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Abstract. The potential for processing car sensing data has increased in recent
years due to the development of new technologies. Having this type of data is
important, for instance, to analyze the way drivers behave when sitting behind
steering wheel. Many studies have addressed the drive behavior by developing
smartphone-based telematics systems. However, very little has been done to
analyze car usage patterns based on car engine sensor data, and, therefore, it
has not been been explored its full potential by considering all sensors within
a car engine. Aiming to bridge this gap, this paper proposes the use of Ma-
chine Learning techniques (supervised and unsupervised) on automotive engine
sensor data to discover drivers’ usage patterns, and to perform classification
through a distributed online sensing platform. We believe that such platform
can be useful used in different domains, such as fleet management, insurance
market, fuel consumption optimization, CO2 emission reduction, among others.

1. Introduction
The number of vehicles grows considerably each year across the globe. In Brazil, for
instance, it has already reached 45.4 million vehicles in 2015, which proportionally repre-
sents one car for every 4.4 inhabitants. This increase brings serious problems to everyday
life, e.g., deaths caused by accidents, traffic jam, and above all high pollution rates, which
affects everyone by causing diseases, such as asthma, pulmonary Cancer and Cardiovas-
cular problems [World Health Organization 2015].

Among the aforementioned problems, the emission of pollutants and deaths caused
by car accidents need to be evaluated considering two different aspects, which are the
drivers usage of vehicles and their behaviors. The first aspect can be investigated by an-
alyzing automotive engine sensing data that can be transmitted to smartphones or tablets
via On-Board Diagnostic (OBD-II). On the other hand, the second aspect is related to
the way drivers behave when sitting behind steering wheel, e.g., handling of steering
wheel and pedals, high speed and change of lane or existing road [Kumagai and Aka-
matsu 2006], [Amsalu et al. 2015], [Ly et al. 2013]. In this sense, both aspects have
become popular in domains, such as: fleet management and car insurance market.

Therefore, this work intends to address the driver usage patterns problem by con-
sidering only the multiple measurement sensors that are located in the car engine. We



strongly believe that a system (smartphone-based or online platform) can provide valu-
able usage information by capturing, fusing, analyzing, and discovering patterns within
this data. In this way, business segments can benefit from the use of Machine Learning
(ML) techniques for the discovery of drive usage patterns within an organization. By
applying effective techniques for drive usage pattern, companies can better evaluate their
drivers, and also their vehicles.

Recently, supervised Machine Learning techniques (e.g., Naive Bayes, MLP, SVM)
have been applied to automotive engine sensing data [Zhang et al. 2016], [Ly et al. 2013],
[Meseguer et al. 2013], [Al-Sultan et al. 2013]. However, as the number of sensors in a
car engine is very high, there is no public available databases that are composed of fused
data from all of them that can be used for training and testing a classification system. On
the other hand, others studies have applied unsupervised ML techniques (e.g. k-Means)
over data composed of a specific subset of engine sensors in order to create clusters within
the data, and consequently use them as classes [Higgs and Abbas 2015], [Ly et al. 2013].

The main of this paper is to apply Machine Learning techniques (supervised and
unsupervised) on automotive engine sensor data to discover drivers usage patterns. After
having the sensor data, different unsupervised ML techniques will be applied in order to
generate partitions which will be analyzed under certain criteria and used as class labels.
Then, the second step is to apply supervised techniques to classify the drivers usage pat-
terns. To the best of the author knowledge, this is the first work to propose the use of
both unsupervised and supervised ML techniques for clustering engine sensor data, and
performing classification of drive usage pattern in an online platform.

2. Background

2.1. Automotive Control Specifications

In order to deal with various types of automotive components and to standardize the com-
munication between them, two important standards have been defined. The first one,
called Controller Area Network (CAN) serial bus system, was created by Bosch in 1986,
and adopted as an ISO standard in 1993. This specification allows communication be-
tween micro-controllers and devices without a host computer. It is currently used as a
worldwide standard in communication between vehicle components.

The second one, called On-Board Diagnostic (OBD-II), is the standard protocol
used across most vehicles to retrieve vehicle diagnostic information [Barreto and Mooers
2017]. In this standard, data is generated by a engine control unit (ECU or also called
engine control module) within a vehicle. OBD-II provides vehicle self-diagnosis and
reports capabilities for repair technicians to access subsystem information for the purpose
of performance monitoring and repairing [Barreto and Mooers 2017].

