
Deep Transfer Learning for Meteor Detection
Yuri Galindo1, Ana Carolina Lorena2

1Instituto de Ciencia e Tecnologia - Universidade Federal de Sao Paulo

2Instituto Tecnologico de Aeronautica

Abstract. In this paper, a pre-trained deep Convolutional Neural Network is
applied to the problem of detecting meteors. Trained with limited data, the
best model achieved an error rate of 0.04 and an F1 score of 0.94. Different
approaches to perform transfer learning are tested, revealing that the choice
of a proper pre-training dataset can provide better off-the-shelf features and
lead to better results, and that the use of very deep representations for transfer
learning does not worsen performance for Deep Residual Networks.

1. Introduction
EXOSS Citizen Science1 is a non profit organization that studies and monitors meteors in
Brazil. It has more than 50 active stations equipped with CCTV cameras that monitor the
night sky, automatically capturing the incidence of meteors and meteorites. Integrating
data from multiple stations and using some specific software, the EXOSS project is capa-
ble of acquiring information about the trajectory, velocity, and probable landing site of the
meteor. The cameras inevitably capture other events such as the passage of animals and
planes, fireworks, and atmospheric events. These captures must be classified and filtered,
a task which is usually accomplished manually. Part of the dataset used in this study was
provided by researchers from UNIVAP (Universidade do Vale do Paraı́ba). The UNIVAP
Observatory of Astronomy and Space Physics is one of the institutional EXOSS monitor-
ing stations, and the used dataset contains 130 images (50 meteors and 80 non-meteors)
that were captured by this station during the months of April and May, 2017. This dataset
was further enriched with images from other EXOSS stations, resulting in 1000 meteor
images and 660 non-meteor images.

Deep convolutional neural networks are capable of dealing with raw image data
without any feature engineering, and can surpass human performance in image classifica-
tion in some datasets [He et al. 2015]. With many parameters to be fitted, these networks
can take full advantage of large quantities of data when aided by modern GPUs, leading
to their current success in this realm. But this large quantity of parameters becomes a
problem when there is limited access to data, as in our case of study, in which case the
network is prone to overfitting the training data and achieving low predictive accuracy for
new data.

In this paper we apply deep convolutional neural networks to the problem of de-
tecting the presence of meteorites in the captured images. We mitigate the issues of train-
ing on a small dataset by making use of transfer learning. By training a deep network on
a large dataset and transferring the learned features, we were able to fine tune the network
on our data, achieving 96% accuracy and 0.94 F1 score. Different approaches to the use
of pre-trained neural networks are investigated.

1http://press.exoss.org/



The main contributions of this work are: the application of state-of-the art tech-
niques designed for large benchmarks in a novel small dataset; investigating the influence
of using a dataset more visually related to ours for pre-training; and studying the influ-
ence of network depth for learning transferable features, experimenting with very deep
representations.

This paper is structured as follows. Section 2 presents related work. Section
3 describes the materials and methods employed. Section 4 presents the methodology
adopted in the experiments, whose results are shown and discussed in Section 5. Section
6 concludes this paper.

2. Related Work

Using the high level features learned by training a deep convolutional neural network
(CNN) in a large dataset to substitute hand crafted features has seen considerable success.
[Sharif Razavian et al. 2014] used a linear Support Vector Machine (SVM) classifier ap-
plied to the features learned by a deep CNN trained on ImageNet to other domains, achiev-
ing good predictive results. This approach was capable of outperforming problem specific
architectures in tasks such as object classification, scene classification, recognition of bird
species, recognition of flower types, and attribute detection. [Girshick et al. 2014] signif-
icantly surpassed contemporary approaches to object detection by using CNN features in
the classification.

[Donahue et al. 2014] also experiments with features learned in ImageNet, and
applied SVM classifiers to layer activations in order to outperform contemporary ap-
proaches in object and scene classification tasks. In another experiment, the learned
features are compared to SURF, an interest point detector and descriptor that achieved
success in object recognition. The experiment compared the prior solutions to a domain
adaptation task using the original SURF provided features, to the same models with the
CNN learned features as input. The use of CNN features improved the predictive perfor-
mance of the models by more than 60%.

Other works investigated the impact of pre-training in databases more related to
their goal, when compared to Imagenet. [Zhou et al. 2014] significantly outperformed
[Donahue et al. 2014] and [Sharif Razavian et al. 2014] in the scene classification task
by building a large scene-centric database, and using it for pre-training. They concluded
that the features learned from training in an object-centric database are different from
those learned in a scene-centric one. Our work differs by comparing performance of
networks trained on two different object-centric datasets, of which the main difference
is the presence of color and the complexity of the images, rather than the problem goal
itself.

