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Abstract. Deep Learning is a research area under the spotlight in recent years
due to its successful application to many domains, such as computer vision and
image recognition. The most prominent technique derived from Deep Learn-
ing is Convolutional Neural Network, which allows the network to automati-
cally learn representations needed for detection or classification tasks. How-
ever, Convolutional Neural Networks have some limitations, as designing these
networks are not easy to master and require expertise and insight. In this work,
we present the use of Genetic Algorithm associated to Grammar-based Genetic
Programming to optimize Convolution Neural Network architectures. To evalu-
ate our proposed approach, we adopted CIFAR-10 dataset to validate the evo-
lution of the generated architectures, using the metric of accuracy to evaluate
its classification performance in the test dataset. The results demonstrate that
our method using Grammar-based Genetic Programming can easily produce
optimized CNN architectures that are competitive and achieve high accuracy
results.

1. Introduction

The ability to acquire knowledge is one of the most prominent features of human intelli-
gence. Machine Learning (ML) investigates how to simulate human learning to achieve
computational intelligence, i.e., be able to learn and adapt to a changing environment.
With the increase of computational power and amount of available data, ML is able to
analyze and identify patterns in the data. One disadvantage of these algorithms is the
need to preprocess the data to be able to extract features, requiring expert knowledge
about the problem domain [LeCun et al. 2015]. To overcome this disadvantage, Deep
Learning (DL) aims at building models that learn representations of the data at several
levels of abstraction, allowing the system to learn complex functions without depending
entirely on handcrafted features. DL has been applied to many domains, including com-
puter vision [Farfade et al. 2015, Plis et al. 2014], speech recognition [Graves et al. 2013,
Deng et al. 2013], and machine translation [Zhang and Zong 2015].

The popularity of this research area led to several other deep learn-
ing methods and techniques. One of them is Convolutional Neural Networks



(CNNs) [LeCun et al. 1990]. CNNs are the state-of-the-art in different computer vision
tasks, such as object recognition. An example of CNN used for object recognition is
VGG [Simonyan and Zisserman 2014] that can have 16 to 19 deep convolutional layers
architecture, and gained notoriety on the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) in 2014. After that, several CNN architectures were proposed to a variety
of tasks. Unfortunately, as architectures evolved and got deeper, more design choices for
CNN architectures and hyperparameter settings were added, impacting directly on CNNs
performance. As these models get more and more complex, optimizing all of the involved
parameters is becoming a laborious task. To solve this problem, researchers have focused
their efforts on automating the design of such deep networks.

In this article, we present a study that applies principles of genetic programming
to optimize CNN topologies. A population-based evolutionary algorithm is executed with
a specific grammar capable of generating valid CNNs, and all networks have their ef-
fectiveness evaluated according to the accuracy value obtained after testing the CNN.
The execution of CNN training and test were made using the image classification dataset
CIFAR-10.

The rest of the paper is organized as follows. Section 2 provides a background
on Convolutional Neural Network and genetic programming, as well as Grammar-based
Genetic Programming. Section 3 reports related work found in the literature. In section 4,
we explain our approach to generate Convolutional Neural Network architectures and the
technique in which the proposed algorithm is based on. The experimental environment,
dataset, and experimental setup are presented in Section 5. Section 6 discuss experimental
results, and, finally, Section 7 contains the conclusion and future work of the study.

2. Background

Convolutional Neural Networks (CNNs) are a particular type of the Artificial Neural Net-
works (ANNSs), specialized in processing data in the form of multiple arrays such as
images (2D), audio, video, and volumetric data (3D) [Goodfellow et al. 2016]. CNNs
have been successfully employed in several applications, achieving state-of-the-art re-
sults in image-based tasks such as object recognition, detection, and semantic segmenta-
tion [Krizhevsky et al. 2012, Long et al. 2015].

Despite the popularity of CNNss, its design involves a large number of choices,
where most of them are made by an expert of the domain. Such choices impact heavily
on the training and performance of CNNss, e.g., decisions need to be made concerning the
number of layers, type of layers, and parametrization of multiple receptive fields that are
part of it, as the number of filters, stride, or filter sizes.

Due to factors earlier mentioned, one alternative to improve decisions made on
CNNss architectures and its performance is to exploit Genetic Programming to automati-
cally generate CNNs.

Genetic Programming (GP) is an important sub-area of Evolutionary Computation
(EC) described in the early 1980s, but clearly defined and established by the research of
Koza [Koza 1992]. GP is a technique that aims at automating the construction of computer
programs to perform a previous specified task from a high-level statement of a problem.
Inspired by biological evolution and its mechanisms, GP follows Darwin’s theory of evo-
lution “survival of the fittest” and “genetic propagation of characteristics” principles. To



evolve programs, GP uses nature-inspired genetic operations, such as crossover, mutation,
reproduction, gene duplication and gene deletion. GP may also employ developmental
processes in which an embryo is transformed into a fully developed structure.

