
Beating Bomberman with Artificial Intelligence
Juarez Monteiro 1, Roger Granada 1, Rafael C. Pinto 2, Rodrigo C. Barros 1

1Escola Politécnica - Pontifı́cia Universidade Católica do Rio Grande do Sul
Porto Alegre – RS – Brazil

{juarez.santos, roger.granada}@acad.pucrs.br, rodrigo.barros@pucrs.br

2Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul
Campus Canoas, Canoas – Brazil

rafael.pinto@canoas.ifrs.edu.br

Abstract. Artificial Intelligence (AI) seeks to bring intelligent behavior for ma-
chines by using specific techniques. These techniques can be employed in order
to solve tasks, such as planning paths or controlling intelligent agents. Some
tasks that use AI techniques are not trivially testable, since it can handle a high
number of variables depending on their complexity. As digital games can pro-
vide a wide range of variables, they become an efficient and economical means
for testing artificial intelligence techniques. In this paper, we propose a com-
bination of a behavior tree and a Pathfinding algorithm to solve a maze-based
problem using the digital game Bomberman of the Nintendo Entertainment Sys-
tem (NES) platform. We perform an analysis of the AI techniques in order to
verify the feasibility of future experiments in similar complex environments. Our
experiments show that our intelligent agent can be successfully implemented
using the proposed approach.

1. Introduction
Advances in Artificial Intelligence (AI) have been promoting a lot of changes in our
society while trying to solve many types of tasks. We now can apply AI in business
systems [Wang et al. 2015], movies [Idrees et al. 2017], and games [Miranda et al. 2016,
Mnih et al. 2015, Silver et al. 2016]. For instance, games can be improved using different
kinds of AI algorithms, such as problem solving techniques, planning, autonomous agent
control, machine learning etc.. AI is also applied in business when a human being is un-
able to process the amount of data. For example, when making an investment decision
the system has to perform the analysis of several variables using complex data.

A common use of AI relies on the implementation of an intelligent agent in a
digital environment to simulate techniques that may be applied to real world problems.
An intelligent agent can be defined as an entity that observes the environment through
sensors, processes acquired knowledge and acts upon an environment using actuators
[Russell and Norvig 1995]. Although the development of an intelligent agent is impor-
tant, sometimes, building the environment in order to test the agent is a difficult task.
Hence, testing AI techniques using digital game scenarios is the first step in order to
validate the approach.

In this paper we propose the combination of a behavior tree and a Pathfinding
algorithm in a decision-making process to solve a maze-based video game problem. In

order to test the AI techniques, we use the digital game Bomberman of the Nintendo En-
tertainment System (NES) platform as the environment, since the number of variables
and states is large enough to provide interesting challenges, similar to real world environ-
ments. In our experiments, we vary the Pathfinding algorithm using Breadth-First Search
(BFS) and A-Star (A*) to verify the feasibility of these AI techniques in digital games.

This paper is organized as follows: In Section 2, we provide an introduction to AI
in games and the complexity of its application. Section 3 presents an overview of the dig-
ital game Bomberman and the emulator used in this work. Section 4 details our approach,
with the techniques we apply in the game, whereas Section 5 presents the application of
the approaches and its results, as well as the discussion about the results achieved in the
experiments. Section 6 describe the work related to the application of AI in games, and
we finish this work with our conclusions and future work directions in Section 7.

2. Artificial Intelligence in Games
Digital games are software for recreational, educational and other purposes, covering
various kinds of public, from children to elderly and even people with disabilities.
[Rogers 2014] describes 11 genres of digital games, including action, shooter, adven-
ture and strategy. An example of strategy game is Bomberman, where the player is faced
with various situations and often have to make fast decisions to achieve his goal. This
game’s environment occurs in real time and is partially observable, dynamic, and uncer-
tain (stochastic). Taking these characteristics into account, Bomberman can be considered
as a game having a complex environment.

Games have been seen as ideal environments for AI testing because they have
a lot of characteristics that can define a complex environment, such as a large space of
states. Examples of games with large space of states include Chess, Go game and the NES
platform, containing respectively 1041, 10170, 10602 number of maximum states. We find
this maximum number of states for the NES since the console has 2kB of RAM, which is
equivalent to 22000 or approximately 10602 states. Thus, areas such as artificial intelligence
have made use of these complex environments in order to apply several techniques, with
the goal of testing and substantiating their applications.

