
Eye Localization Using Convolutional Neural Networks and
Image Gradients

Werton P. de Araujo1, Thelmo P. de Araujo1, Gustavo A. L. de Campos1

1Universidade Estadual do Ceará (UECE)
Av. Dr. Silas Munguba, 1700 – 60714-903 – Fortaleza – CE – Brazil

araujo.werton@gmail.com, thelmo.araujo@uece.br, gustavo@larces.uece.br

Abstract. Eye detection is a preprocessing step in many methods using facial
images. Some algorithms to detect eyes are based on the characteristics of the
gradient flow in the iris-sclera boundary. These algorithms are usually applied
to the whole face and a posterior heuristic is used to remove false positives. In
this paper, we reverse that approach by using a Convolutional Neural Network
(CNN) to solve a regression problem and give a coarse estimate of the eye re-
gions, and only then do we apply the gradient-based algorithms. The CNN was
combined with two gradient-based algorithms and the results were evaluated
regarding their accuracy and processing time, showing the applicability of both
methods for eye localization.

1. Introduction
Eye detection and localization on facial images is an important preprocessing step in many
image processing methods. Matching the center of the eyes improves face recognition
algorithms [Dutta et al. 2015]. Eye gaze methods depend on identifying the precise
location of the pupils [Kar and Corcoran 2017]. In order to ensure a good performance,
many shape models need to position the initial shape very close to the correct location: a
fast, low cost method for eye localization may provide a useful first guess [Abdulameer
et al. 2014]. Applications of an accurate algorithm for eye localization abound in the
literature.

Kothari and Mitchell [Kothari and Mitchell 1996] proposed a method to locate
eye centers based on the characteristics of the gradient field on the iris-sclera region (see
Section 3). The method performs well when applied to the region of interest around
the eye. To remove the false positives, the authors suggest two heuristics using a priori
knowledge of human face.

Timm and Barth [Timm and Barth 2011] also used the gradient field character-
istics of the human eye images to pinpoint the eye centers in facial images. In order to
apply the proposed method to the regions of interest (eyes), the Viola-Jones algorithm [Vi-
ola and Jones 2001] was used to detect the face and two rectangular regions were com-
puted, based on the anthropometric relations of the face. The method was then applied
to these regions. Although fast and accurate, the Viola-Jones algorithm for face detection
has some known setbacks, e.g., heads with tilting angles greater than 5◦ are usually not
detected [Mushfieldt et al. 2013].

In this work, we propose to combine a Convolutional Neural Network (CNN) with
each of these gradient-based methods to locate the eyes on facial images. Both methods

are evaluated in order to determine their accuracy and their processing times. Because
the methods are primarily intended to be used in preprocessing, the CNN was designed to
have few layers (see Section 2).

This paper is organized as follows: Section 2 describes the main features of CNNs.
On Section 3, the methods proposed in [Kothari and Mitchell 1996] and [Timm and Barth
2011] are summarized. Our proposal and the experiments are presented in Section 4.
Results are shown and discussed in Section 5. Section 6 concludes the paper, with indi-
cations for some future work.

2. CNNs Overview

Convolutional Neural Network (CNN) architectures are usually described by three types
of layers [Patterson and Gibson 2017]: input layer, feature extraction layers, and classi-
fication layers. Unlike neural networks such as the Multilayer Perceptron (MLP), CNN
layers are better visualized as tridimensional volumes.

The input layer is composed by each pixel of an input image and has dimensions
W × H × D, where W is the width, H is the height, and D is the depth (number of
channels) of the image.

The feature extraction group usually consists of a combination of convolutional
layers, ReLU layers, and pooling layers.

In the convolutional layer, a set of K filters of size F × F is applied to the input
layer in order to extract relevant features. Besides K and F , other important parameters
of this layer are the stride S and the zero-padding P .

In order to add non-linearity to the feature extraction, a ReLU (Rectified Linear
Units) activation function is applied to the filtered images. Due to its fastness, max(0, x)
is a common choice.

