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Abstract. Automatic short answer grading is the study field that addresses the
assessment of students’ answers to questions in natural language. The grading
of the answers is generally seen as a typical classification supervised learning.
To stimulate research in the field, two datasets were publicly released in the
SemEval 2013 competition task “Student Response Analysis”. Since then, some
works have been developed to improve the results. In this context, the goal of this
work is to tackle such task by implementing lessons learned from the literature in
an effective way and report results for both datasets and all of its scenarios. The
proposed method obtained better results in most scenarios of the competition
task and, therefore, higher overall scores when compared to recent works.

1. Introduction
Evaluations are used to demonstrate the acquired knowledge in the student’s learning
process. Despite the importance of evaluation, teachers usually find the task of assess-
ing the respondents’ answers very time-consuming. Also, students may have to wait
for a long time to receive feedback on their responses and, when they finally get it, the
grade can be different from another classmate’s, who has given a very similar answer
[Santos et al. 2016, Passero et al. 2016].

Computer-based assessment came to address those issues and improve other as-
pects of learning by automating the evaluation process. Evaluations are often composed
of recall and recognition type of questions, which are at different levels of the learning
depth. The recognition kind seeks to test the respondent’s ability to organize or identify
some specific information. In its turn, for recall questions, respondents need to remember
external knowledge and write their own answers. Automatic grading is a solved problem
for recognition questions, but it is an open problem and research subject to the recall kind
[Burrows et al. 2015].

The automatic assessment brings some benefits, such as the formalization of cor-
rection criteria, the delivery of faster feedback to both teacher and student and the better
use of teachers’ time [Liu et al. 2016].

There are many different types of questions that can be required from students.
Short answers are the focus of interest in this work. They can range from one sen-
tence to one paragraph (few sentences), must be written in some natural language and



recalls to external knowledge outside the question statement. Moreover, the evaluation
is made with a focus on the content rather than style. This research field is defined in
[Burrows et al. 2015] as Automatic Short Answer Grading (ASAG), and used in later
works like [Roy et al. 2016] and [Zhang et al. 2016]. It consists in automatically assess-
ing short natural language responses using computational methods.

The goal of this work is to propose a new method for automatic short answer
grading, being based on what previous researches had found. This is done by incor-
porating the best of each approach and presenting results for two known datasets re-
leased during the SemEval 2013 competition task named “Student Response Analysis”
[Dzikovska et al. 2013]. Also, we explore distinct types of features to accomplish better
results by getting the best of each one. Especially, we report results for both datasets, for
all possible scenarios and using multiple metrics, in order to perform comparisons with
works from the original competition to more recent researches.

The remaining of this paper is organized as follows. Section 2 presents the data
and experimental scenarios for the datasets. Section 3 reviews works that addressed the
same task. In Section 4, the proposed method for this work is described. Section 5
shows the experiments and their results and discussion. Finally, Section 6 exposes our
conclusions and future works.

2. Experimental Design
The data addressed in this work was released as two public datasets in 2012 by
[Dzikovska et al. 2012] in order to provide a basis for development and evaluation of
different automatic grading approaches1. Besides, this data was part of the “SemEval-
2013 Task 7: The Joint Student Response Analysis” and several researchers submitted
their models to the competition [Dzikovska et al. 2013]. Therefore, in this section, the
data, tasks, baselines, and metrics are explained to provide a basis for our findings.

2.1. Datasets
The corpora is composed of two distinct datasets. The first one is the Beetle dataset,
with data collected from the Beetle II tutorial dialogue system [Dzikovska et al. 2010],
designed to teach students about basic electricity and electronics. These questions require
a short answer, as seen in the following examples: “Why was bulb C off when switch Z
was open?” and “Why does a damaged bulb impact a circuit?”. The inter-rater agreement
for the assigned labels to student answers was Kappa = 0.69.

The second is a set of answers for science entailment questions, the Science En-
tailment Bank (SciEntsBank), originated from the Assessing Science Knowledge tests
[Nielsen et al. 2008]. Students from 3th to 6th grades across North America have respon-
ded to the questions. The subject of the questions consists of physical, life, earth and space
sciences, as well as scientific reasoning and technology. Some examples of questions are:
“How does the water flow in a creek during a flood compared to normal water flow?” and
“A solution is a type of mixture. What makes it different from other mixtures?”. The
reported inter-rater agreement was Kappa = 0.728.