Many works already use digital games as platforms in order to apply AI tech-
niques, such as artificial neural networks and genetic algorithms [Holmgard et al. 2014,
Liapis et al. 2013]. Recent researches have presented the use of deep learn-
ing in games, combining different types of AI algorithms [Mnih et al. 2015,
Schuurmans and Zinkevich 2016]. One important contribution to science using games
is the recently presented AlphaGo algorithm [Silver et al. 2016], which has defeated a
professional Go player in a competition organized by Google. This shows us how much
advance AI is doing in the area.

3. The Game
Published in 1985, Bomberman is a strategic, maze-based video game developed by Hud-
son Soft for Nintendo Entertainment System (NES), an 8-bit home video game console
that was developed and manufactured by Nintendo. The single-player game contains a
bird’s eye (top down) view and takes you on a series of stages where the goal is killing
every enemy and escaping through the exit door before the time limit is up. Controls are

limited to four movements (up, down, left and right) and the ability to drop bombs, which
then explode in a cross-shaped blast (creating a vertical and horizontal stream of fire) after
a set time. Bombs can destroy enemies as well as blow up parts of the scenery to open up
new paths and uncover power-ups. Power-ups add certain abilities to Bomberman, such
as increasing the size of the blast, increasing the number of bombs Bomberman can drop
at once, increasing the speed of the Bomberman or walking through walls. Each stage has
an exit door, which is always hidden underneath some bricks of the stage. The exit door is
exposed when blowing the brick up. However, hitting the exit with a bomb releases more
enemies which the player must also kill. After killing all the enemies, the exit is activated
to go to the next stage.

In this work, we use the FCEUX1 emulator in order to emulate the NES console
as well as the Bomberman2 game. The emulator allows us to code AI algorithms inside
the game allowing the computer to play the game autonomously. Figure 1 illustrates the
“Start” screen and the first stage of the game using the emulator, where the Bomberman
character is on the top left corner, enemies in orange are spread over the map, solid green
blocks are indestructible blocks and bricks are destructive blocks.

Figure 1. Start screen and first stage of Bomberman to the NES platform.

4. Inserting Agents in the Game

In this section, we describe the implementation of the agents we use to test our algorithms.
The developed agents play the role of Bomberman (the main character of the game) and
are divided into a random agent and an intelligent agent. The random agent is used to
validate our implementation of the intelligent agent. The intelligent agent implements AI
algorithms to achieve the goal of each stage.

4.1. Random Agent

A random agent is developed in order to validate our approach, i.e., if a random agent can
clear a stage, then the development of an intelligent agent is not necessary. The random
agent executes random controls such as drop bombs and direction movements, such as up,
down, left and right in each stage. As expected the random agent usually is killed by an

1http://www.fceux.com/web/home.html
2For the sake of fair use, we should mention that a purchased copy of Bomberman along with Nintendo

console are owned by the authors. The emulator software is used purely for academic reasons.

Figure 2. Behavior tree for decision-making algorithm.

enemy or by a bomb when exploding a brick. As a random agent is not enough to clear
a stage, we decide to insert some intelligence to take actions according to the goal of the
game.

4.2. Intelligent Agent

According to [Russell and Norvig 1995] an agent becomes intelligent when it is able to
perceive its environment and acting upon that environment. In order to play the game, our
intelligent agent has to perceive the environment before taking any action. Bomberman is
a game containing an environment with arbitrary states, i.e., the states are random when
taking into account the enemies movements, the position of the bricks, power-ups and
the exit door. Thus, before the agent perform each action, it has to collect data from the
environment to the decision making algorithm.

Our decision-making algorithm can be represented as a behavior tree, as illustrated
in Figure 2. As we can see in the behavior tree, the algorithm first searches for bombs in
the map in order to rescue the agent in a safe place. In case there is a bomb in the map, the
agent goes for a safe place and waits for the bomb to explode. Considering that there is not
any bomb in the map, the agent searches for power-ups. If there is a power-up in the map,
the agent collects the item, otherwise, the agent checks if there are reachable enemies in
the environment. If so, the agent tries to kill the enemy, otherwise, the agent looks for the
exit. In case the exit is not available, the agent searches for the closest brick to destroy in
order to find the exit door. It is important to note that all actions that start with “Go” in
Figure 2 (i.e., “Go to a safe place”, “Go and take the item”, “Go and kill the enemy”, “Go
and destroy the brick next to you” and “Go to exit”) use a pathfinding algorithm (Section
4.3) to perform the search for the best path to achieve the goal. The decision-making
algorithm is performed for each frame using 60 frames per second (FPS).

