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Abstract. Monte Carlo Tree Search (MCTS) has recently emerged as a promis-
ing technique to play games with very large state spaces. Ataxx is a simple
two-player board game with large and deep game tree. In this work, we apply
different MCTS algorithms to play the game Ataxx and evaluate its performance
against different adversaries (e.g., minimax2). Our analysis highlights one key
aspect of MCTS, the trade-off between samples (and accuracy) and chances of
winning the game which translates to a trade-off between the delay in making a
move and chances of winning.

1. Introduction

In recent years, computers have become strong opponents for humans in many games.
Successful and prominent examples are in games of chess and Go, where computers are
able to challenge the best human players in the world [Silver et al. 2016]. Games with two
players that are zero-sum, perfect information, deterministic, discrete and sequential are
described as combinatorial games [Browne et al. 2012]. Combinatorial game are excel-
lent for Al agents as they have controlled environments defined by simple rules. However,
these games typically exhibit a large and deep game tree posing significant challenges in
designing algorithms to play them satisfactorily.

Ataxx is a combinatorial game developed around 1990 for the Atari platform.
Its name comes from the word “attack” because each player must play aggressively to
be able to win. Ataxx is a relatively unknown game despite its interesting and simple
rules and high game-tree complexity. Because of its large game-tree complexity, it is not
possible use minimax in Ataxx. However, we can use minimax with a fixed horizon such
as minimax2 (horizon of two moves).

Monte Carlo Tree Search (MCTS) has recently emerged as a promising technique
to play games with large and deep game trees [Silver et al. 2016]. Its basic idea is to
determine the most promising move from a given state in the game tree by performing
random sampling on the remainder of the game tree. However, there are various strategies
for sampling the tree such as uniformly at random, weighted by prior results, or based on
multi-armed bandits algorithms.

In this paper we evaluate the performance of Monte Carlo Tree Search (MCTS)
algorithms to play Ataxx. We consider different strategies for the MCTS player and
opponents that play according to random choices or minimax2. We show that MCTS
can consistently win over a random player by making very little effort (small number of
samples). Moreover, by making more effort (larger number of samples) MCTS can win
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Figure 1. (Left) Starting positions. (Right) Possible moves for the upper left stone
(figure from [Cuppen 2007]).

against minimax2. This highlights a fundamental trade-off of MCTS algorithms between
the time required to make a move (translated into the number of samples) and the chances
of winning the game.

The remainder of this paper is organized as follows. In Section 2 we present some
related work. Section 3 we present the rules of the game Ataxx. We describe MCTS in
detail in Section 4 with results presented in Section 5. Finally, Section 6 concludes the
paper with a brief discussion.

2. Related work

Monte Carlo methods have enjoyed significant success in various Al game playing
algorithms, particularly imperfect information games such as Scrabble and Bridge
[Heyden 2009]. Monte Carlo Tree Search (MCTS) applies Monte Carlo to generate sam-
ples from the game tree yielding efficient tree-search algorithms. MCTS has nowadays
become a fully matured search method with well defined parts and many extensions. In
recent years MCTS has done remarkably well in many deterministic classic board games,
such as Othello [Nijssen 2007], Amazons [Lorentz 2008] or Ataxx [Cuppen 2007]. How-
ever, it is really the success in computer Go, through the recursive application of Monte
Carlo methods during the tree-building process, that has been responsible for much of the
recent interest in MCTS [Silver et al. 2016].

In [Jacobsen et al. 2014] MCTS techniques are applied to control the player char-
acter in a clone of the popular platform game Super Mario Bros. They investigated the
performance and behaviour of MCTS on the Mario Al benchmark, and found that stan-
dard MCTS performed relatively poorly. They then proposed a number of modifications
to MCTS showing that a judicious combination of these modifications yields an agent that
plays near optimally.

The Game Ataxx has been explored little in the context of Al game playing al-
gorithms. In particular, Cuppen [Cuppen 2007] developed some heuristics using Monte
Carlo techniques to play Ataxx, but not MCTS algorithms to explore the game tree. In-
stead of using pure Monte Carlo techniques as described by Cuppen [Cuppen 2007], in
this work we apply different MCTS algorithms to play the game.