In general, ODB-II is used to wirelessly transmit relevant vehicle engine infor-
mation to smartphones or tablets (e.g., coolant temperature, load, RPM, intake manifold
pressure, speed, throttle position, air flow, short term fuel trim bank, timing advance, fault
codes, etc.). In this investigation, fifteen (15) different engine sensors values are transmit-
ted via OBD-II to a smartphone to be stored. Then, these values are sent to a distributed
online platform which is able to store, fuse and analyze records for all registered users.



2.2. Machine Learning Techniques
In general, Machine Learning techniques are data dependent. On one hand, unsupervised
techniques are used to discover natural groupings in a set of examples without knowledge
of class labels. Clustering is one of the most known techniques in this group. On the other
hand, supervised techniques are used to identify to which set of labels a new example
(instance) belongs, based on a training set of data that contains examples whose labels are
known. Classification is one of the most known techniques in this group [Mitchell ].

As automotive engine data has no class label, but only attributes that describe the
features of each type of sensor, we apply different clustering algorithms in order to create
groups of objects, or clusters, in such a way that objects in one cluster are very similar,
and objects in different clusters are quite distinct. After creating clusters or groups, we use
them as class labels in a classification task [Alsmadi and Alhami 2015]. In this sense, we
use three clustering algorithms which are described as follows: k-Means, Expectation-
Maximization (EM), and Hierarchical clustering.

After having created the class labels, we applied six different classification algo-
rithms which are described as follows: Decision Tree (J48), k-NN (k-Nearest Neigh-
bours), Multilayer Perceptron (MLP), Naive Bayes (NB), Random Forest (RF) and
Support Vector Machine (SVM).

3. Related Work
3.1. Smartphone sensing data
In general, the vast majority of the existing studies use smartphone sensing data to predict
the behavior of car drivers, such as in [Eren et al. 2012, Johnson and Trivedi 2011,
Castignani et al. 2015]. In Eren et al. [Eren et al. 2012], for instance, the authors proposed
a driver behavior classification method that predicts two different driver classes, unsafe
and safe drivers. They also used a Dynamic Time Warping (DTW) model to compute
the similarity of each event to template data, and a Bayesian classification model (Naive
Bayesian) to decide whether the driver was unsafe or safe. In Johnson et al. [Johnson
and Trivedi 2011], the authors also used DTW to measure data from smartphone sensors,
GPS and camera. Their work evaluated the performance of different sensor fusion sets to
detect lateral and longitudinal movements. However, no classification algorithm was used
in this work.

In You et al. [You et al. 2012], the authors proposed the CarSafe platform, a
smartphone application which fuses information obtained from front and rear cameras,
sensors and GPS to detect dangerous driving events. According to them, drowsiness can
be detected by using front cameras and image processing algorithms.

Finally, in Castignani et al. [Castignani et al. 2015], the authors proposed Sense-
Fleet, a driver profile platform that is able to detect risky driving events independently
from mobile device and vehicle. They used a fuzzy system to compute a score for each
driver by using data from Accelerometer, Magnetometer, Gravity Sensor, GPS, and also
route topology and weather information.

3.2. Automotive engine sensing data
Aiming to provide more useful information for drivers, some studies have combined
data from smartphone sensors and engine sensors [Araujo et al. 2012, Meseguer et al.



2013, Zhang et al. 2016]. In Araujo et al. [Araujo et al. 2012], for instance, a smartphone
application has been proposed to help drivers to reduce fuel consumption in vehicles by
using GPS data and engine data (e.g., speed, acceleration, altitude, throttle, fuel consump-
tion, rpm).

In Meseguer et al. [Meseguer et al. 2013], a sensing platform (DrivingStyles) has
been proposed to perform classification of driving styles by analyzing the driver behav-
ior using the following data: speed, acceleration, and revolutions per minute of the en-
gine (rpm), among others features collected via OBD-II. According to the authors, Driv-
ingStyles is able to characterize the type of road (city, suburban or highway) on which
the vehicle is moving, as well as the degree of aggressiveness of each driver by using
a neural network (MLP). Their goal was to assist drivers at correcting some bad habits
when driving, while offering helpful tips to improve fuel economy for a car.

