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Abstract. This paper presents a preliminary study on the use of reinforcement 

learning to control the torque vectoring of a small rear wheel driven electric 

race car in order to improve vehicle handling and vehicle stability. The 

reinforcement learning algorithm used is Neural Fitted Q Iteration and the 

sampling of experiences is based on simulations of the vehicle behavior using 

the software CarMaker. The cost function is based on the position of the states 

on the phase-plane of sideslip angle and sideslip angular velocity. The resulting 

controller is able to improve the vehicle handling and stability with a significant 

reduction in vehicle sideslip angle. 

1. Introduction 

Controllers based on reinforcement learning algorithms, which are widely used to control 

the motion of mobile robots [Benbrahim and Franklin 1997] [Duan et al. 2008] [Janusz 

and Riedmiller 1995] [Riedmiller et al. 2009] [Vincent and Sun 2012], are gaining space 

in the automotive area. It was already applied for road following by controlling the 

steering angle [Oh, Lee and Choi 2000] [Riedmiller, Montemerlo, Dahlkamp 2007] [Yu 

and Sethi 1995], for enhancing ride performance by controlling the suspension system 

[Howell et al. 1997] and for improving longitudinal motion in Adaptive Cruise Control 

[Desjardins and Chaib-draa 2011] [Pietquin, Tango and Aras 2011]. It was also used to 

perform lane change autonomously [Wang, Chan and de La Fortelle 2018] and regarding 

lateral vehicle dynamics, a reinforcement learning algorithm was used to optimize rules 

of a fuzzy system that controls vehicle stability adding a yaw moment generated by 

differential braking [Akbari and Goharimanesh 2014]. 

 In this work, another application of reinforcement learning (RL) in the automotive 

area is studied. Here, a reinforcement learning algorithm called Neural Fitted Q Iteration 

[Riedmiller 2005] is used to control the torque vectoring of a small rear wheel driven 

electric race car in order to improve the vehicle handling and stability.  

 As reinforcement learning algorithms learn how to take decisions by trial and 

error, the algorithm learned how to control the torque vectoring experiencing interactions 

with the environment by means of simulations of the vehicle behavior that are carried out 

using the software Carmaker. The manoeuvre selected was Sine with Dwell which is used 



  

by UN ECE for the approval of ESC in passenger cars. However, it was necessary to set 

costs (penalties) for unstable or handling limit situations to help the algorithm understand 

when it was necessary to add a yaw moment to keep the car stable. 

 One of the most important sets for the stability controllers is to define the 

threshold for the addition of the corrective yaw moment. Some controllers compare the 

current yaw rate of the vehicle with the desired yaw rate calculated using a linear or 

nonlinear vehicle model [Goharimanesh and Akbari 2017] [Lee, Hwang and Suh 2015]. 

Another approach is to define the handling limit using the phase-plane of sideslip angle 

and sideslip angular velocity. By looking at this phase-plane it is possible to have a good 

characterization of the nonlinear dynamic behavior of the vehicle. For this reason, it is 

used in many stability controllers that use brakes, torque vectoring or even a combination 

of both solutions [Guo et al. 2010] [Inagaki, Kshiro and Yamamoto 1994] [He 2005] [Lu 

et al. 2016]. In this work, the phase-plane of sideslip angle and sideslip angular velocity 

is used to define the cost function. 

 At the end, a preliminary handling and stability controller is created and it is able 

to select which percentage of torque should be distributed to the wheels when a steering 

input as sine with dwell is given. 

 Therefore, in this article a brief introduction about lateral vehicle dynamics and 

reinforcement learning is made. In the sequence, the process to create the controller is 

presented. Then, the learning results are shown and discussed. 

2. Lateral Vehicle Dynamics and Handling Limit 

When the driver needs to turn the vehicle in a situation of cornering or lane change, for 

example, he applies a steering angle input to the vehicle. According to this input, the 

wheels are turned into the desired direction.  

 If the vehicle is at a high speed, the tires must develop lateral forces to counteract 

the lateral acceleration that is present under this situation to control the direction of the 

vehicle. The generation of the lateral force is based on lateral slip of the tire (slip angle), 

on lateral inclination (camber angle) or the two effects combined [Gillespie 1992]. 