3. Ataxx game

Ataxx, also known by such names as Infection, SlimeWars and Frog Cloning, is a two-
player board game that first appeared in 1990 as an arcade video game. It is an abstract
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Figure 2. (Left) Copying a piece. (figure from [Cuppen 2007])
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Figure 3. Jumping with a stone (figure from [Cuppen 2007])

strategy board game that involves sequential and alternating play by two opponents on a
seven-by-seven square grid.

3.1. Game rules

Each player begins with two pieces, white and black, for the first and second players
respectively. The game starts with four pieces on the four corners of the board (see figure
1-left), with white pieces in the top left and bottom right and black pieces on the other two.
White moves first. The object of the game is to make your pieces constitute a majority of
the pieces on the board at the end of the game by converting as many of your opponent’s
pieces as possible.

At each turn, a player must make a move, if possible. There are two types of
moves: copy and jump. Both moves are only possible when moving to a empty space. In
a copy move the current player can copy the chosen piece for one of its adjacent empty
squares (white squares for the upper left stone in figure 1-right). In a jump move, the
chosen piece will be moved to an empty square adjacent to the copying squares (black
squares for the upper left stone in figure 1-right), that is, you can go further, but the piece
is not copied. After a move, all of the opponent’s pieces adjacent to the destination square
are converted to the moving player. This is illustrated in figures 2 and 3.

The game ends when all spaces have been filled or one of the players has no
remaining pieces on the board. The player with most pieces wins the game.

We have designed and implemented an efficient algorithm for playing Ataxx us-
ing MCTS and other strategies, such as minimax and random, that can be parametrized
accordingly. We make the code publicly available at: https://github.com/
leoribeiro/mcts—-ataxx
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Figure 4. (Left) The average number of possible moves by the number of current
stones on the board. (Right) The average number of possible moves by each ply
in a game. Both graphs were generated using 10000 game simulations.

3.2. Game-Tree Complexity

A game tree is a tree where nodes are states of the game (e.g., configuration of the board)
and edges are possible moves from that state. The complete game tree for a game is the
tree starting at the initial configuration and containing all possible moves from each state.

The game-tree complexity is the number of different games which can be played.
It indicates the total number of terminal nodes in the game tree. In many games often it
is impossible to calculate the game-tree complexity exactly. However, we can estimate it
using two values: the branching factor and the game length.

The branching factor indicates how many different moves a player can make from
on average and the game length indicates the average number of plies performed until the
game is over. A ply is a move taken by one of the players. The game-tree complexity can
be estimated by raising the average branching factor (average possible moves) b to the
power of the average game length d (depth of the tree):

GTC ~ b®

In table 1 we show estimated values for the branching factor, game length and game-tree
complexity calculated for Ataxx, using 10,000 simulations generated by the simulator we
developed.

Branching factor | game length | Game-tree complexity
61.6 110.9 2.91 x 10198

Table 1. Estimation of branching factor and game length.

Beyond the game-tree complexity, it is interesting to characterize how the number
of moves depends on the round of play. This provides an indication of the complexity of
the game as it unfolds during play. Figure 4(left) shows the average branching factor for
the number of stones on the board. The average branching factor of the first ply is 20 and
there is a peak on ply 25, in the middle of the game, where the branching factor is 92.
Figure 4(right) shows the average branching factor by the i-th ply in a game. There is a
peak on the 52nd ply with branching factor of 90 possible moves.



Finally, using a deterministic and exhaustive approach to play Ataxx can be chal-
lenging because of the number of possible games that can be played.

4. Monte Carlo Tree Search

In this section we present different algorithms that use Monte Carlo Tree Search (MCTS)
techniques to play Ataxx. MCTS aims finding optimal decisions in a given domain by
taking random samples in the game tree space and building a search tree according to the
results [Browne et al. 2012]. Our goal is to select the move that is most likely to win the
game in a given state of the game tree.

4.1. Monte Carlo Methods

Monte Carlo methods are a broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results. Abramson [Abramson 1990] demonstrated
that this sampling might be useful to approximate the game-theoretic value of a move.
The Q-value of an action is simply the expected reward of that action:

1 N(s)
Q(s,a) = N(s.a) Z 1(s;,a) z

i=1

where N (s,a) is the number of times move a has been played from the state
s, N(s) is the number of times a game has been played out through state s, z; is the
result of i—th simulation played out from s, and 1(s;,a) is 1 if move a was picked up
from state s on the ¢-th play-out from state s or 0 otherwise. Monte Carlo approaches in
which the actions of a given state are uniformly sampled are described as flat Monte Carlo
[Browne et al. 2012].