Both corpus are composed of questions, student answers, reference answers, and
a grade defined on a scale. The Beetle dataset has 56 questions, about 3000 student

1www.cs.york.ac.uk/semeval-2013/task7/index.html



answers and from 1 to 14 reference answers per question. In its turn, SciEntsBank has
197 questions, about 10000 student answers and, unlike Beetle, only one reference answer
per question [Dzikovska et al. 2012]. The labels assigned to each answer are one of the
following [Dzikovska et al. 2013]:

• Correct: if the student answer is a completely correct answer and similar to the
reference answer;
• Partially correct incomplete: if the answer is only partially correct or there is

missing information;
• Contradictory: if the answer states the opposite of the reference answer;
• Irrelevant: if the student is writing inside the domain of study, but the answer is

not applicable to the question;
• Non domain: if there is nothing in the answer related to the expected answer.

Examples: “I don’t know” and “what the book says”.

Answers classified in this way are part of the five-way task as specified by the
competition organizers. Another classification is performed using three classes, where
the labels partially correct incomplete, irrelevant and non domain become all incorrect.
Moreover, the labels correct and contradictory remains the same. Finally, for a two-way
setting, the labels contradictory and incorrect are turned into incorrect.

2.2. Competition data split
When defining the competition, the organizers divided the data in order to evaluate dif-
ferent aspects of competitors’ performance. The usual train/test split was performed to
evaluate the generalization of systems. Additionally, the test part was split into three
distinct test sets (see [Dzikovska et al. 2013] for more details):

• Unseen Answers (UA): a test set with the goal to assess system performance on
predicting in answers from known questions. Every answer from this test set has a
known (associated) specific question. The train/test split is performed preserving
each answer with its corresponding question;
• Unseen Questions (UQ): created to assess the system capability to predict an-

swers to questions never seen before, but that still fall in the knowledge domain of
the training data;
• Unseen Domains (UD): a set of responses to questions not previously seen in the

training data, and from different knowledge domain than the training set. This
variation was created only for the SciEntsBank data.

The label distribution across both corpus (Beetle and SciEntsBank), ways (two,
three or five) and test sets (UA, UQ, UD) can be seen in Table 1.

2.3. Baselines
In order to provide competitors with some base results, the organizers created two
baseline models to measure performance in both Beetle and SciEntsBank. The first
one is a simple majority class, i.e. assigning every sample as the most frequent class
[Dzikovska et al. 2012].

The second is a lexical similarity baseline, built with a decision tree classifier with
default parameters. Eight features were used to model the answers. They were extrac-
ted by calculating the similarity between each answer with its correspondent reference



Table 1. Label distribution. Adapted from [Dzikovska et al. 2013]

Beetle SciEntsBank
Label Train UA UQ Train UA UQ UD
correct 1665 176 344 2008 233 301 1917
pc incorrect 919 112 172 1324 113 175 986
contradictory 1049 111 244 499 58 64 417
irrelevant 113 17 19 1115 133 193 1222
non domain 195 23 40 23 3 0 20
incorrect-3way 1227 152 231 249 368 2228 2845
incorrect-2way 2276 263 475 307 432 2645 3384

answer and question. The four measures used are the Lesk Score (WordNet-based) and
three token-based scores: Cosine, F1 (Sorensen) and Overlap. In case of more than one
reference answer, the highest score was considered.

2.4. Evaluation metrics

The competition defined three metrics as the official way to compare results for the data-
sets [Dzikovska et al. 2013]. In this work, all three metrics will be reported in order to
compare the results with the maximum of other researches. They are defined as follows:

• Accuracy: defined as the correctly predicted instances over the total of examples;
• Macro-average F1 score: is the average of precision, recall, and F1 across each

class without weighing the values by class size. A special note is that for the Sci-
EntsBank, in the five-way task, the non domain class is highly underrepresented
and, therefore, the results are presented considering only the other four classes;
• Weighted-average F1 score: similar to the macro-average, but in this case, each

class size is taken into consideration as the weights of the score.

3. Related Work
When first released, the objective of Beetle and SciEntsBank was to provide a means
for ASAG researchers to compare their models and stimulate development in the field.
Following this idea, we searched for every work done on these datasets. Beyond the nine
papers from the original competition, we found seven more that evaluates on the same
data.

