
Performance Evaluation of Feature Selection Algorithms
Applied to Online Learning in Concept Drift Environments

Matheus B. de Moraes1, André L. S. Gradvohl1

1School of Technology – University of Campinas (UNICAMP)
R. Paschoal Marmo, 1888. CEP 13484-332. Limeira-SP – Brazil

matheuzmoraes@gmail.com, gradvohl@ft.unicamp.br

Abstract. Data streams are transmitted at high speeds with huge volume and
may contain critical information need processing in real-time. Hence, to reduce
computational cost and time, the system may apply a feature selection algo-
rithm. However, this is not a trivial task due to the concept drift. In this work,
we show that two feature selection algorithms, Information Gain and Online
Feature Selection, present lower performance when compared to classification
tasks without feature selection. Both algorithms presented more relevant results
in one distinct scenario each, showing final accuracies up to 14% higher. The
experiments using both real and artificial datasets present a potential for using
these methods due to their better adaptability in some concept drift situations.

1. Introduction
According to [Gradvohl 2016], Complex Event Processing (CEP) systems are stream
processing distributed systems, which take one or more linearly ordered sequence of
events (known as Data Streams) as an input and produces another ordered sequence
of events as output. Another common concept is the Stream Paradigm (SP), which
[Andrade et al. 2011] state as a distributed computational model, supporting the continu-
ous, heterogeneous, real-time collection and analysis of data streams.

[Ramı́rez-Gallego et al. 2017] define data stream as a potentially unbounded, or-
dered sequence of data, generally transmitted at high volume and velocity, generated from
different applications and devices, such as wireless sensors, RFID readers, GPS and so-
cial media, among others. Most of the time, it contains critical information and must be
processed and analyzed in real time, as in network attack or anomaly detection, disaster
management, trend analysis and financial market, among others [Gradvohl et al. 2014].
We will call this process of online processing and analysis as Online Learning.

Besides its volume and velocity, one of the main challenges in learning from
data streams is the dynamically changing, or non-stationary environment, which means
data distribution can change over time. This phenomenon, known as Concept Drift
[Jankowski et al. 2016], imposes difficulties for building useful solutions since every
model, application or algorithm needs to adapt to different changes in data distribution.

CEP systems can handle different types of streams, including ones containing
concept drifts. According to [Gama et al. 2014], there are four types of drifts: sudden (or
abrupt), incremental, gradual and recurring (or reoccurring).

The sudden drift occurs when data distribution rapidly switches from one concept
to another (e.g., replacement of a sensor with a different calibration in a plant). Incre-
mental drift happens when there are many intermediate concepts between two different

concepts in data distribution (e.g., when a sensor slowly wears off and becomes less ac-
curate). In turn, the Gradual drift occurs when the concept keeps changing from one
concept to another for some time (e.g., sales of a football team increases and decreases
every time it loses or wins in a season). Finally, the recurring drift, when concepts may
reoccur after some time (e.g., sales of a product may increase every winter and decrease
every summer).

As a result, many researchers tend to apply techniques to reduce the size or di-
mensionality of the streams, aiming to optimize learning accuracy, reduce computational
costs and improve the time needed for processing and analyzing the data. Feature selec-
tion (FS) is a technique that intends to reduce the number of features (or attributes) in a
dataset by removing irrelevant or redundant features [Han and Kamber 2006]. The FS,
widely used in stationary environments, is not a trivial task in dynamically changing envi-
ronments, such as in data streams processing, since features dependency also may change
over time.

There is already some feature selection algorithms for online learning in literature.
However, as pointed by [Ramı́rez-Gallego et al. 2017], most of these algorithms are adap-
tations from the ones used in stationary environments. Therefore, they were not built to
deal specifically with data streams and, consequently, with the concept drift phenomenon,
and may not present suitable results in those situations.

Hence, there is a need to evaluate these algorithms when applied to online learning
in concept drift environments. This paper presents a performance evaluation of two fea-
ture selections methods, the Katakis Method [Katakis and Tsoumakas 2005] and Online
Feature Selection [Wang et al. 2014], applied to online learning in different situations,
using both real and artificial datasets containing all types of drifts.

We organized the remaining of this paper as follows. Section 2 introduces the
Katakis Method. Section 3 presents the Online Feature Selection Algorithm. Section 4
describes the Experimental Setup for the experiments. Section 5 presents the results and
discussion. Finally, Section 6 presents the conclusions.