4.3. Pathfinding Algorithms

Our intelligent agent uses pathfinding algorithms in actions that require the agent to walk
through the map, such as the actions that start with “Go” in Figure 2. Pathfinding has been
investigated for many years and generally refers to find the shortest route between two
end points, being probably the most popular but frustrating AI problem in game industry
[Cui and Shi 2011]. As such algorithms are developed to work on graphs, the first step is

Figure 3. Transforming the map of the game into an undirected graph.

to transform the map of the stage into a graph. A graph is made up of nodes represented
as the tiles the agent can walk through and edges represented by the connection of two
adjacent tiles of the map. The generated graph must be directed since the agent should
not return to the same position multiple times. An example of the transformation of the
map into a graph is illustrated in Figure 3, where the tile where the agent stands is the root
node (represented as “1”). Its four adjacent tiles (“1.1”, “1.2”, “1.3” and “1.4”) create
four nodes in the graph with directed edges connecting them with the root node. Nodes
for tiles that are connected to adjacent tiles (“1.1.1”, “1.2.1”, “1.3.1” and “1.4.1”) are
created and directed edges related them to their adjacent nodes, and so on.

Having generated the directed graph, the next step is to apply pathfinding algo-
rithms on the graph to search the best path to perform an action. In this work, we test two
pathfinding algorithms: Breadth-First Search (BFS) and A-Star Search (A*).

- Breadth-First Search (BFS) is an important building block of many graph algorithms and
commonly used to compute the shortest paths of unweighted graphs. Its strategy uses a
FIFO (First In First Out) queue in the frontier, in which the shallowest unexpanded node is
chosen for expansion. Thus, the root node is expanded first, then all the successors of the
root node are expanded next, then their successors, and so on. In general, all the nodes
are expanded at a given depth in the search tree before any nodes at the next level are
expanded [Russell and Norvig 1995]. Algorithm 1 describes the BFS process of selecting
the best path to the agent perform each action.

- A-Star Search (A*) is classified as an informed search strategy, i.e., instead of exploring
the search tree blindly, the strategy tries to reduce the search space by making intelligent
choices during the expansion. In order to evaluate the likelihood that a given node is on
the solution path, the strategy uses an evaluation function f(n) that determines which
node is probably the “best” to expand. This evaluation function is constructed as a cost
estimate, so the node with the lowest evaluation is expanded first, and is composed by a
heuristic function h(n) and the lowest path cost g(n) as presented in Equation 1.

f(n) = h(n) + g(n) (1)

Algorithm 1 Breadth-First Search Algorithm [Russell and Norvig 1995].
1: function BREADTH-FIRSTSEARCH(problem) return a solution, or failure
2: node← a node with STATE = problem.INITIAL-STATE
3: PATH-COST = 0
4: if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
5: end if
6: frontier← a FIFO queue with node as the only element
7: explored← an empty set
8: loop
9: if EMPTY?(frontier) then

10: return failure
11: end if
12: node← POP(frontier) . chooses the shallowest node in frontier
13: add node.STATE to explored
14: for each action in problem.ACTIONS(node.STATE) do
15: child← CHILD-NODE(problem, node, action)
16: if child.STATE is not in explored or frontier then
17: if problem.GOAL-TEST(child.STATE) then
18: return SOLUTION(child)
19: end if
20: frontier← INSERT(child, frontier)
21: end if
22: end for
23: end loop
24: end function

In this work we consider the heuristic function h(n) as the Manhattan distance,
i.e., the distance is based on a strictly horizontal and/or vertical path between the agent
and the goal (enemy or brick). We decide to use Manhattan instead of any other distance
since the map of each stage is a grid-like map leading to this type of measure. In order
to calculate the distance between the two points, we sum the absolute difference between
the coordinates, e.g., taking into account the coordinate of the agent as x1 and y1 and
the coordinate of the goal as x2 and y2, the resulting heuristic function is represented as
h(n) = |x1 − x2|+ |y1 − y2|.