Another sensing platform has been proposed in Zhang et at. [Zhang et al. 2016].
This platform uses a Support Vector Machine (SVM) classifier to classify drivers based
on engine sensor data collected from OBD-II and also smartphone sensor data. According
to the authors, the platform is able to classify drivers behaviors by using each sensor data
(car and phone) independently, and combining both sensors’ data.

3.3. Discussion

Most of the studies (first group - smartphone sensing data) above focus on smartphone
sensing data to predict the behavior of drivers [Eren et al. 2012, Johnson and Trivedi 2011,
Castignani et al. 2015]. In this sense, data collected from smartphones (e.g., acceleration,
gyroscope, magnetometer, GPS and camera) is used for defining whether the drivers are
risky or safe. However, only one study has used a classification algorithm (Naive Bayes)
[Eren et al. 2012], whereas the others have used different techniques (e.g., DTW or fuzzy
system).

The second group of studies focus on automotive engine sensing data or the com-
bination of both types of data (engine and smartphone) [Araujo et al. 2012, Meseguer
et al. 2013, Zhang et al. 2016]. In this group, two studies have used classification algo-
rithms (MLP and SVM) to classify driver behaviors [Meseguer et al. 2013, Zhang et al.
2016], whereas another one has focused on reduction of fuel consumption [Araujo et al.
2012]. Differently from the first two studies, in the third study, the authors have used a
fuzzy system. On top of that, the engine sensor data used in the studies above is limited to
few sensor features (e.g., speed, throttle and rpm), which does not exploit the full potential
of engine sensor data.

Finally, it is important to emphasize that none of the studies has used clustering
techniques to create groups in the sensor data, and use those groups as labels for clas-
sification purposes. Moreover, a data pre-processing phase is required when using this
type of data (no labels). In this sense, a manual labeling process is used in most of the
cases [Meseguer et al. 2013, Zhang et al. 2016]. To the best of our knowledge, there is
no sensing platform which uses data from all possible engine sensors, and also uses both
supervised and unsupervised ML techniques to predict driver usage patterns.



4. The Proposed Automotive Engine Sensing Platform

The main aim of this paper is to propose an automotive engine sensing distributed plat-
form capable of collecting, clustering and performing classification of drivers’ usage. By
performing such complex task this platform will be useful in fleet management, insurance
market, fuel consumption optimization and CO2 emission reduction.

As depicted in Figure 1, the general architecture of the Automotive Engine Sens-
ing Platform is divided in four modules. The first one, called Monitoring, is responsible
for extracting and sending the engine sensors data to the next module. The second mod-
ule, called Application, is responsible for collecting, performing data pre-processing, and
storing data to be classified. The third module (Service) is responsible for collecting data
from lower level module, providing classification, and storing analytic results obtained
by this module. The last module, called Client Application Prototype, is responsible for
providing access to the Service module, and therefore it is able to receive requests from
different applications regarding the analytic results of the driving evaluation.

Figure 1. Automotive Engine Sensing Platform architecture.

4.1. Monitoring

In general, the majority of the OBD-II (On-Board Diagnostics) readers function as regular
gateway by collecting data from the engine sensors and sending it via Bluetooth to a
particular destination. In order to receive data from an OBD-II reader, we implemented
structural modifications to an open source application, called Smart Fleet Android [Viana
2018a], [Viana 2018b], to perform data acquisition of a subset of fifteen (15) sensors over



a given time window (10 seconds). After extracting data from each sensor, which will
be called as feature, this module sends it (a vector of features) to the upper level module.
The features are described as follows:

Vd =

ep[i], bp[i], ect[i], f l[i], fp[i], ft[i], el[i],
eRPM [i], eMAP [i], eMAF [i], s[i], tp[i],

eLTFT1[i], eLTFT2[i], er[i]


n

i=1

(1)

where Vd (vector data) is composed by ep (engine power), bp (barometric pressure), ect
(engine coolant temperature), fl (fuel level), fp (fuel pressure), ft (fuel type), el (engine
load), eRPM (engine RPM - Revolutions Per Minute), eMAP (MAP - Manifold Absolute
Pressure), eMAF (MAF - mass air flow), s (speed) and tp (throttle position), eLTFT1 (en-
gine LTFT - Long Term Fuel Trim 1), eLTFT2 (engine LTFT - Long Term Fuel Trim 2),
er (equivalent ratio is related to air fuel), whilst n represents the number of sampling
instants. In fact, Vd represents the vehicle operation in a window of 10 seconds.