2. The Katakis Method

The Katakis Method, proposed by [Katakis and Tsoumakas 2005] is one of the most used
feature selection methods, initially used for text classification. This method proposes
two components in conjunction: a) an incremental feature ranking method and b) an
incremental learning algorithm that can consider a subset of features during prediction.

A feature ranking method is the one who can evaluate the predictive power of all
features of a data streams, selecting theN best ones. These methods evaluate each feature
based on a cumulative statistic considering the number of times it appears in each different
class in the streams. This approach implies these methods are, mainly, incremental.

When new data streams arrive, the algorithm updates the statistics and immedi-
ately calculates the evaluation, without re-processing past data. The authors inform they
can achieve the first part of their approach using many different methods, such as infor-
mation gain, χ2, and mutual information. In this paper we selected, the Information Gain
(IG), proposed by [Quinlan 1986], as an incremental feature rank algorithm.

The incremental re-evaluation of features and addition of new features will in-
evitably result in specific features being promoted to or demoted from the top N features.
That re-evaluation raises a problem solved with the second part of this approach: a learn-
ing algorithm that can classify a new tuple, taking into account different features over
time. For this part, the authors propose the Naı̈ve Bayes algorithm, due to its simplicity
and flexibility.

3. Online Feature Selection algorithm
The Online Feature Selection (OFS) algorithm, proposed by [Wang et al. 2014], is an
ε-greedy wrapper algorithm for online learning with partial inputs. This algorithm is used
in situations where the full domain of attributes is unknown. The authors set the problem
as this: Let {(xt, yt) | t = 1, . . . , T} be a sequence of input streams received, where each
xt ∈ Rd is a vector of d dimension and yt ∈ {−1,+1} is the class of each tuple. They
assume d is a large number and, for computational efficiency, there is a need to select
a small number of features for linear classification. That means, for each trial t, the
algorithm will use the learner wt ∈ Rd to classify a tuple xt.

Rather than using all features for classification, the classifier w + t will use, at
most, B non-zero features, i.e., ||wt||0 ≤ B, where B ≥ 0 is a predefined threshold.
The authors propose the utilization of this algorithm for feature selection in situations
where the full domain of attributes is unknown, using an exploration-exploitation trade-
off technique, first defined by [March 1991].

They assume that the algorithm knows only a part of feature domain and tuples.
In this approach, the algorithm will spend ε trials in exploration, choosing randomly B
features of the total d and 1 − ε trials in exploitation choosing B features in which the
classifier wt has non-zero values. The Algorithm 1 presents the pseudo-code for OFS.

The Algorithm 1 initiates its execution by initializing the classifier wt as zero.
In the next step, for each tuple presented in the stream, it extracts a sample Zt from a
Bernoulli distribution with probability ε. If the sample Zt = 1, then the algorithm will
randomly select B from the total [d], storing it in the Ct variable. If sample Zt 6= 1, then
the features stored in Ct will be the ones who have non-zero values at the classifier wt.

After that, the algorithm will receive a tuple x̃t by only requiring the features
presented in Ct. Then, the algorithm makes a prediction of the possible class with the
linear function sgn(wTt x̃t). The algorithm receives the true class yt. If the prediction
is incorrect (ytwTt x̃t ≤ 1), the classifier must be updated. In this case, it computes a
new variable x̂t, where each feature [x̂t]i will receive as a value the division between the
feature in the same position at x̃ti and the operation B

d
ε + I([wt]i 6= 0)(1 − ε) for each

feature i in the full domain d.

4. Experimental setup
We elected the Massive Online Analysis (MOA) framework as a benchmark tool for run-
ning the experiments presented in this paper. MOA is an open-source framework devel-
oped by the University of Waikato, which allows the manipulation and simulation of data
streams. It is integrated with the Waikato Environment for Knowledge Analysis (WEKA)
and provides a group of native tools to evaluate different algorithms in streaming environ-
ments.

