacy, the examples presented in this paper are fictional and were created
only for illustrative purposes, although they are representative of the real data collected.

The conversation initially takes place between the user and the chatbot, but as
it progresses, it may transition to a dialogue between the user and a healthcare profes-
sional. In this context, the planning problem addressed in this work is the same across
all dialogues: the initial state is the start of the conversation and the goal is successfully
concluded the interaction.

Figure 3 illustrates the architecture of the system used to extract plan traces from
dialogue data in Natural Language. Google Colaboratory1 tool was chosen as the devel-
opment environment and the Python programming language was used to implement the
algorithms for accessing the dataset. During the preprocessing stage, columns deemed
unnecessary for the research objectives were removed, as well as emoticons and exces-
sive spacing between sentences. Each line in the dataset undergoes this process, resulting
in properly formatted dialogues that are saved in a JSON file for later use in the process.

In order to extract the entities represented in the user statements, the spaCy2 li-
brary was used, specifically the Portuguese language model pt core news lg. The spaCy
NER model, when applied to Portuguese language, recognizes entities related to person,
location, organizations and miscellaneous entities. To fit the scope of this work, entities

1https://colab.google/
2https://spacy.io/

https://colab.google/
https://spacy.io/


Figure 3. Process of obtaining plan traces from dialogues.

related to organizations and miscellaneous categories were disregarded, and the spaCy
model was updated with entities present in the dialogue data, such as postal code (CEP),
phone number, CPF, gender and date of birth, totaling 7 entities. This update was carried
out using regular expressions to ensure the correct format of the data, a validation func-
tion for data such as CPF, and the PhraseMatcher3 class from spaCy, which recognizes
matching patterns in the text.

User predicates are obtained by analyzing the entities and intents present in the
user statements, such that for each intent and entity, there is a related predicate. For
example, the user statement “I am a woman” corresponds to the intent “send-info-gender”,
and the text “woman” is an entity “have-info-gender”. These predicates are true when the
entity and intent are found in the dialogue flow. Therefore, the entities defined in the
previous stage, which include name, location, postal code (CEP), phone number, CPF,
gender, and date of birth, were mapped and translated into corresponding user predicates.
In the extraction process, this mapping is performed using Python dictionary. Thus, each
key in the dictionary represents a user predicate, with its corresponding boolean value.

In order to obtain the action sequences, as the dialogue is processed each line
corresponding to the chatbot’s messages undergoes a verification process. This process
determines which action corresponds to the message sent, based on the previously estab-
lished mapping. As a result, the path taken by the dialogue is returned, outlining all the
actions executed by the chatbot throughout the conversation flow. Each dialogue goes
through this extraction process, resulting in a text file containing the action sequences.

5. Results
The implementations were carried out on Google Compute Engine back-end notebooks
using Python 3, running on an Intel(R) Xeon(R) CPU 2.20GHz with 12.7GB of RAM
and 107.7GB of disk space. This configurations was used in the notebooks related to
data preprocessing and the extraction of action sequences. For user predicate extraction,

3https://spacy.io/api/phrasematcher

https://spacy.io/api/phrasematcher


we use a Google Compute Engine back-end notebook with Python 3, configured with a
TPU with 8 cores, 334.6GB of RAM, and 225.3GB of disk space. The implementations
developed and the files used in this research are available in the supplementary material4.
The dataset contains 7,136 dialogues and a sample of 1,125 dialogues underwent the
preprocessing stage. The properly formatted dataset was saved in a JSON file.

Based on the recognition of entities present in the user’s statements, 14 predicates
were mapped, with each of the 7 entities covering predicates with the prefixes HAVE
(derived from the entity) and SEND (from the intent). Initially, the predicates are assigned
a false boolean value, indicating the start of a new dialogue. Each line from the patient’s
conversation was analyzed, and if the algorithms detected entities in the text, the values
of the user predicates were updated, resulting in a contextual record at each interaction.
Table 1 shows predicates values, indicating the state of the dialogue.

Table 1. Example of extracting user predicates from each analyzed utterance.
User statement Predicate values
01: no entities found ’send-info-name’: False, ’send-info-cpf’: False,

’send-info-birthday’: False, ’send-info-location’: False,
’send-info-postal-code’: False
’have-info-name’: False, ’have-info-cpf’: False,
’have-info-birthday’: False, ’have-info-location’: False,
’have-info-postal-code’: False

02: postal code entity
found ’send-info-name’: False, ’send-info-cpf’: False,

’send-info-birthday’: False, ’send-info-location’: False,
’send-info-postal-code’: True
’have-info-name’: False, ’have-info-cpf’: False,
’have-info-birthday’: False, ’have-info-location’: False,
’have-info-postal-code’: True

Each list of predicates characterizes a possible state in the state list of the plan
trace (part (b)), representing a specific configuration of the environment at each user in-
teraction through propositions. Considering the 7 entities and their boolean values, there
is an expected total of 27 possible predicate configurations, i.e., 128 states. After ana-
lyzing the processed dialogues and using a script to identify the number of unique user
predicate dictionaries, a list of 45 states was obtained. Including the initial state in which
all predicates have a false boolean value, a total of 46 states was established.

