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Abstract. Diagnosing Tuberculosis is crucial for proper treatment since it is
one of the top 10 causes of deaths worldwide. Considering a computer-aided
approach based on intelligent pattern recognition on chest X-ray with Convo-
lutional Neural Networks, this work presents the proposition, training and test
results of 9 different architectures to address this task as well as two ensem-
bles. The highest performance verified reaches accuracy of 88.76%, surpassing
human experts on similar data as previously reported by literature. The experi-
mental data used comes from public medical datasets and comprise real-world
examples from patients with different ages and physical characteristics, what
favours reproducibility and application in practical scenarios.

1. Introduction
Tuberculosis (TB) is chronic infectious disease, that most often affects the lungs, caused
by Mycobacterium tuberculosis. It is airborne spread from person to person, and about
one-third of the world’s population has its latent form, which means they have been in-
fected by TB but are not (yet) ill and cannot transmit it [Jamison et al. 2006]. According
to World Health Organization (WHO), TB is one of the top 10 causes of death worldwide,
surpassing HIV1 and malaria [WHO 2016].

Brazil, in particular, is among the countries with the highest number of TB cases
in the world and, since 2003, this disease has been considered as a priority in the polit-
ical agenda of the Brazilian Ministry of Health. Although it is a disease with diagnosis
and treatment performed universally and free of charge by the Unified Health System,
in Brazil there are still many practical problems that result in approximately 69.000 new
cases and 4.500 deaths each year caused by TB. Although still high from a global perspec-
tive, the number of TB cases in Brasil has been decreasing due to the efforts of National
Tuberculosis Control Program (NTCP), developed in partnership with states, cities and
civil society [Brazilian Ministry of Health 2016a].

According to the data available, it is possible to identify some groups more sus-
ceptible to TB in Brazil due to social vulnerability, such as: (i) prison population, where
the TB incidence is 28 times greater than average; (ii) homeless people; (iii) TB-HIV
coinfected pacients, with incidence of 3.6 per 100 thousand inhabitants; (iv) indigenous
population, with 3 times the average incidence; and (v) health professionals. The black
population in Brazil also suffers a 2.2 higher incidence of TB than the general population
[Brazilian Ministry of Health 2016b].

Despite the several challenges regarding this disease, ending the TB epi-
demic by 2030 is among the health targets of the Sustainable Development Goals
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[United Nations 2015]. In order to contribute with this goal, new treatments and diag-
nosis strategies need to be developed.

When considering computer-aided approaches to support TB diagnosis, several
challenges must be taken into account. The first of them is to consider anatomical shape
variations, for example, in heart dimensions, costodiaphragmatic recess, rib cage and
clavicle bones. X-ray imaging inhomogeinities are very common, specially consider-
ing the shortage of radiological infrastructure and radiologists in some areas, or even
the technological differences between X-ray equipments. Lastly, the existence of other
patologies besides TB, such as pneumonia, may result in variations in lung appearance
[Jaeger et al. 2014a].

Considering the massive influx of multimodality data available nowadays, Deep
Learning (DL) approaches are forging outstanding results on computer aided diagnosis
[Ravì et al. 2017]. Positive results in Radiology, in particular, are helping in many tasks
such as in the identification of pulmonary nodules, classification of breast density on
mammograms, among others [McBee et al. 2018, Yasaka et al. 2018]. The case for TB
detection in chest X-ray images has also been addressed with Convolutional Neural Net-
works (CNNs) by using pre-trained models and augmented data and achieving impressive
results [Lakhani and Sundaram 2017]. However, if one takes into account the computa-
tional cost, the misdiagnosis risks some data augmentation operations can introduce and
the reprodutibility of the results that rely on private datasets, further research on the topic
is still needed.

In this perspective, this work aims at using CNNs on several realistic antero-
posterior X-ray images from public domain datasets aiming at distinguish TB cases from
healthy ones, contributing to the computer-aided diagnosis of such disease. The results
obtained consider 9 different CNNs from two high-level architectures with no data aug-
mentation nor transfer learning. The higher accuracy verified was equal to 88.76% in an
individual learner with a single convolutional layer using 32 kernels. These results sur-
pass human specialists and may indicate that a profound abstract feature representation is
not absolutely determinant for the performance on this task. Two ensembles built from
the individual learners previously trained were also proposed and tested, with comparable
accuracy metrics.