4.2. Bandit-Based Methods

Bandit problems are a class of sequential decision problems in which one needs to choose
between K actions (e.g. the K arms of a multi-armed bandit slot machine) in order to
maximize the cumulative reward yielded by the actions [Browne et al. 2012]. In general,
each action provides a random reward from a specific probability distribution. Choosing
the best action is difficult because the underlying distributions are unknown and potential
rewards must be estimated based on past observations. The crucial trade-off that a player
faces at each trial is between exploitation of the action that has the highest expected re-
ward currently believed to be optimal and exploration to get more information about the
expected reward of the other actions, that currently appear sub-optimal but may turn out
to be superior in the long run.

4.2.1. Upper Confidence Bounds (UCB)

The Upper Confidence Bound (UCB) is a bandit-based method which has an expected
logarithmic growth of regret uniformly over time without any prior knowledge regard-
ing the reward distributions [Auer et al. 2002]. For each round, this strategy chooses the
action ¢ which maximizes the following formula:

_ 21
UCT = X; +2C, | —
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where X is the average reward from arm ¢, n; is the number of times arm ¢ was
played and n is the total number of plays across all arms. The reward term X; encour-
ages the exploitation of higher-reward choices, while the right hand term encourages the
exploration of less visited choices. C), controls the trade-off between exploitation and
exploration in the game tree, namely, a larger C,, encourages exploration allowing the
method to seek for other choices. In this work we use C}, = 1. UCB has the property that
your regret, the difference between what you would have won by playing solely on the
actual best move and your expected winnings under the strategy that you do use, grows
only as O(Inn).

4.3. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) determines the best move from a given state by making
random samples on the game tree. The algorithm progressively builds a partial game tree,
that can depend on the results of previous exploration of that tree.

The value of a move (the chance of winning) may be estimated using random
simulation of the game. So the tree is used to estimate the values of moves, with these
estimates (particularly those for the most promising moves) becoming more accurate as
the tree is built with more samples [Browne et al. 2012].

For each state, the algorithm builds the remainder of the search tree until some
predefined computational budget (e.g. time, memory) is reached, at which point the search
is stooped and the best move is returned.

Each iteration of MCTS consists of four steps [Chaslot et al. 2008]:

e Selection: Starting at the root node, a child is recursively selected through the
tree until the most urgent expandable node is reached. A node is expandable if it
represents a non-terminal state and has unvisited (i.e. unexpanded) children.

e Expansion: One (or more) child nodes are added to expand the tree, according to
the available moves.

e Simulation: A simulation is run from the new node to produce an outcome.

e Backpropagation: The outcome of simulation is “backed up” (i.e. backpropa-
gated) through the selected nodes to update their statistics.

Figure 5 shows an iteration of the MCTS algorithm. During the selection phase,
starting at the root, child nodes are recursively selected according to some function until
a node is reached. The reached node describes a state that can be terminal if the game is
over or not if tree is not fully expanded. At the figure, the second node at depth 3 was
reached (the node with statistics 3/3).

In the expansion phase, the reached node that represents state s is expanded. A
move a from state s is randomly selected and a new leaf node is added to the tree, which
describes a new state s’ reached from applying move «a to state s. After creating s, we
initialize the simulation phase. A random simulation of the game is started from s’ and
stops when the computational budget is reached or when the game reaches its end. At the
end of simulation a result is generated.

The last phase is a backpropagation. The result generated by the simulation is
used to update statistics of nodes in the tree. We update statistics of all nodes on the
path between the node at the end of the simulation and root. Many iterations from root
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Figure 5. One iteration of MCTS (figure from [Wikipedia 2018]).

node are executed, each passing through the four phases, until a computational budget is
reached.