However, two of them provides no means of comparison, as the test scenario is
not properly reported (which test set was taken for evaluation [Aldabe et al. 2015] and
[Riordan et al. 2017]). In another work [Kumar et al. 2017], the authors changed the la-
bel from a categorical variable type to a continuous variable, turning the problem into a
regression task and reported using respective metrics. Considering these conditions, the
four left papers alongside with the three best-performing submissions from the original
competition are considered here, totalizing seven analyzed works as follows.

1. Softcardinality [Jimenez et al. 2013] (2013): the system is based on text over-
lap through a specific way called Softcardinality and on a weight propaga-
tion mechanism. The Softcardinality consists of an aggregation of similarities
between word and sentences to generate a final score. The baseline features from



[Dzikovska et al. 2012] were used, the data was preprocessed, and tree bagging
classification technique was done to give final predictions.

2. CoMeT [Ott et al. 2013] (2013): is a meta-classifier built from three other sub-
systems developed from the authors: CoMiC, CoSeC and shallow bag approach.
CoMiC uses features from the matches between student and reference answers
after an annotation process, consisting of enhancing answers with information
about POS tags, lemmas, chunks, and dependency parses. In contrast with
CoMiC’s lexical/syntactical approach, CoSeC is based on semantic similarity, us-
ing Lexical Resource Semantics and semantic networks to compute similarity.

3. ETS [Heilman and Madnani 2013] (2013): it is a system built on stacking
[Wolpert 1992] and domain adaptation to join general text similarity measures
to more item-specific ngrams features. The similarity measures consist of the ori-
ginal competitors’ baseline features in conjunction with other measures obtained
between the student answer and the reference answers alongside with other correct
student answers.

4. ZETEMA [Mancera et al. 2015] (2015): is a web service for automatic short
answer grading. The method employed is an improvement of the Softcardinal-
ity system, adapted to the web service format. The results are quite similar, but
there are improvements for the SciEntsBank whilst Beetle have some decrease in
performance. Then, authors conclude that systems have a certain equivalence.

5. Magooda et al.’s [Magooda et al. 2016] (2016): in this work, authors exper-
imented with various sentence representation techniques and similarity meas-
ures to come up with a final system. Vector representation includes Word2Vec
[Mikolov et al. 2013], GloVe [Pennington et al. 2014] and Sense Aware Vector
[Neelakantan et al. 2015]. Similarity measures consist of lexical, knowledge and
corpus-based types.

6. Sultan et al.’s [Sultan et al. 2016] (2016): it uses word and sentence alignments
by means of lexical and semantic similarity. Moreover, semantic vector simil-
arity is obtained from word embeddings. The authors also use the length ratio
between student and reference answers, question demoting to not account for
question words and term weighting, in a variety of term frequency-inverse doc-
ument frequency (tf-idf).

7. Roy et al.’s [Roy et al. 2016] (2016): the authors also propose an ensemble tech-
nique that combines bag-of-words modeling with similarity measures extracted
from answers. Furthermore, they employ a canonical correlation analysis based
on transfer learning to build an ensemble classifier for questions with no labeled
data.

4. Proposed Method
The proposed approach is composed of four sets of features. Each group has distinct
characteristics and they are employed together in order to better model the task. Three of
them are used in all three variations of test sets (UA, UQ, and UD) and the fourth one is
only used for the UA test set, as bag-of-words are specifically defined for the answers of
each question. Each group of features is described in the following subsections and can
be seen in Figure 1. Section 5 will go over other details of Figure 1.

Preprocessing was applied to Text Statistics (partially) and Semantic Similarity,



Text 

Statistics

Lexical 

Similarity

Semantic 

Similarity

Bag-of-

ngrams

Unseen Questions and Domains

Unseen Answers

Single Feature

Vector

Each Class

Probability

Each Class

Probability

Predicted

Classes

Predicted

Classes

Classifier

Classifier

Classifier

Classifier

Figure 1. Proposed Method.

described in subsections 4.1 and 4.3. It consists of case normalization, non-alphanumeric
character removal, spelling correction, lemmatization and stopword removal.

4.1. Text statistics
This set of features is composed of statistics extracted from each individual student answer
and some ratio between them and reference answers alongside with questions. Spelling
Errors: the count of found spelling errors. The idea is that students with less spelling
errors could write better answers. Length Ratio: the length ratio between the student
answer and the questions. Also, the maximum, minimum and mean of the ratio between
the student answer and each reference answer. A large distance between the student and
reference answer may indicate an incorrect answer. Counts: count per answer of words,
sentences, commas, unique words, negation words and each part-of-speech tag (in the
universal English tagset). Style of answers by the counts of their components may indicate
better writing. Word Length Average: the simple average of the length of words in the
answer. Can indicate if answers with larger words turn in correct or incorrect grading.
Words per Sentence Average: the size of each sentence. Another style writing feature
to measure if shorter or larger sentences can lead to correct answers.