In order to present such results, this paper is organized as follows: some efforts
in the literature that address computer-aided TB diagnosis are presented in Section 2;
the experimental data collection, preparation and descriptive characteristics are detailed
in Section 3; the methodology adopted to conduct this work is introduced in Section 4;
results obtained are presented and discussed in Section 5; lastly, final remarks and future
work are shown in Section 6.

2. Related Work
As in many other domains, the first solutions for computer-aided TB diagnosis comprised
expert systems. Expert systems are a branch of applied Artificial Intelligence whose basic
idea is to transfer human knowledge on a specific task to a computer [Liao 2005]. In this
perspective, these works considered symptons and their intensity, such as fever, abdominal
pain, skin lesions, hemoptysis, and others, in a rule-based system generally used for pre-
medical care [Imianvan and Obi 2011, Agah 2013]. This approach, however, is strongly
dependent on human knowledge and intervention, clinical findings and also on diagnostics
tests.



More autonomous approaches considered by literature take into account that find-
ings on chest X-ray images, an almost inexpensive exam, are associated with manifes-
tations of active TB, such as: cavity formation, enlargement of airways, miliary pattern,
lymph node enlargement, etc. This way, many approaches based on automatic pattern
recognition were developed aiming tasks of lung segmentation, bone supression, lung
boundary detection and feature extraction and classification. Although the results ob-
tained so far, it is a difficult task to quantify the progress because some datasets are
not publicly available, the X-ray images conditions may differ, among other difficulties
[Jaeger et al. 2013].

A solution proposed by Jaeger et al. aims at automatic TB screening from chest
X-rays in which lung detection and feature extraction are performed before classifica-
tion with Machine Learning models (support vector machines, artificial neural networks,
logistic regression and decision trees) [Jaeger et al. 2014b]. They use chest X-ray im-
ages from two public datasets [Jaeger et al. 2014a], and they also propose a comparison
amongst the performance of the proposed model and of radiologists. The results ob-
served, with accuracies of 78.3% and 84% for each dataset, respectively, were superior
than human performance and is being under use in remote areas of Kenya.

Recently, with the advances in hardware and software as well as with the crescent
amount data available, computers have allowed to perform an increasing number of com-
plex tasks [Goodfellow et al. 2016]. Deep Learning (DL) algorithms are an instance of
that, with a growing number of applications in Health Informatics [Ravì et al. 2017], in-
cluding the field of Radiology such as in lesion or disease detection, classification and
diagnosis, segmentation, and quantification [McBee et al. 2018].

The work of Lakhani and Sundaram is one of the earliest to ad-
dress TB detection with Deep Learning using Convolutional Neural Networks
[Lakhani and Sundaram 2017]. The authors used four datasets with labelled examples
and adopted canonical convolutional neural networks architectures, such as AlexNet and
GoogLeNet, and also tested whether the results would improve with and without data aug-
mentation and transfer learning. The best results were verified with pre-trained weights
and data augmentation on an ensemble model with two CNNs, with AUC of 0.99. These
results are remarkable but the authors emphashize that they do not replace human radio-
logic interpretation beyond that of TB .

If the number of calculations are taken into account, the work of Lakhani
and Sundaram can be considered as having a high computational cost because of
the number of operations performed due to the depth of the models under use
[Lakhani and Sundaram 2017]. Another aspect to consider is that they use images from
four datasets in which one of them, obtained from the Thomas Jefferson University, is not
publicly available, compromising the reprodutibility of the results and making it difficult
to compare with prior work on the topic.