4.4. Using MCTS in Ataxx

We assume the computer plays black in Ataxx, and thus plays first. The main goal of
MCTS is to determine the best move for the black player given the current game state.
Figure 5 represents a partial game tree built. The root node represents the current game
state. Tree levels with black nodes represent possible states after black player’s moves
and levels with white nodes represent possible states after the white player’s moves. For
each node, we consider all possible moves from the current game state, the corresponding
game state (after the move), a win count (number of times that playing this move led to a
win) and a visit count (number of times this move was chosen).

For each iteration, starting at the current game state (denoted by root) child nodes
are sampled until a terminating criteria, such as a maximum number of iterations. In this
work, we use two strategies to select child nodes: uniformly at random or using UCB.
Once a child node is selected, we start a simulation of the game with random play (plays
selected uniformly at random) until the game is over. Note that random play will not
select end game states uniformly at random, as there is a bias towards earlier end games
(understanding and removing this bias is subject of future research). Once the game
finishes, we update all nodes on the path from the root to the end game state, as follows.

Let v; denote the number of visits to node 7, which is equivalent to the number of
times node ¢ has been played. Let w; denote that number of times that after playing node
i an end game with a win for black was reached. Let f; denote a sum of the fraction of
black pieces for every end game with a win for black after playing node <. Note that every
end game has a fraction of black pieces, independent of being a win or loss for black (and
this value is added to f; when black wins).

We build the tree executing many iterations from the current game state. The
algorithm then chooses the child node (the next move) with the highest score. We define
two scores: binary and fractional. The binary score of a node i is given by w;/v; while
the fractional is given by f;/v;. We will consider these two methodologies for selecting
the next move.
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Figure 6. Fraction of wins between the MCTS player and others by the nhumber
of iterations (samples) used in each MCTS move. These values were calculated
using 1000 different games.

5. Experimental Setup

We evaluate our approach of using MCTS to play Attaxx using different scenarios and
present the results concerning winning the game. In simulator developed for playing
Ataxx we can choose between the strategy for different players. In particular, the follow-
ing strategies are available:

random: This player randomly and uniformly chooses the next move from all
possible moves given the current state.

minimax2: Minimax [Russell and Norvig 2016] is used to compute the value of
a game state in a two-player deterministic game. It generates all possible game
states after playing a certain number of plies. This means that minimax is a full-
width tree search. The player chooses the move with the maximum game value
and the opponent chooses the move with the minimum game value. The value of
a game will be the fraction of black pieces on the board in the end game state.
However, since it is not possible to expand the complete tree for Ataxx, we will
use a fixed the depth of 2, and thus, minimax?2.

MCTS: This player uses MCTS and selects the child nodes with the highest binary
score.

MCTS-ucb-binary: This player uses MCTS and selects child nodes using UCB
based on binary score.

MCTS-ucb-fractional: This player uses MCTS and selects child nodes using
UCB based on fractional score.

MCTS-ucb-minimax2: This player uses MCTS and selects child nodes using
UCB based on binary score. However, it uses the minimax2 strategy during the
simulation phase, as opposed to random play.
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Figure 7. (a)(b) Average score of the move chosen by the MCTS player against
random and minimax2 players, respectively, by the i-th move at the game. (c)
Average score of the move chosen by the MCTS-ucb-binary player against min-
imax2 player by the i-th move at the game. (d) Average fraction of MCTS-ucb-
fractional player’s stones in the board during the i-th move on the game. These
values were calculated using 1000 different games.

5.1. Results

Figure 6 shows the fraction of time that the MCTS player won the game when playing
against other strategies as a function of the number of iterations used by MCTS to deter-
mine the best play. Note that the MCTS player can beat the random player easily. Even
with a single iteration, it can beat the random player in more than 90% of the time. Play-
ing against minimax2 player is more difficult and with few iterations the MCTS player
can win in 50% of games. However, as we increase the number of iterations, MCTS
player wins a larger fraction of the games. With 100 iterations for each MCTS move,
MCTS player wins in 80% of games. Although it is intuitive that increasing the number
of interactions improves the quality of play, the improvement is super linear (Figure 6).
The player using MCTS with UCB has a better performance than the MCTS player, but as
we increase the number of iterations the difference between them decreases. The orange
curve describes the MCTS player using UCB and scoring the moves according to fraction
of pieces on the board. This player performs better than previous MCTS players when
playing against the minimax?2 player. Indeed, using the fraction of pieces on the board is
more informative for a given move than using a win/loose signal.
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Figure 8. The sample variance of move estimators used by the MCTS (Left) and
MCTS-ucb-binary (Right) players in each i-th move of a game. We averaged these
values using 500 executions of different games playing against minimax2.