4.2. Lexical similarity
This set of features is based on the lexical level similarity between the student answers,
the question and the reference answers. This type of similarity is widely employed in
automatic short answer grading research [Burrows et al. 2015]. In this work, the cor-
rect student answers are also considered as reference answers, as was also done in
[Heilman and Madnani 2013]. Important to highlight that when measuring correct an-
swers similarity, the correct student answer was not compared to itself, but only with the
rest of the other correct student answers.

Four different groups of metrics are considered here to measure similarity, as
grouped in the survey of [Vijaymeena and Kavitha 2016]. Each group has one or more
metrics for the purpose of getting better results by using each metric’s strength. They are
described as follows:

1. Token-based: measures similarity between two strings by considering the inter-
section of characters in both texts. Three different metrics were selected: Cosine,
Overlap, and Sorensen.



2. Edit-based: metrics of this type are based on counting the minimum number of
operations performed to transform one string into the other. Levenshtein, Ham-
ming, and Jaro-Winkler were used.

3. Sequence-based: unlike token-based, here the order counts and the similarity
is based on sequences. One way is to measure the longest common substring
between two given strings. The principle is that sentences with the longest shared
sequences will be likely to be more similar. A variation of this idea is also em-
ployed in this work, the RatcliffObershelp similarity.

4. Compression-based: is similar to edit-based but the similarity is extracted from
the shortest computer program that can convert one string (in this case, represented
as a bit vector) to another. The representative algorithm used was the Normalized
Compression Distance.

4.3. Semantic similarity
Semantic similarity in this work is measured using a semantic network (WordNet, as
it is the most popular) to retrieve the semantic distance between words. In WordNet
[Miller 1995], words are grouped in synsets, which are sets of cognitive synonyms, that
represents some concept. The synsets are interlinked by their conceptual-semantic and
lexical relations, providing a means to measure semantic similarity.

There are a few established algorithms that can compute word-to-word similarity
in WordNet. They do so by walking through the links between synsets and measuring
how close or distant they are, if they have hierarchical relationships, among other in-
dicators. Six algorithms were used in this work: Leacock & Chodorow, Wu & Palmer,
Lin, Resnik, Jiang & Conrath and Shortest Path (all available in WordNet interface and
documentation).

In order to use a word-to-word similarity for measuring answers similarity, an
algorithm was implemented as described in [Mohler and Mihalcea 2009]. The idea is to
compute the Cartesian product of the synsets from the student and the reference answer,
considering only open class words (nouns, verbs, adjectives, and adverbs). Then, the six
mentioned algorithms compute the similarities and add to a vector. Finally, the average
of each metric is returned.

In the SciEntsBank dataset, the preceding algorithm is directly applied, totalizing
six features. However, in the Beetle dataset, is possible to have more than one reference
answer per question. In this case, the algorithm is applied to each reference answer and
the mean and max functions are applied to each of the six metrics, returning 12 features.

4.4. Bag-of-ngrams
Ngrams are one of the most common ways to model language in ASAG
[Burrows et al. 2015]. It is based on the idea that the words’ presence or absence can
predict the desired output. The problem that arises from modeling text this way is that
no order is considered and sentences with opposite meaning using a negation word can
be considered very similar. Despite the apparent naivety from using ngrams, it is still one
of the most powerful predictors in ASAG context [Magooda et al. 2016, Roy et al. 2016,
Heilman and Madnani 2013].

As ngrams works on the principle of presence or absence of pieces of text, it is
a question-specific feature. Important words for a question are not important to another.



Hence, each question has its own bag-of-ngrams sparse matrix of features, where each
document is represented as a row and each ngram as a column. In this work, the simple
binary count (presence or absence) was used, as tf-idf did not perform as good.

Two types of ngrams were extracted: words and characters. To illustrate the dif-
ference, consider the sentence “the open circuit”. Word 2-grams of this sentence would
be: [“the open”, “open circuit”] and character 6-grams would be: [“the op”, “he ope”, “e
open”, ...]. For word ngrams, n ranged from 1 to 3 and for character ngrams n varied from
5 to 7. For each type of ngram, the top 250 features were kept (concerning its importance,
i.e. term frequency in the documents), totalizing 500 features in a sparse matrix.