 The slip angle α is the angle between the direction of heading of the tire and its 

direction of travel [Gillespie 1992], as can be seen in Figure 1. The lateral force generated 

by the tire is dependent on the slip angle. For small values of sideslip, the relation is linear. 

However, when the slip angle increases and the lateral acceleration exceeds 0.3g, the 

relation becomes nonlinear [He 2005], as shown in Figure 1. 

 After further increase in the side slip motion, the properties of the lateral tire forces 

saturate [He 2005] and the tire presents the behavior of a locked wheel [Gillespie 1992]. 

The result is a yaw moment that leads to vehicle instability and spin [He 2005]. From this 

point, the vehicle will not respond to steering inputs, therefore it is the limit of handling, 

once that handling is the responsiveness of a vehicle to driver input [Gillespie 1992]. 



  

 

Figure 1. Lateral force and slip angle. Source: [Gillespie 1992].   

 To control the vehicle and bring it back to a stable state, a yaw moment can be 

added by means of braking one of the wheels or by applying torque vectoring (setting 

different values of torque for the wheels). Using the brakes, it is possible to have a higher 

yaw moment, but it affects the longitudinal motion of the vehicle. In the case of 

controllers that apply torque vectoring, they do not affect the longitudinal dynamics and 

they are effective throughout the handling regime [He 2005].   

3. Reinforcement Learning (RL) 

Reinforcement learning is a machine learning approach to solve problems in which an 

agent needs to learn the optimal strategy of actions interacting with the environment by 

means of experiences of trial and error. During the process of learning, the agent observes 

states, selects actions and receives rewards or costs for the transition state-action [Sutton 

and Barto 1998] [Wiering and Otterlo 2012]. 

 The rewards represent the desirability of the state in an immediate sense. The goal 

of the RL algorithms is to maximize the sum of rewards or minimize the sum of costs 

[Sutton and Barto 1998]. To achieve the goal, the agent needs to learn the optimal policy, 

that is the optimal way of selecting the actions. 

 If the decision problem can be considered a Markov Decision Problem, it is 

described by a set of states s, a set of actions a, the probability of the transitions to a new 

state s’ p(s, a, s’) and the immediate reward or cost function [Sutton and Barto 1998]. 

Then it can be solved by looking at the state value function or the action value function. 

The state value function represents the expected amount of rewards that can be reached 

from one state, in other words, it tells how good is to be in one state [Wiering and Otterlo 

2012].  The action value function (Q-value) represents the expected amount of reward 

that can be reached by being in one state and take one action. 

 When the probability of the transitions is known, these values are easily calculated 

by dynamic programming: looking at all states and using the Bellman Equations 

iteratively. But, when the probability is unknown it is called model-free approach and the 

value functions are calculated by interacting with the environment and collecting 

experience samples [Sutton and Barto 1998].  

 At the end, the optimal policy can be found by selecting the action that leads to 

the next state with highest state value or to a next transition state-action with highest 



  

action value. However, when the state space is large and complex, a lot of memory would 

be necessary to store all the information. In this case, the Q-value can be approximated 

by a function that normally is represented by a neural network or a decision tree [Sutton 

and Barto 1998]. 

 In the model-free approach, many methods can be used to find the optimal policy, 

nevertheless when function approximation is necessary, the batch reinforcement learning 

is more appropriate due to its offline update of the Q-value [Lange, Gabel and Riedmiller 

2012]. The Neural Fitted Q Iteration (NFQ) is an example of batch algorithm that uses a 

multi-layer perceptron as Q-value function [Riedmiller 2005]. 

3.1. Neural Fitted Q Iteration 

The NFQ algorithm is efficient and effective regarding the training of the Q-value 

function as it is made after a set of experiences are stored [Riedmiller 2005]. The idea of 

the algorithm is to generate the training data set P from a set of transitions experiences 

called sample set D collected in the form (s, a, s’) and then, to train of the neural network 

to update the value function. 

 The training data set P must be composed by the input that is the pairs state-action 

seen in the sample set D and the target that is calculated by adding the transition cost with 

the lowest Q-value for the next state s’ obtained using the current Q-value function 

[Riedmiller 2005]. Once that P is generated, the training of a new neural network is 

performed and the new replaces the old one. 