To exemplify this process, GP randomly constructs an initial population of pro-
grams, or individuals (making the correlation with natural evolution), using functions
and terminals appropriated to the problem domain. Each program is then measured to
evaluate how well it solves the given problem (fitness of the program). Next, programs
are selected for reproduction following the principle of Darwin’s survival of the fittest.
Selection methods for reproduction are numerous, but for this work, we briefly explain
tournament selection [Hingee and Hutter 2008]. This method is a variant of rank-based
selection methods, in which individuals are randomly selected and then ranked according
to their relative fitness value, selecting the fittest among them for reproduction. Genetic
operations of crossover and mutation are then used to generate new offspring programs
from individuals selected on the current population. The crossover operator creates new
individuals, that are also programs, using two parental programs, and the mutation op-
erator generates new offspring by altering the individual genotype, constituting the new
population. Each new individuals have their fitness measured, and the entire process is
repeated for many generations. The last generation, usually, is designated as the result
produced by GP and formed by the best programs.

Over the years, various GP methods emerged departing from the original premise
that candidate solutions are computer programs represented by tree structures. Our in-
terest here is in Grammar-based Genetic Programming (GGP) [O’Neill and Ryan 2001,
O’Neil and Ryan 2003].

Grammars play an important role structuring representations in computer science,
being broadly employed to syntactically limit symbolic expressions [Hopcroft 2008].
Their application range from the definition of valid expressions, enforcement of type
restrictions to the description of constraints of a computer language. GGP uses formal
grammar, usually in Backus-Naur Form (BNF) (notation for expressing the grammar of
a language in the form of production rules) to restrict the search space, incorporating the
domain knowledge of the problem.

GGP explores the biological process of gene expression, introducing the concept
of genotype to phenotype mapping. In general, each generated individual has a variable-
length linear genotype, or chromosome, consisting of integer codons (i.e., integer or
binary lists), to which genetic operators, such as mutation and crossover, are applied.
The genotype is then mapped to phenotype, a program in the specified language by the
context-free grammar, to evaluate the individual’s fitness. GGP does not use trees for indi-
vidual representation, but as a temporary structure in the course of mapping. That is to say
that instead of operating solely on solution trees, as in standard GP, GGP allows search
operators to act on genotypes, partially derived phenotypes, or fully-formed phenotypic
derivation trees.

3. Related Work

Many work have been proposed in the literature for the evolution of artificial neural
networks in the last years, some of them using Grammar-based Genetic Programming.
Tsoulos et al. [Tsoulos et al. 2008] propose the optimization of network topology and



parameters such as input vectors, weights and bias using BNF grammar. The study fo-
cused on evolving only one-hidden-layer Feed-Forward Neural Networks and was tested
on classification and data fitting problems.

Ahmadizar et al. [Ahmadizar et al. 2015] present a technique composed by a
combination of grammatical evolution applied on network topology evolution and ge-
netic algorithm on the search of weights and bias. This approach also evolves only one
hidden-layer neural networks. The fitness is based on both classification performance and
a proposed adaptive penalty term.

Miikkulainen et al. [Miikkulainen et al. 2017] use the concept of NeuroEvolution
(NE) to evolve deep neural network architectures. In their approach, genetic algorithms
evolved the hyperparameters, topologies, and components of Convolutional Neural Net-
works and were able to extend their work to Long Short Term Memory (LSTM) archi-
tecture. A downside to their study is the massive amount of available computational
resources required.

Recently, Assuncao et al. [Assunc¢ao et al. 2018] proposed DENSER, an approach
to evolve deep neural networks, applied to Convolutional Neural Networks. They com-
bine principles of Genetic Algorithms (GA) with Grammatical Evolution (GE) to directly
evolve a sequential list of layers, encapsulating the parameter values in a position of the
GA genotype, to facilitate the use of genetic operators. Therefore, being able to reapply
this method for different network structures and domains, only changing its grammar. In
their work, the method outperformed previous evolutionary approaches to CNNs gener-
ations, created CNNs with state-of-the-art performance using less prior knowledge, and
evolved CNNs with novel topologies than those designed by hand.

4. Proposed Approach

The proposed approach uses principles of a standard Genetic Algorithm (GA) in combi-
nation with Grammar-based Genetic Programming (GGP) technique. In this process, a
population of CNN architectures is generated, where each CNN architecture is considered
an individual, and it is evaluated to produce a fitness value.