5. Experiments, Results and Discussion
As stated in the previous section, the bag-of-ngrams features were generated in a different
manner from the other groups of features and, therefore, included in a special way. For
the Unseen Questions (UQ) and Unseen Domains (UD) scenarios, the features from text
statistics, lexical and semantic similarity were joined and scaled to compose the final set
of features for further prediction (a single feature vector), as represented in Figure 1.

For the Unseen Answers (UA) scenario, however, the joint features of statistics
and similarities were used to predict each class probability instead of a final class (using
10-fold cross-validation). Then, the bag-of-ngram model was also trained to predict prob-
abilities (also using cross-validation, but with 5 folds due to the small number of samples
per question), as can be seen in Figure 1. Finally, the class probabilities generated from
both models were used as input to a meta-classifier, which predicted the final classes, in a
stacking process [Wolpert 1992].

We experimented with some classifiers and the best-performing ones were chosen:
Random Forests and Extreme Gradient Boosting (as indicated by recent research to be the
best in general [Zhang et al. 2017]). Some parameter tuning was made to each scenario
(in the number of estimators and learning rate).

In some of the 15 scenarios (seen in Tables 2 and 3), a simple threshold feature
selection algorithm was applied. We performed experiments with automatic feature se-
lection algorithms, but due to their slowness, we opted for a simple threshold algorithm.
It works by cutting off features using a threshold value on its importance, usually being
the mean, but also the median or an empirical value.

In order to evaluate the system’s performance by comparing with as many works
as possible, the results are presented in three metrics: accuracy, macro-averaged and
weighted-averaged F1 scores, respectively in Tables 2 to 4. In each of these metrics, the
mean score is also reported, as it was originally used for comparison among competitors
in [Dzikovska et al. 2013].

Table 2 compares the results of the proposed system with two out of three best
performing systems from the competition. The third ([Jimenez et al. 2013]) is on the
accuracy table because the paper reports an improvement from the original competition
submission.

As can be seen in Table 2, our system performs better in general. The cases
where it goes worst are in all ways of Beetle UA. Some specific characteristic of this
test set disadvantage our model, as it is the only case in both Tables 2 and 3 where we



performed worst. Also, in the three and five-way of Beetle UQ, the proposed system
and [Heilman and Madnani 2013] performs almost the same. But in general, the overall
results are way ahead.

Table 2. Macro-averaged F1-Score

Two-way
Beetle SciEntsBank

System UA UQ UA UQ UD Mean
Ott-2013 0,833 0,695 0,768 0,579 0,670 0,709
Heilman-2013 0,833 0,720 0,762 0,688 0,683 0,737
Proposed 0,829 0,774 0,792 0,761 0,758 0,784

Three-way
Beetle SciEntsBank

System UA UQ UA UQ UD Mean
Ott-2013 0,715 0,466 0,640 0,380 0,404 0,521
Heilman-2013 0,710 0,585 0,643 0,459 0,439 0,567
Proposed 0,677 0,588 0,702 0,493 0,537 0,595

Five-way
Beetle (5-way) SciEntsBank (4-way)

System UA UQ UA UQ UD Mean
Ott-2013 0,569 0,300 0,551 0,201 0,151 0,354
Heilman-2013 0,619 0,552 0,581 0,372 0,339 0,493
Proposed 0,570 0,554 0,628 0,420 0,431 0,520

Table 3. Accuracy Results

Two-way
Beetle SciEntsBank

System UA UQ UA UQ UD Mean
Jimenez-2013 0,797 0,725 0,717 0,733 0,726 0,740
Mancera-2015 0,772 0,714 0,744 0,716 0,724 0,734
Proposed 0,836 0,785 0,798 0,769 0,758 0,790

Three-way
Beetle SciEntsBank

System UA UQ UA UQ UD Mean
Jimenez-2013 0,608 0,532 0,656 0,671 0,646 0,623
Mancera-2015 0,414 0,415 0,667 0,652 0,657 0,561
Proposed 0,695 0,592 0,744 0,708 0,706 0,687

Five-way
Beetle SciEntsBank

System UA UQ UA UQ UD Mean
Jimenez-2013 0,572 0,476 0,552 0,520 0,534 0,531
Mancera-2015 0,538 0,449 0,526 0,546 0,519 0,516
Proposed 0,683 0,606 0,659 0,557 0,566 0,614

Next, we have [Jimenez et al. 2013] and [Mancera et al. 2015] reporting accuracy
results in Table 3. In this case, our system outperforms in at least 0.011 every test case
scenario, with overall accuracy results between 0.049 and 0.083 higher. As well as in
Table 2, our proposed method better shows its strength in the overall scenario.