4.2. Application

As mentioned earlier (Section 4.1), we implemented important changes in the Smart Fleet
Android application, allowing it to collect, send, and more important, process engine
sensing data. By using our version, the driver’s smartphone collects engine sensors data
transmitted via Bluetooth, processes it and sends the resulting data to the upper level.
Moreover, this module is designed to collect data from the monitoring module, which is
extracted in a vector format (Vd1 , Vd2 , ..., Vdn), and store it on demand. However, before
making the data available for classification, this module needs to perform two procedures
(Data Pre-processing and Data Summarization) which will be detailed below. After that,
the organized data is ready to be sent to the upper level (Web service) model when WiFi
connection is available.

1. Data Pre-processing: As row data cannot be used directly for performing an anal-
ysis process, Application (module) needs to provide some data pre-processing
techniques. Basically, two main pre-processing techniques are applied, missing
value definition and normalization. After the end of a driver’s route, this module
seeks for missing, noisy (erroneous and outliers) and inconsistent data. Then, it
replaces the values of each attribute accordingly to its characteristics (categorical
or numeric) by using Mean, Median or Mode. Finally, the values of all numeric
attributes are normalized [0:1].

2. Data Summarization: After applying the data pre-processing procedure, data sum-
marization is applied on the resulting data. The aim is to map Vd1 , Vd2 , ..., Vdn →
Fd, where Fd ∈ Rnf represents the set of nf characteristics:

Fd =

{
ep, bp, ect, f l, fp, ft, el, eRPM , eMAP ,

eMAF , s, tp, eLTFT1, eLTFT2, er

}
(2)

where ep is the average of this particular feature (engine power), and so on.
As each vector Vd1 represents the values of a 10 second window, the best way
to summarize all the Vd’s values was to use the average operator and to use the
average values of all 15 features. This is represented by Eq.(2).



4.3. Web Service

This module is responsible for performing classification based on drivers’ usage data re-
ceived from the Application module. It collects the summarized data from the Application
module and applies the already trained ML model. In other words, based on the summa-
rized data, the trained ML model will classify the drivers usage profiling based on a driver
profiling (Fd). In this way, Fd can be mapped as:

Fd → {L,M,H} (3)

where L, M e H represents “Low”, “Mid” and “High”, respectively (see Figure 2).

Figure 2. Graphical representation of the classes.

After classifying the driver’s usage pattern, it stores that information for later use
by any type of application.

5. Methodology
This section will describe some important aspects of the experimental methodology, such
as the creation of the database, the selection process of the clustering algorithm, and more
importantly the selection process of the most suitable classification algorithm, since the
main purpose of the proposed engine sensing platform is classification.

5.1. Experimental Testbed

A 2015 Chevrolet S10 (206 hp with 2.5 L flex-fuel) collected all the data used in this
study. This model is popular, and has characteristics common to many other models of
this type, which reinforces the possibility of applying this experiment to other popularly
used vehicles.

The chosen route corresponds to an urban stretch, depicted in Figure 3, located
in the city of Natal (Brazil). The total distance is approximately 18.8 kilometer, taking
around 34 minutes, according to the fastest route projection done by Google Maps1. We
collected data from 19 participant drivers who have volunteered to take part in the exper-
iment.

5.2. Methods and Materials

Figure 4 presents the overall experimental methodology used in this work. After col-
lecting data from all nineteen (19) drivers, we placed it into a table with fifteen (15)

1https://goo.gl/A7KViD



Figure 3. Predefined route for data collection.