Algorithm 1: Online Feature Selection
Input : R : maximum L2 norm

η : step size
B: the number of selected features
ε: the exploration-exploitation trade off

1 w1 = 0
2 for t = 1, 2, . . . , T do
3 wt = 1
4 Sample Zt from a Bernoulli Distribution with probability ε
5 if Zt = 1 then
6 Randomly Choose B attributes Ct from [d]
7 end
8 else
9 Choose the attributes that have nonzero values in wt, i.e.,

Ct = {i : [Wt]i 6= 0}
10 end
11 Receive x̃t by only requiring the attributes in Ct
12 Make prediction sgn(wTt x̃t)
13 Receive yt
14 if ytwTt x̃t ≤ 1 then
15 Compute x̂t as
16 [x̂t]i =

[x̃ti]
B
d
ε+I([wt]i 6=0)(1−ε) , i = 1, . . . , d

17 w̃t+1 = wt + ytηx̂t

18 ŵt+1 = min
{
1, R
||w̃t+1||2

}
w̃t+1

19 wt+1 = TRUNCATE(ŵt+1, B)

20 end
21 else
22 wt+1 = wt
23 end
24 end

We selected this framework because of its widespread use in the literature –
[Bifet et al. 2010], [Turkov et al. 2016] and [Ramı́rez-Gallego et al. 2017] –, its user-
friendly interface, for being open-source, and, at last, for its built-in tools to evaluate
algorithms and procedures of machine learning when applied to data streams, such as
classifiers, feature selectors, predictors, and regressors. We choose the following ver-
sions: MOA 2016.04 and WEKA 3.8.

For being open-source, MOA allows the development and incorporation of al-
gorithms in its structure. We choose the Java programming language to implement the
algorithms, the same used by MOA and WEKA, to facilitate the integration between
components, avoiding any communication conflicts with the rest of the components of
MOA and WEKA.

We executed the whole experimental environment in a single standard desktop ma-
chine, with the following structure: Intel Core i7-3770 processor (4 cores/ 8 threads, 3.40
GHz, 8M cache), 16 GB DD3 of RAM, 1 TB SATA HDD, wireless Internet connection
and Ubuntu 16.04 LTS (Linux).

4.1. Algorithms and Parameters
We selected an incremental version of the Naı̈ve Bayes (NB) algorithm as a base classifier.
We elected this algorithm due to its simplicity and flexibility, for allowing the use of
different subsets of features along the classification phase and by the previous utilization
in literature as a base classifier for evaluating feature selection algorithms in data streams
environments [Ramı́rez-Gallego et al. 2017].

We also implemented IG and OFS algorithms to verify their performance in online
learning. Therefore, we evaluated three different situations in this work: NB-only, NB +
IG, and NB + OFS. We will refer to these situations as NB, IG, and OFS, respectively. We
developed and packed them into a library to work together with MOA. The source code
of the project is available in our repository [de Moraes 2018].

Except for the NB algorithm, we can configure both IG and OFS algorithms to ex-
ecute with two parameters: numFeatures and winSize. We used the first parameter
to configure how much attributes the selected feature selection method must use for the
learning process. Therefore, the method will select the numFeatures best attributes.
We used the winSize parameter to configure how the algorithm will perform the learn-
ing process. When dealing with data streams, a CEP system can analyze and process data
streams tuple by tuple or in windows of size N. Therefore, winSize is the number of
tuples that the algorithm will process at a time.

4.2. Metrics
As pointed out by [Ramı́rez-Gallego et al. 2017], when evaluating online learning algo-
rithms, one must use the right metrics. Therefore, we evaluate the algorithms under the
following metrics:

• Accuracy: In data stream mining, due to its evolving nature, there is a fact that the
relevance of instances diminishes over time. Therefore, using average measures
does not reflect how a learning algorithm was able to adapt and react to the changes
in the data distribution. Thus, it is imperative to use methods which are calculated
using only the most recent instances. In this paper, aside from final accuracy, we
also evaluated Prequential Accuracy. This metric provides the accuracy of only
the last processed instances.
• Memory Consumption: a learning algorithm must not overload the machine

since many CEP systems run on limited computational resources shared with
many other applications. Therefore, the learning algorithm must execute at a
low computational cost. The metric considered in this paper is RAM per hours
(RAM/hours).
• Response time: Adding a feature selection method must not negatively and sig-

nificantly impact the learning algorithm response time since sources transmit data
streams at high velocities and huge volumes. This impact may cause an overload
in the operators’ queue. This situation would impact the real-time processing, a
core characteristic of CEP systems.

4.3. Datasets

To evaluate the presented algorithms, we used several datasets in the experiments, listed
in Table 1. Spam data [Katakis et al. 2009] uses part of the SpamAssassin collection, an
anti-spam tool maintained by the Apache Foundation, and contains several instances, each
one is a different e-mail. It has a high dimensional feature domain, where each attribute
is binary and defines whether a specific word exists or not in the e-mail. Two classes –
legitimate and spam – compose the dataset, which we can use for e-mail classification. In
this dataset, 20% of instances are spam emails.