Lastly, the strategy that combines MCTS with UCB and minimax2 (MCTS-ucb-
minimax2 player) against a pure minimax2 player has the best performance among all
MCTS strategies. Note that with 200 iterations it shows the same performance as the
classic MCTS playing against the random player. However, this strategy has a larger time
complexity (because of simulations using minimax2), but builds a tree with many more
nodes that guide the MCTS to select the best move with more confidence.

Figures 7(a,b,c) show the average score of the node chosen by the MCTS player
as a function of the round of play during the game. Each curve shows the values for a
different number of iterations. Interestingly, as the number of MCTS iterations increases,
the scores of the chosen node also increases. This occurs because the tree used by the
MCTS player has more information and hence can better decide its next move. However,
for a fixed number of iterations the average score of the chosen move does not change
significantly over the rounds of the game (with the exception at the end of the game).

Unfortunately, the score of the chosen node did not increase as the game devel-
oped. In some cases the score decreased in the end of the game. This occurs possibly
because towards the end of a long game it becomes more difficult to find winning end
game states. Thus, the chance of wining the game from such states is low, thus leading to
moves that have a low score.

Figure 7(d) shows the average fraction of stones on the board that the MCTS-usb-
fractional player has in each i-move as the game evolves. This fraction remains stable
for most of the game, and increasing the number of iterations leads to a larger fraction
of stones. This shows that increasing the number of iterations leads to a better overall
strategy, since it maintains a larger fraction of stones during the game, thus increasing its
chances of wining the game at the end. Note that there is noise at the end of the curves
in Figure 7 due the fewer amount of data concerning these moves. This occurs because
different executions of the game can have different amount of plies, and executions with
many plies are less frequent.

Figure 8 shows the sample variance for the scores computed by the MCTS (left)
and MCTS-ucb-binary (right) players for each move of the game. In the beginning, moves
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Figure 9. MCTS execution time (in seconds) to choose the best move by the
number of iterations. Each curve was generated using the average running time
spent by MCTS on each move of 1000 game simulations.

have a lower variance due the few possible moves available. For every i-th move of the
game we use the same number of iterations (curves). As we increase the number of
iterations, the variance reduces, as expected. In the middle of the game we have largest
variances because the number of possible moves is much larger. In the end of the game the
variance decrease as the number of possible moves available is smaller. This observation
agrees with our previous analysis of the size of the game tree, illustrated in Figure 4.
Note that we have used a constant number of iterations for every game state, but the
sample variance could be leveraged to determine the number of iterations.

Figure 9 presents the execution time of MCTS to choose the best move, in seconds.
Each curve corresponds to a different MCTS strategy using different number of iterations.
As we increase the number of iterations, the execution time increases, as expected. The
MCTS strategies using random and UCB have similar performance. The strategy that
combines MCTS and minimax?2 has the largest execution time because for each iteration,
the method executes some minimax2 moves to calculate the scores. Note that the last
strategy performs better among all other, but has a longer running time.

6. Conclusion and future work

Monte Carlo Tree Seach (MCTS) has emerged as a promising technique to play games
that have very large state spaces, and in particular when time to make a move is limited. In
this paper, we proposed and explore various MCTS algorithms to play the Game Ataxx.
We evaluate our approaches against the random and minimax2 players as well as under
its key parameter, the number of iterations to determine the best move given a game state.

Our findings lead to interesting observations, such as the inherent trade-off be-



tween the number of iterations and the chances of winning. Moreover, the number of
iteration to win the game is also proportional to the quality of the opponent. Under a
random opponent, MCTS can win a very large fraction of the games using very few iter-
ations. However, under a minimax2 more iterations are needed to win a larger fraction of
games played. Our results also highlight the role of sample variance when estimating the
best move, as the game tree is not uniform as the game unfolds.

As future work, we would like to investigate the performance against minimax3
player and use domain knowledge to improve the selection step in MCTS. Note that a
experienced player knows which next moves are more promising than others, and this
could be leveraged to improve MCTS, targeting its iterations to estimate the score of
those game states.
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