A pooling layer is used to reduce the dimensionality increased by the convolution
of K filters in the feature extraction process. The most common pooling function com-
putes the maximum of an F × F region of each plane on the feature volume, with stride
S.

The classification group is usually composed by one or more fully connected (FC)
layers that perform the affine combination that feeds the output layer. A dropout reg-
ularization method (i.e., temporarily dropping the active neurons in the FC layer with
probability p at each input) may be applied to reduce over-fitting.

Although CNNs have been mostly used for image classification [Patterson and
Gibson 2017], they may also be used to solve regression problems such as the localization
of license plates [Ozhiganov 2016] and facial key points [Nouri 2014].

In this work, we designed a CNN to estimate the coordinates of the centers of both
eyes.

3. Gradient-Based Algorithms

The circular shape of the human iris and the color contrast it has with the surround-
ing sclera inspired the use of image gradients to pinpoint the center of the eye in both

monochromatic and color images. As shown in Figure 1, gradients in the iris-sclera bor-
der have greater magnitude than the ones in those relatively homogeneous regions. These
border gradients point outwards and their support lines (the line that passes at the given
point and has the same direction of the vector) tend to meet at the center of the eye.

Figure 1. Gradients on the iris-sclera region.

Using this prior information, Kothari and Mitchell [Kothari and Mitchell 1996]
proposed an algorithm (Algorithm 1) to determine the location of the eye centers in a gray
scale image. The image is divided into a 2-dimensional array of bins and each bin has a
counter (initially set to zero) associated with it. For each gradient vector with magnitude
greater than a prescribed threshold, a line segment is formed by extending the gradient
vector in its opposite direction; the counter is incremented every time a line segment
crosses the corresponding bin (see Figure 2). The eye center candidates are in the bins
with greater counts. The bounding threshold for the gradient magnitudes and the bin size
must be carefully chosen in order to speed up the computations and reduce complexity.

Figure 2. Accumulate bins for two gradient vectors.

Also inspired by the characteristics of the iris-sclera gradients, Timm and Barth
[Timm and Barth 2011] noticed that the sum of the absolute values of inner products of
the normalized gradient vectors gi and the displacement vectors

di =
xi − c

‖xi − c‖
(1)

Algorithm 1: Kothari & Mitchell’s algorithm.
input : Region of interest (ROI)
output: Eye center position
begin

compute |gi| in the ROI;
compute the magnitude threshold Tg;
initialize the matrix of bins with zeroes;
foreach point i in the ROI do

if |gi| ≥ Tg then
foreach point on the line along the direction opposite the gradient
do

add 1 to the value of the corresponding bin;
end

end
end
return the position of the bin with the greatest accumulated value;

end

reaches its maximum when c is the center of the iris (see Figure 3). That is, the center of
the iris is given by

c∗ = argmax
c

{
1

N

N∑
i=1

(dT
i gi)

2

}
. (2)

Algorithm 2 implements this idea.

c di

xi gi

c di

xi gi

Figure 3. Displacement and gradient vectors.

4. Proposal and Experiments

4.1. Proposal

As already noted, CNNs are usually used for image classification, but they may also be
applied to solve regression problems. In this work, we propose to locate the center of
the eyes in frontal facial images by combining a Convolutional Neural Network and a
gradient-based algorithm. The CNN shall wield a coarse estimate of the eye region and
the gradient-based algorithm shall refine the location of the center of the eyes.

We implemented a simplified CNN inspired by the architecture proposed by
Daniel Nouri [Nouri 2014]. The rationale for the architectural simplification is the in-
tention to build a system easy and fast to train using specific small databases. Table 1

Algorithm 2: Timm & Barth’s algorithm.
input : Region of interest (ROI)
output: Eye center position
begin

compute |gi| in the ROI;
compute the magnitude threshold Tg;
initialize the matrix of sums with zeroes;
foreach point i in the ROI do

if |gi| ≥ Tg then
foreach point i in the ROI do

compute di using Eqn. 1;
compute dT

i gi;
if dT

i gi > 0 then
add (dT

i gi)
2 to the corresponding matrix element;

end
end

end
end
return the position of the matrix element with the greatest accumulated
value;

end

shows the number of parameters for each layer connection, adding up to 4 234 624 pa-
rameters, which is not an impressive figure when one considers most deep CNNs found
in literature.