Figure 4. Experimental methodology.

columns (features) and 8.245 rows (instances), representing 434 instances per drive on
average. Data pre-processing techniques have been applied to this table, resulting in a
dataset ready to be used for a ML model. Three different clustering (unsupervised) tech-
niques have been used over the pre-processed dataset, resulting in several partitions (each
model can provide more than one partition). Then, two validation indexes have been ap-
plied in order to choose the best partitions, the ones that best represent the original data.
Then, the clusters defined by the winning partitions were transformed into class labels.
After this phase, six classification (supervised) techniques have been applied over the best
partitions in order to analyze the best overall model, based on mean accuracy rate over
all datasets. Finally, the selected model has been trained and tested using the best par-
tition. The next subsections will describe, in more details, the important aspects of the
experimental methodology.



5.2.1. Clustering

As the aforementioned dataset has no class label (class attribute), we applied three differ-
ent clustering algorithms (e.g., k-Means, EM and Agglomerative Hierarchical) in order to
obtain different partitions representing the drivers’ profiling. Initially, we used only the
EM algorithm with no predefined k (number of cluster - k = −1). As a result, we ob-
tained a partition with 11 clusters (groups). Based on this result,from this first experiment,
we varied values of k from 2 to 11.

As the clustering algorithms have different characteristics (deterministic and prob-
abilistic), we performed 10 executions for each value of k for the probabilistic ones (k-
Means and EM). Therefore, a total of 30 partitions were generated (3 algorithms and 10
executions).

5.2.2. Validation Measures

Once all partitions were created, we applied two different clustering validation metrics
(Silhouette and Davies-Bouldin) [Halkidi et al. 2002] over 30 partitions created by the
clustering algorithms, and averaged the indexes values (10 executions) for each k. The
results for both indexes have showed that the best partition was created by the k-Means
algorithm with k = 3. However, we decided to perform a broader analysis choosing not
one, but the top ten best partitions, described as follows: EM (k = 3, k = 4 and k = 5),
Agglomerative Hierarchical (k = 3 and k = 4), k-Means (k = 3, k = 4, k = 5, k = 6
and k = 7). As it can be observed, in all three algorithms, the partitions with 3 and
4 groups were selected in the top ten list. This might be an indication that the number
of classes should be selected between these two numbers. Nevertheless, for a broader
analysis, we decided to evaluate the performance of the classification algorithms over the
best 10 partitions.

5.2.3. Classification

These partitions (10) have been used as 10 datasets in the classification analysis, which
aimed to analyze the accuracy performance of 6 classification algorithms (e.g., Decision
Tree, k-NN, Multi Layer Perceptron, Naive Bayes, Random Forest and Support Vector
Machine). For each classification algorithm, we used three different training/test division,
50/50 split percentage, 70/30 split percentage, and 10 fold cross validation. The mean
accuracy results for all six classification algorithms over 10 datasets (partitions) will be
presented and discussed in the next section (Section 6).

5.3. Implementational Issues

We used both clustering and classification algorithms that were extracted from the WEKA
API, and for simplicity reasons, we used the default parameters of all six classification
algorithms, which are automatically chosen by WEKA. The validation metrics (Silhouette
and DB) were implemented in Java using the WEKA API. We also implemented a Java
class for training and saving the ML model.

The Friedman statistical test was applied to evaluate the performance of all six
classifiers over the ten partitions. It is important to emphasize that the Friedman test is
applied directly on the mean accuracy rate of all classifiers. If any significant difference
is detected, a post-hoc test will be applied.



Table 1. Mean accuracy rate on three test sets.
- Classification Techniques

Partitions J48 k-NN MLP NB RF SVM
AH k 3 90.01 95.65 90.57 84.34 91.71 88.28
AH k 4 89.33 95.39 89.06 82.57 91.16 87.09
EM k 3 96.97 93.76 97.32 99.47 97.68 94.84
EM k 4 96.39 90.67 96.30 99.17 97.22 93.39
EM k 5 96.97 90.21 95.98 99.29 96.65 93.07
KM k 3 95.73 96.02 99.58 93.23 96.82 98.94
KM k 4 94.83 93.93 99.14 90.61 96.09 98.07
KM k 5 93.39 92.55 97.01 90.08 95.17 97.52
KM k 6 92.84 92.17 96.94 91.01 94.66 97.38
KM k 7 92.05 91.71 97.44 89.65 94.15 97.13

Mean Acc 93.85 93.21 95.93 91.94 95.13 94.57

6. Experiment Results

In this section, a comparison analysis of six different classification techniques over ten
partitions with different number of clusters (groups) is performed. This analysis is based
on the accuracy (classification error) of each classification technique which is the average
of three distinct training/test division.