Finally, there are the weighted-averaged F1 scores from six of the seven analyzed
works in Table 4, reporting the 5-way task in SciEntsBank (the most commonly reported
evaluation). In this case, only three scenarios are reported, as they were the ones present
in [Roy et al. 2016], [Magooda et al. 2016], and [Sultan et al. 2016]. Here, our proposed
system performs slightly worse in all three cases scenarios against [Roy et al. 2016] and
[Sultan et al. 2016]. However, in the overall case (mean score), we get slightly better
results than them and way ahead of the others.

Table 4. Weighted-average F1-Score (SciEntsBank 5-way)

System UA UQ UD Mean
[Heilman and Madnani 2013] 0,625 0,356 0,434 0,472
[Ott et al. 2013] 0,598 0,299 0,252 0,383
[Jimenez et al. 2013] 0,537 0,492 0,471 0,500
[Roy et al. 2016] 0,672 0,518 0,507 0,566
[Magooda et al. 2016] 0,470 0,510 0,460 0,480
[Sultan et al. 2016] 0,582 0,554 0,545 0,560
Proposed 0,666 0,531 0,524 0,574

5.1. Preliminary Error Analysis
We performed a preliminary error analysis, studying some misclassified student answers,
in order to get a glimpse at the current limitations of our approach. Also, it provided
means to improve this work in the future. Following, we present two examples extracted
from the SciEntsBank corpus, UA test set, and binary classification. The student answers
from both examples were incorrect, but were predicted as correct.



Example 1. Question 1: Carrie wanted to find out which was harder, a penny or
a nickel, so she did a scratch test. How would this tell her which is harder? Reference
Answer 1 (R1): The harder coin will scratch the other. Student Answer 1 (S1): If she can
scratch a penny with her fingernail the nickel is harder.

In Example 1, S1 is incorrect, but it looks like a correct answer. One reason is
that with the simple change from “her fingernail” to “the nickel”, the answer would be
completely correct. As there are not incorrect answers in the training set using the word
“fingernail” and most words from S1 are also used in correct answers, the learning model
saw no problem in considering it correct. A possible workaround for this limitation could
be the use of Semantic Role Labeling, a technique to correctly characterize the roles in a
sentence (in the example, it would expect nickel to be the scratcher object).

Example 2. Question 2: Diva’s father told her she should not eat so many cookies
because they were pure sugar. Diva decided to investigate the amount of sugar in Fruity
Cream cookies. She performed the sugar test on 4 grams of pure sugar and on 4 grams
of Fruity Cream cookies. The results are pictured at the right. Are Fruity Cream cookies
pure sugar? What is your evidence? Reference Answer 2 (R2): No, Fruity cream cookies
are not pure sugar. The cookies did not produce as much gas as was produced by the pure
sugar. Student Answer 2 (S2): No, because the Fruity Cream cookies is at 150 milliliters.

In this second example, the student answer got misclassified as correct because it
is correct, but it is also incomplete in answering the question. Another student assigned
with the correct label wrote: No because if they were pure sugar it would be 200 milliliters
not 150 milliliters. In S2, the student forgot to compare with the pure sugar (or maybe he
thought it was obvious, as there was a figure indicating). So, despite the correctness of S1,
and the use of many words present in other correct answers, it lacked the most important:
comparison words as done in R2.

6. Conclusions and Future Work

This work presented a new system to automatically grade short answers. The evaluation
of the system was performed in all scenarios from the original competition that first in-
troduced the used datasets. This was accomplished in order to compare the results with
other literature researches and to establish new results for the further development of these
specific datasets.

The proposed method incorporated the best from previous literature works, using
a modern classifier and achieving better results in most scenarios. Especially, we reported
results for the Beetle dataset and for all test case scenarios, usually not addressed in other
ASAG researches. Despite the good results, there is still room for improvement and a
need to create a model that can perform consistently good across all scenarios.

As future work, we first want to extend the performed error analysis, in order to
discover more limitations in our approach. Then, we want to explore other word repres-
entation techniques for feature computation, such as word embeddings. Other possibilities
include the use of graphs and complex knowledge networks to check on the veracity of
student answers, besides the use of deep learning techniques.
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