Table 1. Selected datasets
Dataset #Instances #Features #Classes Type of drift Artificial
spam data 9.324 40.000 2 Gradual No
mailing list 6.000 28.000 2 Sudden No
incremental drift 100.000 6 2 Incremental Yes
gradual drift 100.000 6 2 Gradual Yes
sudden drift 100.000 6 2 Sudden Yes
recurring drift 100.000 12 2 Recurring Yes

The mailing list [Katakis et al. 2009] dataset is a part of 20 newsgroups collection
and involves a user that subscribes to and removes from different general mailing lists.
It was created to simulate concept drift. The artificial datasets have numeric attributes
and they were all generated using MOA, which has a built-in tool to generate datasets
simulating concept drifts.

4.4. Experiments

To asses the quality of the methods, we must use an online evaluation approach. This
approach, known as interleaved test-then-train, proposed by [Bifet and Kirkby 2011], de-
fines a model which evaluates each example/batch, arriving at a time t, against a t − 1
model, and then it serves as an input to update that model. Therefore, the algorithm uses
each tuple to evaluate the model. This approach makes the model work incrementally.
This evaluation is available for use in MOA.

Using this approach, we perform the following experiments:

• Experiment 1: classification using only NB, without feature selection. In this
case, the default window is 1 (tuple by tuple).
• Experiment 2: use of IG and OFS algorithms in conjunction with NB. For real

datasets, the parameters were winSize = 1 and numFeatures = 4, 10 and 100.
For artificial datasets, the parameters were : winSize = 1 and numFeatures
= 4.
• Experiment 3: Window variation (winSize) between 10, 100 and 1000.

We repeated each experiment 10 times. The results presented in this paper refer to
the mean of the obtained values in each execution. For the OFS algorithm, we considered
λ = 0.01 and η = 0.02, according to the authors’ criteria [Wang et al. 2014]. For the B
selected features, it is inputted by the numFeatures parameter already described.

5. Results and Discussion
Results showed that IG presents the worst response time and memory consumption in all
evaluated scenarios. Considering artificial datasets and window = 1, it consumed a time
500.000 higher (about 7 hours against 5 seconds for NB and OFS). For larger windows,
their performance was superior.

In the incremental drift, where IG showed the worst result for window = 1, con-
sidering winSize = 10, the algorithm reduced the response time by approximately
700%, reaching 1 hour execution. With winSize = 100, it classified all tuples in 5
minutes and, at last, with winSize = 1000, it took only 25 seconds. In the latter, the
accuracy was the best of all windows for this algorithm. However, still far below that
obtained by NB. For the memory consumption, in the worst case, IG needed 2.64× 10−5

RAM/hours and, in the best case, it took 3.21× 10−8 RAM/hours.

Concerning the OFS, it showed competitive speeds in comparison with NB. In the
worst case, considering winSize = 1 in the incremental drift dataset, it processed and
classified all tuples in 5 seconds. With winSize = 10,100 and 1000 it took, respectively,
1.5 seconds, 0.9 seconds and 0.5 seconds. In the latter, it was only 0.07 seconds behind
NB. As for the memory consumption, in the worst case, OFS only needed 5 × 10−9

RAM/hours and, in the best case, 5.2 × 10−10 RAM/hours. The latter was the same
obtained by using only NB.

Tables 2 and 3 presents the final accuracies. Figure 1 shows the obtained prequen-
tial accuracies in the experiments for both real and artificial datasets.

Table 2. Final accuracy (%) by method, window and number of selected features
for real datasets. We highlighted the best results in bold. We did no selection for
the Naı̈ve Bayes.

NB (%) Window IG (%) OFS (%)

4 10 100 4 10 100

spam data 74.57

1 85.81 88.73 88.56 76.16 77.73 76.56
10 81.85 83.10 82.92 75.81 77.97 76.29
100 85.67 85.23 86.16 76.11 77.58 73.73
1000 85.73 81.50 83.22 76.03 77.37 76.31

mailing list 84.60

1 60.23 66.31 80.79 53.30 53.76 56.92
10 60.29 70.62 78.65 58.55 59.77 64.93
100 50.29 69.46 78.21 54.13 54.82 57.99
1000 60.92 67.67 75.46 53.66 54.63 57.22

The non-parametric Friedman test was used to validate if the results were concise,
according to the method presented by [Demšar 2006]. This test proposes a null hypothesis
where all evaluated algorithms are equivalent and, therefore, are statistically equal. To
verify this hypothesis, the test evaluates each algorithm by setting an individual rank,
where the best algorithm gets the rank 1, the second best the rank 2, and so forth. If the
test rejects the null hypothesis, it means that the values are concise.