3. Experimental Data
In order to comprise a realistic experimental dataset to train and test convolutional neural
networks, posteroanterior chest radiographs were considered. This kind of radiography
is widely adopted for diagnosis purposes and consists in a projection radiograph of the
patient’s chest. These images were gathered from the following public health images
databases:

1. JSRT Database. Created and mantained by the Japanese Society of Radiological



Technology (JSRT), this dataset contains 247 images from which 154 contain pul-
monary nodules and 93 are clean. All images have high-resolution, 2048 × 2048
pixels in grayscale, and metadata containing patient gender, diagnosis, among
other information [Shiraishi et al. 2000];

2. Montgomery County X-ray Set. X-ray images in this data set have been ac-
quired from the tuberculosis control program of the Department of Health and
Human Services of Montgomery County, Maryland, USA. This set contains 138
posteroanterior X-rays, of which 80 are normal and 58 are abnormal with different
levels of tuberculosis manifestations [Jaeger et al. 2014a];

3. Shenzhen Hospital X-ray Set. X-ray images in this data set have been collected
by Shenzhen No.3 Hospital in China as part of the routine care. There are 326
normal and 336 abnormal images showing various manifestations of tuberculosis,
contemplating 21 pediatric patients [Jaeger et al. 2014a].

After data gathering phase, the images and their available metadata were inspected.
This processed revealed that not all pulmonary nodules documented in JSRT database
were originary from TB. In order to avoid misdiagnosis, it was decided that examples in
this category would be discarded.

The next step considered image standardization through rescaling because images
from both Montgomery County and Shenzhen datasets had different sizes. For diagnosis
purposes the literature suggests dimensions from 128 × 128 up to 1024 × 1024 pixels.
In this work, we considered 256 × 256 pixels due to processing time required by the
Machine Learning models considered and to avoid overfitting, upon providing a possible
considerable ammount of irrelevant features.

As a result, the available experimental data to train and test the models contains 893
samples, from which 394 are suggestive for TB according to experts and the remaining
part is composed of normal cases. As it can be seen, this database is both labelled and
unbalanced, since all examples have an associate label (TB or Healthy) and the amount of
examples per labels is not evenly distributed. The dataset consolidated for this work is re-
alistic for computer-aided diagnosis purposes of TB with Machine Learning. It comprises
several manifestations of TB around the world, from male and female subjects with dif-
ferent ages and distinct physical characteristics, as illustrated in Figure 1. Moreover, the
labels were accredited from experts and images were acquired with typical X-ray devices.

Figure 1: Four distinct samples of chest X-rays in the dataset consolidated.

(a) Healthy, male (b) Healthy, female (c) TB, male (d) TB, female

4. Materials and Methods
This section aims at presenting the material and methods considered for this work. In
the first part, the procedures regarding the use of the available experimental data are pre-



sented. After that, the proposal of CNNs models and their parameters are introduced.
Then, the performance metrics to evaluate the models are shown. At last, an ensemble
approach to combine individual learners is also considered.

The experimental data available, described in the previous section, will be ran-
domized and later divided according to a hold-out validation method: training data, cor-
responding to 70% of examples, will be used to provide experience regarding TB and
healthy examples; test data, with the remaining 30% of examples, will be used to eval-
uate the CNNs in the classification task. In order to accurate model training and to es-
timate model properties, 10% of training data will be reserved for validation purposes
[Brink et al. 2017].

Recalling the role of dataset size in models’ performance, a typical approach
adopted is data augmentation in which more training data is generated from the exist-
ing samples via a number of random transformations (rotations, horizontal flip, random
shifts, etc.). In many situations, data augmentation yelds believable-looking images and
helps the models to generalize better, helping in avoiding overfitting [Chollet 2017].

Althought it is considered to improve the generalization capabilities of machine
learning models specially in Computer Vision tasks, data augmentation will not be con-
sidered in the scope of this work because of the risks of misdiagnosis it can introduce. For
example, a zooming inside a medical image may discard relevant information that lies in
another part of it. Horizontal flips, for instance, violate the assumption of horizontal
asymmetry which may counfound the situs inversus condition.