 Later, when the process is finished, more data can be collected following a policy 

greedy (using the neural network to select the action related to the lowest Q-value) or ε-

greedy (alternating between greedy selection and random selection). In the sequence, the 

new data is added to the sample set D and more NFQ iterations can be carried out to 

update the Q-value function. 

4. RL Controller Design  

The goal of the proposed controller is to observe the current state of the vehicle, which is 

provided by sensors, and define the percentage of torque that should be delivered to each 

wheel to generate an additional yaw moment in cases when the vehicle is in handling 

limit or unstable situation. 

 Different from traditional controllers for stability that depends on a mathematical 

model of the vehicle, the RL controller learnt the torque distribution by interacting with 

the environment observing states, taking actions and receiving penalties. 

4.1. Controller Inputs 

In order to select the input states, simulations with the race car were performed in the 

software CarMaker. During the simulations, states that represent the longitudinal and 

lateral behavior of the vehicle and input of the driver were collected: sideslip angle in rad, 

sideslip angular velocity in rad/s, speed in m/s, yaw rate in rad/s, steering angle in rad, 

acceleration in x and in y in m/s² (longitudinal and transverse respectively). 

 With the collected data it was possible to see that steering angle, yaw rate and 

acceleration in y are highly correlated, but the correlation among inputs is not 

recommended when neural networks are used because it might slow the learning [LeCun 



  

et al. 1998]. Then, the steering angle and the yaw rate where selected as inputs because 

they are used to describe the lateral vehicle dynamics [Gillespie 1992] and these two 

variables were decorrelated using Principal Component Analysis (PCA). It resulted in 

two new variables PC1 and PC2 that are a linear combination of the yaw rate and steering 

angle. 

 The speed and the acceleration in x (in longitudinal direction) were also selected 

because these variables are easily measured. On the other hand, sensors for sideslip angle 

and sideslip angular velocity normally are expensive, so these variables were not 

considered as an input in this work. It makes the application of the algorithm simpler. 

Therefore, the selected inputs were: speed, PC1, PC2 and acceleration in x. The value of 

the inputs was standardized. 

4.2. Possible Actions 

The actions in each state were defined as the percentage of torque that goes to the left rear 

wheel and the possible percentages were 30%, 40%, 50%, 60% and 70%.  

 As the vehicle has two driven wheels but it has only one motor, it is necessary that 

the differential distribute different torque to the wheels. 

4.3. Cost Function 

The cost function was based on the analysis of the phase-plane of the vehicle sideslip 

angle β (between the speed and the longitudinal axis) and sideslip angular velocity β’ 

proposed by [He 2005]. The phase-plane is a graphical method used to perform the 

stability analysis of nonlinear dynamic systems and it is obtained by plotting one state as 

function of the other. At the end it represents the transient response of the system to initial 

conditions or constant inputs [He 2005]. 

 In the case of the vehicle, its lateral vehicle dynamics can be represented by a 

second order and nonlinear system [Gillespie 1992]. Therefore, it is possible to use the 

phase-plane diagram to perform the stability analysis of vehicles. However, to create the 

phase-plane diagram of the vehicle, it is important to know the vehicle model and the 

vehicle tire model. But as this diagram was used only to evaluated how good or how bad 

the actions of the RL algorithm were, in this work the phase-plane for the studied vehicle 

was not created. Instead, the β-β’ phase-plane from [He 2005] was used. 

 [He 2005] proposed the division of the phase-plane diagram in 3 regions: 

reference region (stable situation), stability error (stable situation or handling limit) and 

unstable region as presented in Figure 2. 



  

 

Figure 2. Definition of reference region and stability error for vehicle control. 
Source: [He 2005]. 

 In the present work, this idea was used to create the vehicle cost function. It was 

considered that when the vehicle was in state s, took action a and achieved a state s’ that 

is in region 3 (emergency situation), it was a failure. In this case, the value of the cost 

function is 1. If the state s’ is in the “stability error” region, the value was 0.4. When the 

state s’ is in the reference region (stable situation) and the action taken is 50% of torque 

distribution, the value of the cost function for the state-action pair is zero. But when the 

vehicle is in a stable situation and the torque distribution was different than 50%, the cost 

value is 0.01. This consideration was done because the vehicle should learn not to use 

torque distribution different than 50% in stable situation as it can make the handling 

unnatural for the driver [He 2005]. The cost function using the regions defined by [He 

2005] can be seen in Equation 1. 