Table 2 shows the action mapping that was carried out, represented as a Python
dictionary, where the key is the string corresponding to the action name and the value
is the string referring to the message sent by the chatbot. Each line from the chatbot’s
messages was analyzed5, and based on the mapping, the corresponding action for each
text was identified and added to the dialogue path.

This process resulted in the extraction of 1,125 dialogue paths, with an execution
time of 9 seconds. The sequence of actions represents part (a) of the plan trace, char-
acterizing the plans obtained from each dialogue. However, the intermediate states were

4https://zenodo.org/records/15391970
5The texts were translated into English; but the original messages are in Portuguese.

https://zenodo.org/records/15391970


Table 2. Example of action mapping performed based on chatbot messages.
Chatbot Message Action
Hello! Welcome to the online service!! show-welcome-message
What do you need now? (Type the number of
the desired option) 1. Online assistance about
the Coronavirus 2. Information about the
Coronavirus 3. Mental healthcare 4. Others

start-dialog

Are you experiencing any of these symptoms?
[...] Type the numbers of the symptoms
separated by commas (e.g., 2, 5), or type 7 if
you are not experiencing any of the symptoms
listed above.

ask-patient-symptoms

Your service has been completed. finish-service

not mapped. To evaluate the resulting sequence of actions, we compared all the chatbot
management policy paths (structured data). The goal was to map which policy paths are
actually followed in real conversations. This mapping was important since the domain
used to generate that policy was manually constructed based on a small set of real di-
alogues (around 30 dialogues). The original domain has 89 predicates and 60 actions6,
which produces a policy with 457 distinct action sequences that guide the agent from the
initial state to a goal state. Some other important results:

• In the action analysis, 21 new actions were mapped, representing scenarios not
covered by the policy;

• 779 dialogues (69.24%) do not correspond to a complete path in the policy, i.e.,
from the initial state to the goal. These dialogues are characterized by incomplete
interactions, such as interrupted conversations or disorganized sequences.

• In 474 dialogues, users made some type of mistake in their statements (e.g., in-
correct data formats or selecting nonexistent menu options), resulting in loops.
These are typical situations in dialogue system interactions, reflecting the non-
deterministic nature of actions.

Supplementary material7 shows figures that illustrate examples of action se-
quences obtained in this study and their respective paths within the policy. The dashed
lines represent edges that do not exist in the policy, indicating possible paths that had
not been previously mapped. The analysis of this information allows for the following
observations: (i) discovery of new actions that had not been previously mapped; (ii) the
dialogues include new interactions with the chatbot after the user has already been assisted
by a healthcare professional, which are not represented in the policy; (iii) the dialogues
encompass follow-up conversations from a monitoring program that were not covered by
the policy, although they share some common actions and; (iv) the dialogues also include
shorter interactions where only the CPF or name are requested for identification.

6https://editor.planning.domains/#read_session=zkrf2y0dSL
7https://zenodo.org/records/15391970

https://editor.planning.domains/##read_session=zkrf2y0dSL
https://zenodo.org/records/15391970


6. Conclusion

Plan traces are essential for the automatic acquisition of planning domains, as it cor-
responds to a structured representation of real-world data that is necessary for learning
predicates and actions. The goal of this work is to obtain plan traces from dialogue data
collected from a healthcare chatbot, which consists of unstructured data in Natural Lan-
guage. Thus, the main contributions of this research are: (i) Development of a dataset
consisting of 1,125 plan traces, necessary for the automatic acquisition of the planning
domains which can be used to manager the dialogue; (ii) Coverage analysis to determine
how well the real dialogues are represented by real policy used to manager the chatbot,
which was obtained from a manually created domain based on a small number of real
dialogues; and (iii) Discovery of new actions that were not mapped in the original policy.

As future work, we intend to integrate the traces produced in this study with those
obtained from the policy, in order to build a comprehensive dataset suitable for the auto-
matic acquisition the planning domain used to manager the dialogue. This domain, au-
tomatically generated from the plan traces, will be compared with the manually acquired
domain. Furthermore, considering the efficiency of Large Language Models (LLMs) in
Knowledge Extraction, we intend to analyze the insertion of new techniques using new
models to efficiently compare the different acquisition processes.
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Segura-Muros, J. Á., Pérez, R., and Fernández-Olivares, J. (2021). Discovering relational
and numerical expressions from plan traces for learning action models. Applied Intel-
ligence, 51(11):7973–7989.

Shah, M. M. S., Chrpa, L., Jimoh, F., Kitchin, D. E., McCluskey, T. L., Parkinson, S.,
and Vallati, M. (2014). Knowledge engineering tools in planning : State-ofthe-art and
future challenges.

Teixeira, M. S. and Dragoni, M. (2022). A review of plan-based approaches for dialogue
management. Cogn. Comput., 14(3):1019–1038.

Teixeira, M. S., Dragoni, M., and Eccher, C. (2019). A planning strategy for dialogue
management in healthcare. In SWH 2019 - Second International Workshop on Semantic
Web Meets Health Data Management, pages 42–50.

Vallati, M. and Kitchin, D. (2020). Knowledge Engineering Tools and Techniques for AI
Planning. Springer.


	Introduction
	Theoretical Foundations
	Automated Planning
	Planning Domain Acquisition
	Natural Language Processing (NLP)
	Dialogue Systems

	Related Work
	Methodology
	Results
	Conclusion