The machine learning models considered in this work to address TB diagnosis from
chest images are the Convolutional Neural Networks (CNNs). These models are analo-
gous to Artificial Neural Networks but each unit in a layer is a high-dimensional filter
which is convolved with the input of that layer. These filters incorporate spatial context by
having a similar (but smaller) spatial shape as the input media, and use parameter sharing
to significantly reduce the number of learnable variables. CNNs are a prime example of
deep learning methods currently state-of-the-art for Computer Vision [Khan et al. 2018].

Considering the different kinds of layers and the ways to dispose them, different
architectures of CNNs can be proposed to address the TB pattern recognition in the images
from the dataset. Two high-level architectures were considered, where the first is:

Input Layer⇒ (Convolution→ Max-Pooling)k ⇒ Dense Layer⇒ Softmax,

where k = 1, . . . , 5 indicates the number of repetitions of the associated block of layers.
In particular, when k = 1 we have the most basic filtering approach to feature extraction.
The Convolutional Layer has 32 units using 3 × 3 kernels and stride equal to 1. In all
cases, the Dense Layer has 128 neurons and the Output Layer has a Softmax function
in accordance with the binary classification task considered. According to this first high
level architecture and selected parameters, five different CNNs were proposed, one for
each k value.

The second high-level architecture considers two sequential convolutional opera-
tions as follows, where j, ` = 1, 2:

Input Layer⇒ (Convolution→ Convolution→ Max-Pooling)j ⇒ Dense Layer` ⇒ Softmax.

Resuming this strategy of model proposal, nine different CNNs will be considered for
the task. No such architectures were found with pre-trained data, so transfer learning



could not be applied. Considering that all CNNs proposed will undergo a full training
procedure with early stopping criteria, we used 100 epochs, learning rate η = 10−3 which
was experimentally obtained and binary cross-entropy as loss measure.

In the binary classification task considered in this work with unbalanced classes,
two performance metrics will be used to evalute the proposed CNNs on the test set: ac-
curacy and micro F-Score. The former denotes the proportion of correct classification
amongst all classifications, providing an overview of the model quality. The later, in turn,
is particularly more specific for binary tasks since it quantifies the harmonic average be-
tween precision and recall per class alongside the prevalence proportion of each class
[Kubat 2015]. Thus, the CNNs will be ranked according to the micro F-Score in the test
set and their quality to address the original problem will be evaluated and discussed.

Besides using individual CNNs, two homogeneous ensembles will also be pro-
posed: one ensemble using all previously mentioned CNNs and the other using the Top-3
CNNs ranked. These ensembles will combine the individuals outputs upon majority vot-
ing. Ensemble methods use multiple learners of the same problem and combine them
for use, being significantly more accurate than a single learner in many real-world tasks
[Zhou 2012]. The ensembles will also be evaluated according to the performance metrics
under consideration.

Regarding implementation, the Python programming language [Python 2018], the
open-source frameworks Sci-Kit Learn [Pedregosa et al. 2011] and Keras [Keras 2018]
and the Jupyter Notebook2 interactive development environment were adopted.

5. Results and Discussion
Upon conducting the steps presented in the previous sections, the following results were
obtained. Firstly, the CNNs proposed were implemented and trained by following the
procedures described. Data presented in Table 1 depicts the details of such CNNs in
means of trainable parameters and number of epochs until early stopping, when occurred.

Table 1: CNNs proposed and their respective trainable parameters and learning epochs.

High-Level Architecture k j ` Trainable Parameters Epochs

1 1 - - 66,065,666 80
1 2 - - 15,755,554 100
1 3 - - 3,706,168 100
1 4 - - 831,842 100
1 5 - - 185,730 100
2 - 1 1 65,038,626 99
2 - 1 2 65,055,138 96
2 - 2 1 15,270,242 100
2 - 2 2 15,286,754 96

Performance metrics obtained on test data are synthesized in Table 2. As it can be
seen, 8 out of 9 CNNs proposed have accuracy higher than 80%. The columns TP (true
positive), FP (false positive), FN (false negative) and TN (true negative) accounts the
values of hits and misses in this binary task with 267 test examples.

2http://jupyter.org/



Table 2: Performance metrics on test data.