Table 1. Number of parameters of the CNN.

Connection Number of
Parameters

INPUT→ CONV1 4× 3× 3 + 4
POOL1→ CONV2 16× 2× 2 + 16

POOL2→ FC3 (16× 23× 23)× 500 + 500
FC3→ FC4 500× 4 + 4

Total 4 234 624

Once the CNN computes the initial location estimate, i.e., right (Ĉr) and left (Ĉl)
eye coordinates, two horizontally aligned rectangles are drawn with centroids in Ĉr and
Ĉl, height = 0.7d, and width = 0.9d, where d is the Euclidean distance between the
estimated eye centers (see Figure 4).

These rectangles are the images to be processed by the gradient-based algorithms
in order to refine the localization of the eye centers.

4.2. Database

The BioID database has 1521 gray scale 384 × 286 images of 23 persons, labeled with
the coordinates of the center of each eye [BioID 2017].

right eye
Cr

Ĉr

left eye
Cl

Ĉld

0.9d

0.7d

0.9d

0.7d

Figure 4. Regions of interest.

In the CNN experiments, all images were scaled down to half the original size and
cropped, reducing their dimensions to 96 × 96. 32 images were discarded because, in
the cropping process, one or both eyes were no longer in the image. The resulting set of
images was split into training and testing sets with 1420 and 69 images respectively. We
duplicated the training set by horizontally flipping the images, resulting in a training set
with 2840 images.

4.3. Implementation

The implemented CNN architecture and hyperparameters are show in Figure 5 and Table
2, respectively. Stride, for the convolutional and pooling layers, was set to 1, and zero-
padding was set to zero.

96× 96 94× 94
47× 47 46× 46 23× 23

500

4

convolution
K = 4
F = 3
S = 1
P = 0

pooling
F = 2
S = 1

convolution
K = 16
F = 2
S = 1
P = 0

pooling
F = 2
S = 1

Figure 5. Implemented CNN architecture.

Table 2. CNN’s hyperparameters and layer dimensions.

Layer Number Filter Dimensionsof Filters Size
INPUT - - 1× 96× 96
CONV1 4 3 4× 94× 94
POOL1 - 2 4× 47× 47
CONV2 16 2 16× 46× 46
POOL2 - 2 16× 23× 23

FC3 - - 500
FC4 - - 4

A 50% dropout was included in the first fully connected layer (FC3). The other
relevant settings were the weight initialization strategy (Glorot Uniform), the ReLU ac-
tivation function, the error function (mean square error), and the optimization method
(Nesterov’s momentum of 0.9 with learning rate of 0.01).

The output layer (FC4) has 4 neurons, which correspond to the x and y coordinates
for the left eye, and the x and y coordinates for the right eye, in that order (xl, yl, xr, yr).

A 10-fold cross validation scheme was adopted to train and validate the proposed
CNN architecture using the training set with 2840 images. For 2000 epochs, we obtained a
mean training error of 2.30 pixels (with standard deviation of 0.062) and a mean validation
error of 7.22 pixels (with standard deviation of 2.057). The decreasing behavior of the
validation error showed that no over-fitting occurred.

After validating the CNN, the full validation set, with 2840 images, was used to
train the network and the obtained weights were saved for the test phase.

Both Algorithms 1 and 2 were then applied to the regions of interest obtained by
the CNN regression, but this time using the original 384× 286 images.

We followed Kothari and Mitchell’s suggestion [Kothari and Mitchell 1996] for
the two parameters on Algorithm 1: 5×5 for the accumulation bin size; and the root mean
square as the magnitude threshold.

In order to bound the magnitude of the gradients to be considered in Algorithm
2, we followed Hume [Hume 2012] and set the threshold to (0.3σ + µ), the mean and
standard deviation of the gradient magnitudes in the corresponding region of interest.