Table 1 presents the mean accuracy obtained by J48, k-NN, MLP, NB, RF and
SVM. In this table, the most accurate algorithm is highlighted in bold, for each database.
Note that the clustering algorithm used to create the partition/dataset has a strong influ-
ence in the performance of the classification algorithms. From Table 1, we can observe
that k-NN obtained the best accuracy results in the partitions created by the Agglom-
erative Hierarchical algorithm (AH k 3 and AH k 4), whereas NB obtained in all three
partitions created by EM (EM k 3, EM k 4 and EM k 5), and MLP obtained in all five
k-Means partitions (KM k 3, KM k 4, KM k 5, KM k 6 and KM k 7).

Although three different classification algorithms had good performance, as shown
in the last line of the table, MLP obtained the highest mean accuracy (95.93), followed
by RF (95.13) and SVM (94.57). In fact, MLP provided reasonable performance for the
datasets generated by the other two clustering algorithms (AH and EM), always reaching
the second or third highest accuracy.

In order to conduct a more robust analysis of the results, the Friedman statisti-
cal test was used (at the conventional significance level of 5%) to determine whether or
not there is a statistically significant difference between the mean accuracy rates of the
classification techniques across the 10 partitions/datasets.

The Friedman statistical test was applied on the mean accuracy rates of all six
classification techniques (Table 1). By analyzing the test result, we could observe that
there has been a statistically significant difference among the accuracy rates (p−values =
3.48 x 10−07). For this reason, a post-hoc test has been applied. Table 2 presents the p−
values for all two-by-two possible comparisons. Bold and underline p−values represent
the significant difference between both classification algorithms (line and column). As
Table 2 is a symmetric matrix, we will only present the superior part of this matrix.

As it can be observed from Table 2, the performance of MLP was statistically



Table 2. Post-Hoc Test Results
- k-NN MLP NB RF SVM

J48 0.9742 0.0051 0.9062 0.0289 0.7181
k-NN - 0.0002 0.9997 0.0020 0.2500
MLP - 0.0001 0.9955 0.2670
NB - 0.0006 0.1394
RF - 0.5841

superior than J48, k-NN and NB. However, there has not been significant difference be-
tween the performance of MLP, RF and SVM. In addition, the performance of RF was
also statistically higher than J48, k-NN and NB. Moreover, although SVM had the third
highest mean accuracy rate, there has not been any significant difference between itself
and other techniques (e.g., J48, k-NN and NB). Additionally, k-NN and NB delivered the
worst performances of all techniques, from a statistical point of view.

Finally, based on the results shown in both tables (1 and 2), we can state that MLP
obtained the best result, and supported by this analysis MLP will be selected to be trained
over the best partition (KM k 3). Then, this model will be used as classification model of
our proposed automotive engine sensing platform.

7. Conclusion and Future Work

This work is motivated by the enormous potential of applying ML techniques over auto-
motive engine sensor data to classify drivers’ usage profiling. Based on this motivation,
we proposed a Machine Learning approach which is able to use clustering for creating
data labels in engine sensing data, and then to use this data for training and testing classi-
fication techniques in order to choose the most appropriated model.

In order to evaluate the feasibility of the proposed approach, an empirical analysis
was conducted. In this analysis, first we applied three different clustering techniques for
creating the data labels, and then, as a result, we obtained 10 best partitions. Secondly, we
used these partitions to evaluate the accuracy performance of six classification techniques.
Based on their accuracy rates, the best classification techniques has been chosen.

Finally, we can conclude that the main contribution of this work was the proposal
and implementation of an ML based platform for driver usage profiling classification. As
future work, we will collect data from different car models (size and engine power) in
order to perform classification considering not only the data itself, but also the car model.
In fact, a web service has been implemented in order to receive engine sensing data and
classify drivers’ usage profiling. Additionally, different drivers have already been invited
to test the platform in their own cars. The initial results have been promising, and also the
platform has performed within good standards regarding scalability and elasticity.
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