For a confidence interval of α = 0.05, the test rejects the null hypothesis. Then,
we also applied a post-hoc test, known as Bonferroni-Dunn [Demšar 2006], to verify if

Table 3. Final accurracy (%) by method and window artificial datasets. We high-
lighted the best results in bold. We did no selection for the Naı̈ve Bayes.

NB (%) Window IG (%) OFS (%)

incremental drift 77.60

1 71.60 76.93
10 71.63 77.04

100 71.83 77.04
1000 71.90 76.92

gradual drift 92.91

1 92.72 92.87
10 92.76 92.81

100 92.59 92.86
1000 92.60 92.87

sudden drift 73.38

1 77.89 78.11
10 77.90 78.31

100 77.80 78.02
1000 71.00 78.10

recurrent drift 73.53

1 72.18 63.69
10 72.10 65.34

100 72.18 64.12
1000 67.65 63.70

the results of the base classifier NB were significantly higher than IG and OFS. This
test uses the previous rank generated by Friedman test and, if the difference between the
algorithms is greater or equal than a predefined critical value, then it indicates that there
is a statistical difference between the results. Figure 2 shows the results for both real and
artificial datasets, considering all windows.

For both real and artificial datasets, considering a confidence interval of α = 0.05,
the critical values were 2.638 and 2.343, respectively. Analyzing the results, there is
evidence that, although NB obtains higher final accuracies in most scenarios (4 of 6), this
superiority is not significant since in both types of datasets the results of NB are lower
than the critical value in comparison of IG and OFS.

[Katakis and Tsoumakas 2005] present the accuracy of the proposed method using
an incremental version of NB as a base classifier and χ2 as the feature selection method.
They used the spam data dataset to simulate data streams. The results obtained in our
work shows similar accuracies. However, the authors did not evaluate any other metric.
Therefore, the experiments performed in this work show that, although the final accuracy
is reasonable, the high memory consumption and response time make this method using
IG unfeasible.

However, considering prequential accuracy, IG shows the better adaptability for
gradual and sudden drifts in high dimensionality data streams, and in recurrent drifts in
both high and low dimensionality. This fact demonstrates that there is a potential for using
this method in concept drift environments, especially in high dimensional data streams, if
we reduced the response time and memory consumption.

(a) spam data (b) mailing list

(c) incremental drift (d) gradual drift

(e) sudden drift (f) recurrent drift

Figure 1. Prequential accuracy (%) for each dataset. Solid and dashed vertical
blue lines indicates drifts and drift window start/end, respectively. In the incre-
mental drift, the drift occurs in all dataset. For the spam data and mailing list
these informations are unknown.

One possible solution for this is the use of high-performance computing libraries,
which permits the parallelization of the most expensive parts of the algorithm. Another
alternative is the use of Graphics Processing Units (GPU) for the feature rank calculation.
In this way, the processor would be responsible only for the classification phase, which
would decrease the workload and reduce the response time and memory consumption.

For the OFS algorithm, [Wang et al. 2014] present the results of a systematic eval-
uation of OFS performance in different situations, including dealing with huge amount of
data. In these scenarios, OFS demonstrates a high capacity to deal with large volumes
of data, both in high dimensional tuples and attributes, when there is no change in data
distribution.

However, our experiments showed that OFS is sensitive to concept drift, present-
ing lower accuracies in comparison with NB in 5 out of 6 evaluated scenarios. Besides, it
showed lower accuracy compared to IG for high dimensional datasets, which may make
it unfeasible in those situations. Concerning prequential accuracy, OFS showed the best
adaptability to sudden drift when the data dimensionality is small.

(a) Real datasets (b) Artificial datasets

Figure 2. Average ranks and critical values of the Bonferroni-Dunn post-hoc test.

6. Conclusions and Future Works

Feature selection algorithms are a useful tool to reduce data streams dimensionality in
real-time. Thus, data streams classification in a complex event processing system can be
less costly, faster and efficient. However, these algorithms must demonstrate adaptability
to the concept drift phenomenon, which affects data streams forecasting.