5. Results

We followed Jesorsky et al. [Jesorsky et al. 2001] and use the normalized error to evaluate
the results obtained by the CNN regression and the posterior application of Algorithms 1
and 2. The normalized error and its variants are given by:

e =
1

d
max(er, el) , (3)

eavg =
1

2d
(er + el) , and (4)

ebetter =
1

d
min(er, el) , (5)

with d = ‖Cr − Cl‖, er = ‖Cr − Ĉr‖, and el = ‖Cl − Ĉl‖, where Cr and Cl are the true
right and left eye coordinates, Ĉr and Ĉl are the corresponding estimated values, and ‖.‖
is the Euclidean distance.

Figure 6 shows the normalized error ranges for an average human eye [Farkas et al.
1985]. Results for localization of eye centers may be considered very good if e ≤ 0.05;
as for eye localization, results may be considered good if e ≤ 0.25.

The results were evaluated in terms of accuracy (%) for each of the five error
ranges: e ≤ 0.05, e ≤ 0.10, e ≤ 0.15, e ≤ 0.20, and e ≤ 0.25.

e ≤ 0.25

e ≤ 0.10
e ≤ 0.05

Figure 6. Normalized error ranges for an average human eye.

Table 3 shows the results of the CNN’s estimation of eye centers. The results for
e ≤ 0.05 in Table 3 suggest that the CNN is not good enough for accurately locating the
center of the eyes. However, the results for the normalized error range e ≤ 0.25 indicate
that the relatively simple CNN used here is suitable to detect a region of interest where
the eyes are to be further processed by either Algorithm 1 or Algorithm 2.

Table 3. Accuracy (%) of CNN eye localization vs. normalized error range.

Error Worst eye Average Best eye
Range (Eqn. 3) (Eqn. 5) (Eqn. 4)
e ≤ 0.05 13.0% 20.3% 33.3%
e ≤ 0.10 49.3% 63.8% 79.7%
e ≤ 0.15 76.8% 84.1% 87.0%
e ≤ 0.20 89.9% 89.9% 91.3%
e ≤ 0.25 92.8% 94.2% 95.7%

Table 4 shows the results obtained by Algorithm 1 for a finer eye center localiza-
tion. Unfortunately, the results were not accurate enough for pupil localization (e ≤ 0.05).
However, the algorithm performs well for iris detection (e ≤ 0.10).

Table 4. Accuracy (%) of Algorithm 1 eye localization vs. normalized error range.

Error Worst eye Average Best eye
Range (Eqn. 3) (Eqn. 5) (Eqn. 4)
e ≤ 0.05 26.1% 50.7% 73.9%
e ≤ 0.10 72.5% 85.5% 92.8%
e ≤ 0.15 92.8% 94.2% 98.6%
e ≤ 0.20 95.7% 95.7% 100%
e ≤ 0.25 95.7% 95.7% 100%

The results obtained with Algorithm 2, as implemented here following [Timm and
Barth 2011] and [Hume 2012], show good accuracies for pupil detection, performing very
well for iris localization (e ≤ 0.10). All results were better than the ones obtained with
Algorithm 1.

Table 5. Accuracy (%) of Algorithm 2 eye localization vs. normalized error range.

Error Worst eye Average Best eye
Range (Eqn. 3) (Eqn. 5) (Eqn. 4)
e ≤ 0.05 72.5% 85.5% 97.1%
e ≤ 0.10 91.3% 92.8% 98.6%
e ≤ 0.15 91.3% 98.6% 98.6%
e ≤ 0.20 94.2% 98.6% 98.6%
e ≤ 0.25 98.6% 98.6% 98.6%

Although Algorithm 2 is much more accurate than Algorithm 1, as seen in Tables
4 and 5, the latter is faster than the former and may be very useful as a preprocessing step,
giving a reasonably accurate eye localization. Algorithm 1 took, in average, 8.56 ms to
locate both eye centers, 11.6 times faster than Algorithm 2 (99.42 ms, in average).