𝑐(𝑠, 𝑎, 𝑠′) =  
1.00,     𝑖𝑓 |𝛽̇ + 4𝛽| ≥ 72 

                             (1) 

0.40,     𝑖𝑓 24 ≤ |𝛽̇ + 4𝛽| < 72   

0.01,    𝑖𝑓 |𝛽̇ + 4𝛽| < 24 & 𝑎𝑐𝑡𝑖𝑜𝑛 ≠ 50% 

0.00,    𝑖𝑓 |𝛽̇ + 4𝛽| < 24 & 𝑎𝑐𝑡𝑖𝑜𝑛 = 50% 

4.4. Q-value Function 

In the Neural Fitted Q Iteration, a regression neural network is used to estimate the Q-

value, which represents how good is to be in one state and take some action. The neural 

network architecture used was composed of one input layer with five nodes, two hidden 

layers with ten nodes and output layer with one node. For the nodes of the hidden layers 

the activation function was the logistic sigmoidal (0,1) as used for [Riedmiller, 

Montemerlo, Dahlkamp 2007], and for the output layer was the function purelin. The 

Scaled Conjugate Gradient algorithm was used for the supervised training of the neural 

network with a maximum of 400 epochs. 



  

 The input to train the neural network was the state observed (speed, PC1, PC2, 

and longitudinal acceleration) and the action taken in that state. The target was the 

estimated Q-value for the pair state-action. It was calculated according to Equation 2, 

where the cost of the transition is added to the minimum Q-value related to the next state 

(calculated using the previous neural network) multiplied by the discount factor γ 

considered as 0.95. Each time a new neural network was trained, the estimated Q-value 

was improved.  

𝑄(𝑠, 𝑎) = 𝑐(𝑠, 𝑎, 𝑠′) + 𝛾 min
𝑎′

𝑄(𝑠′, 𝑎′)                                                                          (2) 

4.5. Policy 

As the data collection to train the NFQ algorithm was performed by means of simulations 

in CarMaker, it was possible to use the policy ε-greedy with 10% of random choices to 

explore the state space and 90% of greedy choices (selecting the action with lowest Q 

value in the state) to improve the policy.  

4.6. Sampling of Experiences 

The sampling of experiences was performed by means of simulation of the dynamic 

behavior of a small rear wheel driven race car (similar to a Formula Student race car) in 

the software Carmaker. This race car has a weight of 191 kg, 1.6 m of wheelbase and 

track width equals to 1.2 m. 

 Running the CarMaker in Simulink, it was possible to add a controller for torque 

vectoring in the vehicle model in software-in-the-loop configuration. Therefore, the 

controller could read the states (controller inputs), calculate the Q-values using one neural 

network block for each state-action pair and take actions according to the policy ε-greedy.  

 The situation analysed was the manoeuvre Sine with Dwell used by UN ECE 

R13H [UN ECE 2014] for the approval of the Electronic Stability Control in passenger 

cars. In Figure 3, it is possible to see the shape of the steering wheel angle used as input.  

 

Figure 3. Steering input used in the manoeuvre Sine with Dwell. Source: [UN ECE 
2014]. 

 According to UN ECE R13H, to approve the ESC it is necessary to find firstly the 

steering angle A that causes in the vehicle a lateral acceleration of 0.3g at 80 km/h. In the 



  

sequence, it is necessary to perform simulations at 80 km/h with the amplitude of the sine 

input being the value A multiplied by factors ranging from 1.5 to 6.5 in steps of 0.5 

(clockwise and anticlockwise) and then, verify if they comply with the criteria defined by 

the standard. In this work, due to limitation of computational time, the simulations for 

sampling of experiences were performed for 5.5A (63.23°) because it is the smallest 

amplitude that does not comply with the criteria; 6.5A (74.73°) because this was the 

highest factor that should be used in the simulation; 8A (91.97°) because, according to 

the phase-plane of sideslip angle and its angular velocity, this is the smallest angle that 

leads to loss of stability.  