The results of our work show that Information Gain and Online Feature Selection
demands a higher memory consumption and a higher response time for online learning in
comparison to the use of the Naı̈ve Bayes algorithm only. As for accuracy, the Bonferroni-
Dunn post-hoc test shows evidence that, although Naı̈ve Bayes presents higher final re-
sults in 4 out of 6 situations, this superiority is not significant, since its results were below
the critical value in all evaluated scenarios.

The Information Gain algorithm obtained the worst response time and memory
consumption in all situations. However, it presented competitive accuracies in when com-
pared to the classification without feature selection, overcoming the later in real datasets
with high dimensionality. Besides, its accuracy was higher than OFS in 3 out of 6 situa-
tions. Therefore, there is a potential for using this method if its performance is improved.
Some possible solutions include the use of high-performance computing libraries to par-
allelize the code or the use of graphics processing units for the feature rank calculation,
decreasing the processors’ workload.

On the other hand, the OFS algorithm showed memory consumption and response
time relatively close to the values obtained without feature selection. Besides, it presented
the best adaptability to the sudden drift when the dimensionality of the dataset is small.
However, its accuracy in high dimensional datasets was inferior when compared to the
IG. This result indicates that, although fast and with low computational cost, its use in
high dimensional data streams may be impracticable.

For future works, we intend to extend our research and verify the performance
of other feature selection algorithms for online learning in concept drift environments,
such as Fast-Correlation Based Filter, Extreme Feature Selection, Online Extreme Feature
Selection, and Online Group Feature Selection.

References

Andrade, H., Gedik, B., and Turaga, D. (2011). Fundamentals of stream processing:
Application design, systems, and analytics. Fundamentals of Stream Processing: Ap-
plication Design, Systems, and Analytics, pages 1–529.

Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. (2010). MOA: massive online
analysis. Journal of Machine Learning Research, 11:1601–1604.

Bifet, A. and Kirkby, R. (2011). Data Stream Mining. Methodology, 8(May):127–141.

de Moraes, M. B. (2018). Data Streams With Feature Selection. Disponı́vel em: https:
//github.com/mbdemoraes/data-streams-feature-selection/.
Last accessed in May 11th, 2018.

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research, 7:1–30.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2014). A survey
on concept drift adaptation. ACM Computing Surveys, 46(4):1–37.

Gradvohl, A. L. S. (2016). Investigating metrics to build a benchmark tool for complex
event processing systems. Proceedings - 2016 4th International Conference on Future
Internet of Things and Cloud Workshops, W-FiCloud 2016, pages 143–147.

Gradvohl, A. L. S., Senger, H., Arantes, L., and Sens, P. (2014). Comparing distributed
online stream processing systems considering fault tolerance issues. Journal of Emerg-
ing Technologies in Web Intelligence, 6(2):174–179.

Han, J. and Kamber, M. (2006). Data Mining Concepts and Techniques, volume 2. Else-
vier, Burlington.

Jankowski, D., Jackowski, K., and Cyganek, B. (2016). Learning Decision Trees from
Data Streams with Concept Drift. Procedia Computer Science, 80:1682–1691.

Katakis, I., Tsoumakas, G., Banos, E., Bassiliades, N., and Vlahavas, I. (2009). An
adaptive personalized news dissemination system. Journal of Intelligent Information
Systems, 32(2):191–212.

Katakis, I. and Tsoumakas, I. V. (2005). On the utility of incremental feature selection for
the classification of textual data streams. In Fagerberg, J., Mowery, D. C., and Nelson,
R. R., editors, Advances in Informatics, pages 338–348. SpringerLink, Volos,Greece.

March, J. G. (1991). Exploracion Y Explotacion En Aprendizaje Organizacional.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1(1):81–106.

Ramı́rez-Gallego, S., Krawczyk, B., Garcı́a, S., Woźniak, M., and Herrera, F. (2017). A
survey on data preprocessing for data stream mining: Current status and future direc-
tions. Neurocomputing, 239:39–57.

Turkov, P., Krasotkina, O., Mottl, V., and Sychugov, A. (2016). Feature Selection for
Handling Concept Drift in the Data Stream Classification. In 12th International Con-
ference on Machine Learning and Data Mining in Pattern Recognition, pages 614–629.
SpringerLink, New York, USA.

Wang, J., Zhao, P., Hoi, S. C., and Jin, R. (2014). Online feature selection and its appli-
cations. IEEE Transactions on Knowledge and Data Engineering, 26(3):698–710.