High-Level Architecture k j ` TP FP FN TN Accuracy Micro F-Score

1 1 - - 98 14 16 139 88.76% 0.8876
1 2 - - 104 27 10 126 86.14% 0.8614
1 3 - - 104 33 10 120 83.89% 0.8389
1 4 - - 87 26 27 127 80.14% 0.8014
1 5 - - 102 57 12 96 74.15% 0.7415
2 - 1 1 88 11 26 142 86.14% 0.8614
2 - 1 2 86 14 28 139 84.26% 0.8426
2 - 2 1 91 20 23 133 83.89% 0.8389
2 - 2 2 91 22 23 131 83.14% 0.8314

The CNN obtained from the first high-level architecture with k = 1 had best perfor-
mance amongst the models proposed, with training and validation losses and accuracies
detailed in Figure 2. This CNN also has the highest quantity of trainable parameters, but
does have sequential convolutional layers that perform high sequential feature map extrac-
tion. It may indicate that relevant TB characteristics can be extracted in few convolutional
levels.

Figure 2: Binary cross-entropy loss and accuracy per epoch collected in training and
validation phases of the CNN with best observed performance.

(a) Loss (b) Accuracy

The performance of the solution proposed by Jaeger et al. [Jaeger et al. 2014b]
with lung segmentation and feature extraction prior TB classification with Machine Learn-
ing models has accuracy of 78.3% and 84% for Montgomery Count and Shenzhen Hos-
pital X-ray sets, respectively, surpassing human specialists performance. Considering the
performance observed, 4 CNNs proposed also overcome this result, therefore exceeding
also human experts. It should be noticed that only the raw chest images are considered,
no pre-processing is made for purposes of feature extraction.

Upon combining these trained models under two homogeneous ensembles, the re-
sults obtained on test set are shown in Table 3. The Top-3 CNNs ensemble has superior
performance than the All CNNs ensemble, but with less operations. It was also expected
that the ensemble would have superior performance than the individual learners, but it



may not occurred because the learners are not distinct enough to capture non-overlapping
features.

Table 3: Ensembles performance on test data.

Ensemble TP FP FN TN Accuracy Micro F-Score

All CNNs 91 22 23 131 83.14% 0.8651
Top-3 CNNs 88 11 26 142 86.14% 0.8839

Taking a closer look in the Top-3 CNNs ensemble decisions, some particular cases
emerge. The 3 CNNs agreed correctly in 79.77% of the correct predictions performed
wheter positive or negative for TB. However, in 19 particular cases, all three CNNs had
unanimous wrong votes. Taking a closer look, 11 cases were of healthy examples mis-
taken with TB and the rest were labelled as healthy while being TB positive. Some of
these cases are shown in Figure 3.

Figure 3: Particular cases of wrong ensemble decision.

(a) Negative (b) Negative (c) Negative (d) Negative

(e) Positive (f) Positive (g) Positive (h) Positive

As it can be seen, in some of these cases the chest X-ray images are not central-
ized, have inverted color pattern and even comprehend one case of pediatric subject. It
represented challenges for both individual and ensemble learners. Regarding these im-
ages, most of these cases (68%) were from Shenzhen Hospital X-ray Set. So, although
differences in X-ray equipments technology, it is important to avoid inhomogeneities to
favour automatic approaches for pattern recognition.

6. Final Remarks
In this work we addressed TB detection in chest X-ray images with convolutional neural
networks. Nine different CNNs were proposed as well as two ensembles. By using re-
alistic medical images from two public available datasets accredited by radiologists, the



results obtained indicate an accuracy of 88.76%, surpassing techniques with feature ex-
traction and human expertise on this problem. The CNNs were proposed according to
two high-level architectures and in their training no data augmentation was used. The
best model for this task is an individual CNN whose computational cost is lower than the
corresponding ensemble.

As a contribution to further research on computer-aided TB diagnosis, the proposed
models with pre-trained weights on these datasets can be obtained in (GitHub Repo link).
Future work aim at parameters fine-tuning and also at training and testing other CNN
architectures. Other perspective considered in the next steps comprise an analysis of
performance of such models in pulmonary TB cases prevalent in Brazil.
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