For the generation of individuals, we propose the adoption of a quite simple
grammar. Its definition is shown in Grammar 1. It represents a context-free grammar,
in the BNF format, where the tag < FINAL FEXP > indicates the final expression
for the CNN. Fc, pool, and conv refer to fully connected layer, pooling layer, and con-
volution layer respectively. Regardless of the number of layers, all convolution layers
have ReL.U activation [Glorot et al. 2011]. For the pooling layer, it is used Max Pooling
method [Scherer et al. 2010]. The values for the variables N, K, and M determine the
number of layers that should be used. The values were chosen based on empirical exper-
iments and values found in the literature. We restrict the value of M and N to 3 because
of the computational cost to evaluate several architectures. However, these values can
be expanded and adapted to solve complex problems through the generation of deeper
architectures.

Figure 1 shows the flowchart for the construction of a CNN architecture based
on the grammar. The grammar allows the generation of CNNs with multiple convolution
layers followed or not by a pooling layer. A Fully Connected layer is also optional.



(FINAL EXP) = (EXP 2)(FC)
(EXP_2) = ((EXP_1)*(M))
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Grammar 1. BNF grammar applied in the study.

CNN architectures composed by more than one convolution layer blocks (a block is here
determined by the tag < CONV > in the grammar), which also have pooling layer,
have pooling applied to all of their convolution layer blocks. An example of architecture
that the grammar can produce is this genotype: (((conv*1)pool)*2)fc*2; the algorithm is
capable of converting the function to a CNN with two blocks of one convolution layer and
a pooling layer, followed by two Fully Connected layers. Figure 2 shows the architecture
created to represent this configuration. Figure

5. Experimental Environment

In this section, we describe the dataset used in our experiments, the details for automati-
cally generating CNNs and evolving its architecture based on GP.

5.1. Dataset

The CIFAR-10 dataset [Krizhevsky and Hinton 2009] consists of 60, 000 images evenly
distributed among 10 classes used for object classification. The classes are airplane, au-
tomobile, bird, cat, deer, dog, frog, horse, ship, and truck, containing 6,000 32 x 32
RGB color images in each of them. Images are not necessarily centered, i.e., objects may
appear in different poses. The Background is different in each image.

5.2. Experimental Setup

The code was implemented using Python programming language. To run GGP, we
choose to use PonyGE2 framework [Fenton et al. 2017]. The Keras open source library
[Chollet et al. 2015] was used in the development and execution of the deep neural net-
works.
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Figure 1. Flowchart of possibilities for CNN topologies using the proposed gram-
mar.

Convolution
+RelU

Pooling Fully Predictions
Convolution Connected

+RelU

Pooling

Figure 2. Architecture of a CNN for the following genotype: (((conv*1)pool)*2)fc*2.

5.3. Methodology

Applying the principles of a standard Genetic Algorithm (GA) in combination with
Grammar-based Genetic Programming (GGP) technique, a population of CNN architec-
tures was generated. Every CNN was considered an individual in a population and, as so,
it was evaluated to produce a fitness value.

This study was performed using a population of 50 individuals and 30 generations.
The individuals had their fitness value calculated according to the accuracy they obtained
when testing the CNN against the CIFAR-10 dataset. For this research, greater accuracy
leads to greater fitness.

The parameters applied in the execution of the genetic algorithm are summarized
in Table 1.

The selection process used is the tournament selection technique, in which two
random individuals are chosen from the population, and only the one with the best fitness
is selected. After the selection, the crossover step is performed by randomly picking



Table 1. Experimental parameters.

Parameter Value
Number of generations 30
Population size 50
Crossover rate 75%
Mutation Int Flip Per Codon
Mutation rate 1/Genome length
Tournament size 2
Elite size 1

Table 2. Default CNN hyperparameters

Hyperparameters Values
Kernel size 3 %3
# of filters Starts with 32; duplicate
after every 2 convolutions
Stride 1
Max pooling shape 2x2
Learning rate 0.01
# of epochs 70
# of Neurons FC layer 256

two individuals and swapping their genetic material by applying the variable one-point
technique (also known as Single Point Crossover) [Soni and Kumar 2014]. A probability
of 75% is used to determine if the crossover must occur in the pair of individuals. After
the crossover, every pair of parents produces a pair of children. Mutation is operated on
every individual in the child population after crossover is applied. For this process, Int
Flip Per Codon [Fenton et al. 2017] mutation is operated on the genomes and randomly
mutates every individual codon with a given probability. Every population is replaced by
a newly generated child population.

To perform the analysis of the network, the dataset was split into three sets of
images, the first one is the training images, having a total of 50% images; then we have the
other 10k images split in validation and test set; validation has 80% of the 10k, and test
have the 20% left. The first set was used during the training of the network, the second
for the validation step while the third was used for the tests. All CNNs were trained for
70 epochs and with a batch size equals to 128.