All the experiments were performed on a computer equipped with a 3 GHz Intel
Core 2 Duo CPU, 4 GB RAM, and an Nvidia GeForce GTS 450 GPU with 1 GB GDDR5.

6. Conclusion and Future Work

In this paper, we applied a relatively small CNN to solve the regression problem of eye
localization in grayscale frontal facial images. The CNN coarse estimate was then used
to compute regions of interest (eyes) that serve as input to two gradient-based algorithms
intended to pinpoint the eye centers. The original rationale of both algorithms (applying
the gradient method and then removing the false positives) was reverted here: The CNN
estimates the approximated eye positions and then the gradient methods are applied.

Results were evaluated in terms of accuracy and processing time: CNN combined
with Algorithm 2 proved to be more accurate the CNN-Algorithm 1 combination and may
be used to detect irises. The combination of CNN and Algorithm 1 may still be used to
locate eye regions, specially when speed is of relevance, since it proved to be much faster
than the other method.

We are currently working on some adaptations of both algorithms and on a method
that merges them.

Acknowledgment

WPA acknowledges the financial support from FUNCAP.

References

Abdulameer, M., sheikh abdullah, S., and Othman, Z. (2014). A modified active appear-
ance model based on an adaptive artificial bee colony. 2014:879031.

BioID (2017). The BioID Face Database. https://www.bioid.com/facedb/.

Dutta, A., Günther, M., Shafey, L. E., Marcel, S., Veldhuis, R., and Spreeuwers, L.
(2015). Impact of eye detection error on face recognition performance. IET Biometrics,
4(3):137–150.

Farkas, L. G., Hreczko, T., Kolar, J. C., and Munro, I. R. (1985). Vertical and horizontal
proportions of the face in young adult North American Caucasians: revision of neo-
classical canons. Plastic and Reconstructive Surgery, 75(3):328–337.

Hume, T. (2012). Simple, accurate eye center tracking in OpenCV. http://thume.ca/
projects/2012/11/04/simple-accurate-eye-center-tracking-in-opencv/.

Jesorsky, O., Kirchberg, K. J., and Frischholz, R. (2001). Robust face detection using
the Hausdorff distance. In Bigün, J. and Smeraldi, F., editors, Audio- and Video-Based
Biometric Person Authentication, Third International Conference, AVBPA 2001 Halm-
stad, Sweden, June 6-8, 2001, Proceedings, volume 2091 of Lecture Notes in Computer
Science, pages 90–95. Springer.

Kar, A. and Corcoran, P. (2017). A review and analysis of eye-gaze estimation systems,
algorithms and performance evaluation methods in consumer platforms. IEEE Access,
5:16495–16519.

Kothari, R. and Mitchell, J. L. (1996). Detection of eye locations in unconstrained visual
images. In Proceedings 1996 International Conference on Image Processing, Lau-
sanne, Switzerland, September 16-19, 1996, pages 519–522. IEEE Computer Society.

Mushfieldt, D., Ghaziasgar, M., and Connan, J. (2013). Robust facial expression recog-
nition in the presence of rotation and partial occlusion. In Proceedings of the South
African Institute for Computer Scientists and Information Technologists Conference,
SAICSIT ’13, pages 186–193, New York, NY, USA. ACM.

Nouri, D. (2014). Using convolutional neural nets to detect facial keypoints tutorial.
http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-\
\facial-keypoints-tutorial/.

Ozhiganov, I. (2016). Convolutional Neural Networks for Object Detection. http://rnd.
azoft.com/convolutional-neural-networks-object-detection/.

Patterson, J. and Gibson, A. (2017). Deep Learning: A Practitioner’s Approach. O’Reilly,
Sebastopol, CA.

Timm, F. and Barth, E. (2011). Accurate eye centre localisation by means of gradients. In
Mestetskiy, L. and Braz, J., editors, VISAPP 2011 - Proceedings of the Sixth Interna-
tional Conference on Computer Vision Theory and Applications, Vilamoura, Algarve,
Portugal, 5-7 March, 2011, pages 125–130. SciTePress.

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple
features. pages 511–518.