For the lowest path cost g(n) we consider the depth of the node in the graph.
Thus, we consider the root node as cost = 0, its adjacent nodes have cost = 1, the nodes
adjacent to adjacent nodes have cost = 2 and so on. An example of the application of the
A* search is illustrated in Figure 4, where the agent has to walk up to the enemy in order
to kill it. The algorithm to decide which path to walk calculates the heuristic function as
h(n) = |3−6|+ |6−4| = 5, where the first terms represent the positions in the x axis and
the last terms represent the position in the y axis. Next step is to calculate the lowest path
cost using the depth in the graph to reach the enemy. Thus, the algorithm must decide
between going up (path “A”) or going down (path “B”). Using the Manhattan distance,
the algorithm calculates g(n) = 9 to the path “A” and g(n) = 5 to the path “B”. Finally,
the evaluation function for the path “A” results f(n) = 5 + 9 = 14 and for the path “B”
results f(n) = 5 + 5 = 10. As the evaluation function searches for the lowest value, the
path “B” is selected.

Figure 4. Application of A* search to walk up to the enemy, where (A) and (B) are
two possible paths the algorithm can take.

5. Results and Discussion
In our tests, both pathfinding algorithms implemented in the intelligent agent achieve
success when playing Bomberman, i.e., in both algorithms all enemies are killed and the
exit door is found in every stage. In order to visualize each approach when the AI is
playing Bomberman, we decide to print actions on the screen as well as to paint all blocks
the pathfinding algorithm is exploring. Such visualization allows us to analyze how each
approach expands the graph of the scenery and all possible paths the algorithm can take.
Based on this visualization, we explain the impact of each algorithm when playing the
game.

5.1. Breadth-First Search
BFS algorithm has a circular aspect since it explores nodes equally in all directions, i.e.,
it explores all nodes of the same level, before exploring the next level, as illustrated in
Figure 5 (a). Thus, when visualizing the approach in Bomberman, we expect that many
tiles should be on the frontier until the algorithm reaches the enemy. As (b) in Figure 5
demonstrates, the algorithm explores most tiles around the agent and the frontier is ex-
panded in all directions. Although this algorithm generates the optimal path to the enemy,
i.e., the best path the agent can take to reach the enemy, it requires a lot of memory since
it keeps all nodes of the graph in memory as the frontier is expanded.

5.2. A-Star Search
Unlike BFS, A* search algorithm explores nodes using an evaluation function that con-
tains a heuristic and the weights of each path, thus, giving to the agent a new approach to
explore the way to the goal. The evaluation function reduces considerably the number of
nodes to be expanded each step when compared with BFS. As A* is an informed search,
it tends to explore the path directly to the goal, as illustrated in Figure 6 (a). Figure 6 (b)
shows the application of the A* algorithm in the game, where we can observe that the
path is divided into two alternative ways (i.e., going up or down the fixed tile).

Figure 5. Search space to find a path between the agent and the enemy using
BFS algorithm. (a) illustrates how the search space has to expand, and (b) the
search space in the game.

Comparing Figure 5 (b) and Figure 6 (b) we can see that A* achieves better per-
formance than BFS, since this method does not result in an exhaustive search. This differ-
ence is also observed when analyzing the frames per second (FPS) generated when each
algorithm is running. When running A* algorithm, we captured a maximum of 800 FPS
and a minimum of 120 FPS, while running BFS algorithm we captured a maximum of
600 FPS and minimum of 20 FPS. The idea of analyzing the FPS is that it correlates with
the processing load, thus the more processing the computer needs, the lower the FPS of
the game. Although the difference in FPS, it is important to mention that the only dif-
ference between the approaches relies on the performance aspect since the result for both
algorithms must be optimum.

In order to compare the performance of our algorithms, we use the score and time
the agent takes to clear the stage. Although the emulator allows us to start each stage with
the same configuration (position and number of enemies), the game is stochastic in the
sense that the enemies may change their moves at random. Thus, although the agents of
both algorithms start at the same point, they will hardly perform the same path to the exit
door. When trying few runs of the game we observed that both algorithms take about the
same time to clear the stage. A difference of about 3 seconds in favor of A* was observed,
but we suspect that this difference occurred due to the non-determinism characteristic of
the enemies’ movements.