Regardless of the network topology, all CNN generated based on the grammar
were executed applying the same hyperparameters. Table 2 shows the hyperparameters
shared among all individuals.



Table 3. Three best results from GGP execution.

CNN representation Accuracy (%)
(((conv*2)pool)*3)fc*1 79.35
(((conv*2)pool)*3)fc*2 79.3
(((conv*2)pool)*3)fc*0 78.8

6. Results

To evaluate the quality of the generated CNNs, we used the accuracy achieved during
classification of a test sample set. This metric measures the percentage of the images
correctly classified as their real class. During its execution, GGP algorithm evolved its
population until it reached a level from where applying mutation in the individuals was
only providing slightly better accuracies. Figure 3 shows a graph with the evolution of
individual accuracies over the generations.
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Figure 3. Best fitness evolution during GGP execution.

For this algorithm, the best accuracy value obtained was 79.35%. The three best-
achieved accuracies were 79.35%, 79.3%, and 78.8%. Table 3 presents the individual
genotypes that represent the best CNNs as well as their accuracy. It is possible to notice
that the higher results were reached by CNN consisting of three sets of two convolution
layers followed by a pooling layer. Also, the presence of fully connected layer did not
have a big impact on the final result. The last point to highlight is the fact that our grammar
allows the creation of CNNs with blocks of three convolution layers, followed or not by
pooling layers; however, those networks were not among the best results. Therefore, a
deeper architecture not always results in better accuracy. Because of this, it is important
to use a grammar-based GP approach to find the best architecture.

After running GGP algorithm, the three CNNs that scored the highest accuracy
were selected to have some improvements applied on their network. Two modifications



were chosen: the first one was the addition of a dropout layer after every pooling layer
if the neural network has it. This helps to provide more control over the overfitting. The
second was the addition of a batch normalization after every convolution layer. This aims
to increase the overall accuracy and accelerate the learning. The three best CNNs were
executed with all possible combination of parameters applied to the improvement. For this
process, we chose to execute every CNN three times for each configuration and consider
as the result the average accuracy of the three runs.

The best CNN with the addition of both dropout and normalization achieved the
best accuracy on this study, 85.77%. We also noticed that this configuration hit the greatest
accuracy for all three CNNs solutions. Figure 4 shows the result reached by the three
best neural networks from GGP. As it is shown in the chart, after adding dropout and
normalization layers, the results increased.

H Before B Normalization added
[ Dropout added B Dropout and normalization added

86

a4

83.41

Solution 1 Solution 2 Solution 3

Figure 4. Result comparison of the three best CNNs (here called Solution 1, 2
and 3, respectively) from GP before and after adding droupout and normalization
layers.

Table 4 shows the comparison of the proposed method with the DENSER tech-
nique [Assuncdo et al. 2018], which is a state of the art approach to build CNN archi-
tectures. Results of DENSER shown in Table 4 are the values related to the original
work, before using data augmentation and learning decay optimization, to be in the same
conditions as the proposed approach. From the results, it can be observed that the pro-
posed approach has competitive results when compared with DENSER approach, but
with architecture using a lower number of layers and number of parameters. It means
that our proposed technique was capable of evolving in a way that with less computa-
tional resources (considering that less parameters and layers result in less computational
processing required [Zhou et al. 2016]), achieved results quite equivalents.

7. Conclusion and Future Work

This work proposes the use of Genetic Algorithm with Grammar-based Genetic Program-
ming to create and optimize Convolution Neural Network architectures. Every generated



Table 4. Comparison of the best results obtained by different methods on the
CIFAR-10 dataset.

Method H Accuracy (%) H # Parameters H # Layers
DENSER [Assuncao et al. 2018] 88.41 10.81 x 10° 18
Proposed 85.77 6.61 x 10° 10

CNN was trained and tested on an image classification problem using CIFAR-10 dataset,
and the quality of the architecture was measured by the accuracy obtained when executing
the classification for the test dataset.

Results showed that we were able to produce architectures for CNNs that grad-
ually evolved achieving higher accuracies for the given dataset. The architecture was
evolved during the execution of the genetic algorithm, and the evolution analysis indi-
cates that the use of grammar can produce promising results. In comparison to the com-
plex grammar presented on DENSER [Assuncao et al. 2018], our rather simple grammar
was able to reach competitive accuracy to their best original architecture. We should
also highlight the fact that our technique obtained its best results utilizing less number of
parameters and layers than DENSER.

Future work involves the maturation of the grammar to include CNN variables not
covered in this experiment, as well as, layers here studied, dropout and normalization, but
not included in the grammar.
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