 As the vehicle used in the simulations was smaller than a passenger car, the 

amplitudes for the sine input were also smaller than what would be expected for a 

passenger car. However, this standard was still used because of its complete procedure 

and adaptation of the amplitudes regarding the characteristics of the vehicle. 

4.7. Learning Process  

The learning process used in this work is represented by the alternation of steps of 

sampling of experience with steps of updating of the Q-value function, because the first 

neural network must be trained with random values and does not represent the Q-value. 

Therefore, to improve the estimation of the Q-value, after each sampling performed in 

CarMaker, the sample data set obtained was added to a memory and one iteration of NFQ 

was carried out in Matlab to generate the training data set P and to train a new neural 

network. The new neural network was replaced in Simulink and another step of sampling 

of experience was performed. This cycle is shown in Figure 4. 

 

Figure 4. Representation of the learning process. 

 This process was repeated eight times for the six variations of sine amplitudes 

(±63.23°, ±74.73°, ±91.97°) and for the first sampling of experiences a neural network 

trained with random values in a range of [0, 1.5] was added to the vehicle model in 

Simulink.  

 It is important to point out that to have a good controller it is necessary more 

simulations for sampling of experiences, this is only the preliminary study. 



  

4.8. Final Controller Architecture 

After the algorithm learnt successfully the behavior of the system, it was able to control 

vehicle handling and vehicle stability by receiving information of the state, using neural 

networks to calculate the Q-values for all state-action pairs. Then, the action with the 

lowest Q-value is selected. In other words, the percentage of torque that should be 

distributed to each wheel to keep the car stable. For that, five identical neural networks 

were used, one for each possible action. The input of the neural networks is the state s 

and the defined action. This process is represented in Figure 5. 

 

Figure 5. Representation of the final controller. 

5. Results of the Learning Process 

At the end of the learning process, the performance of the preliminary controller was 

evaluated by means of comparison between the result of simulations of the vehicle 

behavior with and without controller.  

 The simulations were carried out in CarMaker and the manoeuvre performed was 

Sine with Dwell with amplitude 63.23 degrees and 91.97 degrees at 80 km/h. In Figure 

6, the results of the simulations are presented: the steering input, the yaw rate and the 

phase-plane of the vehicle sideslip for both amplitudes.  

 In Figure 6.(e), it is possible to see that without the controller the vehicle would 

not leave the regions one and two of the phase-plane. But with the controller, the peak of 

the vehicle sideslip angle was reduced in 34,60%. Therefore, vehicle handling was 

improved. 

 Figure 6.(f) shows that without the controller the vehicle loses stability as the β-

β’ phase trajectory reaches region 3. With the controller, the vehicle remains within the 

limits of handling, which means stability enhancement. It can also be seen in Figure 6.(c) 

and 6.(d), because after that the steering wheel input ends at 41.9 s, the yaw rate stabilizes 

faster using the controller. 

 Moreover, comparing the steering input with the yaw rate for each simulation, it 

is possible to say that the controller was able to improve the tracking.  



  

  

     (a) Steering input – Amplitude: 63.23°.        (b) Steering input – Amplitude: 91.97°.  

  

         (c) Yaw rate – Amplitude: 63.23°.               (d) Yaw rate – Amplitude: 91.97°.  

  

    (e) β-β’ phase-plane – Amplitude: 63.23°.   (f) β-β’ phase-plane – Amplitude: 91.97°.  

Figure 6. Preliminary results of the learning process. 

6. Conclusions 

This paper presents the use of reinforcement learning to control the torque vectoring of 

an electric vehicle in order to improve vehicle handling and vehicle stability. Preliminary 

results of the learning process show that the selected cost function and states were 

satisfactory for learning to cope with the vehicle behavior. The results also show that the 



  

RL controller could improve the vehicle dynamics and the vehicle's ability to follow the 

track.  

 To improve the controller performance, more simulations for sampling of 

experiences are going to be done. Also, simulations with other steering inputs and other 

manoeuvres could be added to the learning process. Furthermore, it could be considered 

different percentages of torque distribution to allow the addition of higher yaw moments. 
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