5.3. Intelligent Agent vs. Human Player

It is important to say that not all artificial intelligence in games plays in a human-like
manner. As pointed out by [Ortega et al. 2013], usually controllers that are hand-coded to
play a particular game and controllers that are trained to play a game using some sort of
machine learning mechanism, frequently display behavior that strikes observers as “un-
natural” or “mechanical”. On the other hand, some AI agents can play impressively in
a human-like manner that usually may confuse other users (e.g., Garry Kasparov com-
plained when he lost the chess match to the IBM software/hardware Deep Blue that the

Figure 6. Search space to find a path between the agent and the enemy using A*
algorithm. (a) illustrates how the search space has to expand, and (b) the search
space in the game.

computer played too much similar to the human, given that the previous computers played
in a machine-like manner [Newborn and Newborn 1997]).

Unlike imitation learning techniques where the agent learns the movements from
the expert demonstration and tries to mimic his movements, our agent uses a behavior tree
as decision-making algorithm. As our algorithm works similarly to the human vision in
the sense that our agent can see the same board as a human, i.e., we do not allow the agent
to discover what items are underneath each tile before breaking the tile, the agent should
perform similarly to a human being. On the other hand, as our agent is not influenced by
the human behavior, it could not try to mimic the playing style of a human player.

Observing the intelligent agent in action, it seems very similar to a human player,
since it drops bombs close to bricks, and when there is not an enemy close to the agent,
it tends to explode the nearest brick. The unique fact that we can identify the player as
an intelligent agent is the fact that the AI knows which is the first tile in which the agent
is safe from explosion. Thus, when running away from an explosion, the agent usually
stays very close to the border of the tile, being very close to the explosion, while a human
player tends to stay in the middle of the tile. Figure 7 illustrates the difference between
the intelligent agent position when getting away of an explosion (a) and the position of
Bomberman when a human being is playing the game (b).

When comparing how long the agent takes to clear the stage against the human
player, a subject was invited to play two stages (stage 1 and stage 31). We choose
these states because in the first stage Bomberman does not have any power-up, while
in stage 31 Bomberman has power-ups, such as the clock-bomb, invulnerability of
fire, etc.. It is important to note that the human player has previous knowledge on
how Bomberman is played and how to clear the stage. Both the intelligent agent
and the subject start in the same conditions and position. Time was recorded in four
rounds in both stages and the average time and standard deviation are presented in Table 1.

Figure 7. Difference between the Artificial Intelligent and a human playing
Bomberman.

Table 1. Human and AI average time (in seconds s) and standard deviation (σ)
when playing stage 1 and stage 31.

Player s σ

Human Stage 1 129,50 21,44
Stage 31 40,00 47,71

Intelligent Agent Stage 1 139,50 35,35
Stage 31 46,00 8,57

Observing Table 1 we can see that the human player clear the first stage in less time
than the intelligent agent. Although the human achieved a better result when compared
to the agent, the human could not clear the stage in 4 opportunities, while the intelligent
agent was not killed by the enemy in any trial. The standard deviation of both, AI and
human, shows that the difference between the averages is not significant, concluding that
AI and human need approximately the same amount of time to conclude the stage 1.
In stage 31 the human complete the phase in a shorter time than the intelligent agent.
However, the results generated from this analysis demonstrate that the human player and
the AI have closer completion time for stage 31 when we observe the average time and
the standard deviation.

The major advantage of the intelligent agent when compared to humans is un-
doubtedly the ability to process information quickly. In the tests discussed above, the AI
was executed at the same speed as we would play, however, the agent can be executed at
very high speeds, which only depends on the hardware that is executing the game, being
able to complete the 50 stages of the game in minutes. However, as we are limited when
processing information, we are unable to make fast decisions when playing at 800 frames
per second, since it is inconceivable for our brain to process so much information at high
speed. Finally, it is important to note that the intelligent agent was not developed to re-

place the human being, but to assist it, serving as the basis for receiving AI techniques
that need to be tested in the digital game.

6. Related Work
[Lucas 2008] mentions the benefits of using artificial intelligence in games for testing and
solving real world problems. He shows how parameter optimization techniques can be
applied in games and what are the benefits obtained. He concluded that for most analyzed
games the obtained results are excellent. Thus, for the optimization techniques applied,
games as test environments are a successful choice.

[Silver et al. 2016] and [Mnih et al. 2015] use games to apply Deep Q-Learning
(DQN) in order to perform tasks like or better than humans. In both work, the application
returned excellent scores. In the first case, the algorithm is applied in order to play various
Atari games, achieving good scores in most of them. In the second case, the algorithm is
applied to play the board game Go, obtaining an excellent performance even against a Go
world champion. Although reinforcement learning approaches achieve good results, they
demand a lot of time to train and a reward function. It is also important to mention is that
this approach will not work properly in states that have not seen before.

7. Conclusions and Future Work
In this work, we analyzed the feasibility of applying artificial intelligence in the digital
game Bomberman. We developed a behavior tree in order to decide the actions of the in-
telligent agent. In order to take some decisions, the behavior tree contains two pathfinding
algorithms3: BFS and A*. The A* technique demonstrated itself efficiently when com-
pared with BFS, once it does not need to compute all the nodes of the tree path to find a
solution. Comparing the AI with the human being playing the game, we can observe sev-
eral similarities taking into account the behavior of the agent as well as the time it takes
to clear a stage. From the obtained results we observed that digital games are capable of
receiving AI techniques.

As future work, we intend to explore the application of ontologies and planning
strategies in Bomberman, in order to help the process of decision-making. We also in-
tend to apply multi-agent approaches or even transpose these techniques for a physical
environment using robotics.

Acknowledgement
The authors would like to thank the Brazilian funding agency CAPES and Motorola Mo-
bility for the financial support for the development of this work.

References
Cui, X. and Shi, H. (2011). A*-based pathfinding in modern computer games. Interna-

tional Journal of Computer Science and Network Security, 11(1):125–130.

Holmgard, C., Liapis, A., Togelius, J., and Yannakakis, G. N. (2014). Personas versus
clones for player decision modeling. In Pisan, Y., Sgouros, N., and Marsh, T., editors,
3A demo containing both algorithms can be found in the authors’ YouTube channel:

https://www.youtube.com/channel/UCUM-vwwuUYbPwSUfL7rsC5w

Entertainment Computing – ICEC 2014, volume 8770 of Lecture Notes in Computer
Science, pages 159–166. Springer Berlin Heidelberg.

Idrees, H., Zamir, A. R., Jiang, Y.-G., Gorban, A., Laptev, I., Sukthankar, R., and Shah,
M. (2017). The {THUMOS} challenge on action recognition for videos “in the wild”.
Computer Vision and Image Understanding, 155:1–23.

Liapis, A., Yannakakis, G., and Togelius, J. (2013). Generating map sketches for strategy
games. In Proceedings of 16th European Conference on Applications of Evolutionary
Computation, pages 264–273, Berlin, Heidelberg. Springer Berlin Heidelberg.

Lucas, S. M. (2008). Computational intelligence and games: challenges and opportuni-
ties. International Journal of Automation and Computing, 5(1):45–57.

Miranda, M., Sánchez-Ruiz, A. A., and Peinado, F. (2016). A neuroevolution approach
to imitating human-like play in ms. pac-man video game. In Proceedings of the 3rd
Congreso de la Sociedad Española para las Ciencias del Videojuego, CoSeCiVi’16,
pages 113–124. CEUR-WS.org.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hass-
abis, D. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540):529–533.

Newborn, M. and Newborn, M. (1997). Kasparov versus Deep Blue: Computer chess
comes of age. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Ortega, J., Shaker, N., Togelius, J., and Yannakakis, G. N. (2013). Imitating human
playing styles in super mario bros. Entertainment Computing, 4(2):93–104.

Rogers, S. (2014). Level Up! The guide to great video game design. John Wiley & Sons.

Russell, S. J. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Ed.
Prentice Hall, New Jersey, 2nd edition.

Schuurmans, D. and Zinkevich, M. A. (2016). Deep learning games. In Advances in
Neural Information Processing Systems 29, pages 1678–1686. Curran Associates, Inc.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., and Hassabis, D. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489.

Wang, H., Wang, N., and Yeung, D.-Y. (2015). Collaborative deep learning for recom-
mender systems. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1235–1244, New York, NY, USA.
ACM.