[Yosinski et al. 2014] and [Azizpour et al. 2016] studied the influence of network
depth on feature transferability. The first work found that increasing network depth can
worsen the performance on the target task, but showed this problem to be solvable by
fine-tuning, in which case the added depth can improve performance. The second work
concluded that increased network depth does not harm predictive performance. Both
papers analyzed networks as deep as 14 layers, while in this work the shallowest model is
comprised of 18 layers.



3. Tools and Methods
Convolutional neural networks work by grouping weights in kernels, also known as filters
or feature detectors. A kernel is a small matrix, comprised of weights for a neighbourhood
of pixels. Each filter is applied to the whole image in a process called convolution, result-
ing in an image in which each pixel value is the result of the sum of the pixel values in its
neighbourhood from the original image, weighted by the kernel. The results of this filter
go through an activation function, resulting in another image called an activation map,
that indicates how much the feature detected by the filter was present in that point. Each
map is interpreted as an image channel by the next kernels. The first filters learn general
purpose features, such as the presence of edges and curves, while deeper filters will learn
more abstract features such as recognizing a nose. The use of max-pooling reduces the
size of activation maps between layers, and the small activation maps of the last layers
can be used as high level features for classification algorithms such as SVM. In our case
a 2 layer neural network with fully connected layers is used.

There is a considerable resemblance regarding the basic and most general fea-
tures learned by CNNs [Yosinski et al. 2014]. Since these are the most important to
our case, distant from the original Imagenet dataset, we considered that any architec-
ture capable of performing well on Imagenet is a good candidate for weight transfer. We
considered some architectures with good results on the object classification task, such
as [Szegedy et al. 2015], capable of achieveing 7.89% top-5 single model error on Ima-
geNet, [Simonyan and Zisserman 2014] that reports 7% error with the same metrics, and
[He et al. 2015] and [He et al. 2016], that surpassed human performance with 5.71% and
4.49% of error rates respectively. The deep residual nets described in [He et al. 2016],
also known as Resnets, were chosen due to their superior performance and their capabil-
ity of sustaining very deep architectures.

Resnets differ from regular neural network architectures by implementing shortcut
connections that perform identity mapping, as demonstrated in Figure 1. The input of a
layer is summed to the input of a deeper layer, distant by two or more layers. This makes
the preceding layers approximate a residual between the original input and an underlying
mapping of the data, instead of directly approximating an underlying mapping. This
strategy makes very deep networks viable, overcoming the problem of degradation that
plain networks face when the number of layers is largely increased.

Instead of testing various learning rates for our models, we employed a learning
rate finder, described in [Smith 2017]. The idea behind this method is to perform a gradual
increase of the learning rate, while monitoring the accuracy. Our approach differed by
plotting learning rate versus cross entropy loss, making it possible to identify for which
learning rate the loss stops decreasing. The adequate order of magnitude for the learning
rate is the largest for which the loss still decreases.

We further modify the learning rate by applying cyclic annealing, using
a technique named Stochastic Gradient Descent with warm restarts, developed by
[Loshchilov and Hutter 2016]. At the start of each cycle, the learning rate is restored
to its original value, and is then reduced in a cosine shaped manner as the network works
through the batches. The restarts allow the model to explore a multitude of local minima
of losses, while the annealing facilitates the convergence to a local minimum. The length
of the cycle is multiplied by a constant at each iteration, gradually focusing the model on



Figure 1. Use of shortcut connections in residual networks.

an optimal region.

As a weight optimization algorithm, we opted for ADAM [Kingma and Ba 2014].
ADAM works by calculating moving averages of the gradient and squared gradient, es-
timating the mean and uncentered variance of the objective function’s gradient (the 1st
moment and the 2nd raw moment, respectively). In [Kingma and Ba 2014] experiments,
ADAM is shown to perform better than other optimization algorithms in the task of train-
ing CNNs in MNIST and CIFAR10 databases, beating established competitors such as
SGD with momentum, AdaGrad, RMSProp and AdaDelta.

4. Experimental Methodology
The original dataset provided by the UNIVAP monitoring station contained 130 images,
80 non meteors and 50 meteors. Most of the non meteor examples from this station were
planes, with some storm captures. Examples from this dataset are available in Figure
2. In order to attain more confidence in the results, the dataset was expanded by ob-
taining images available on the internet. Examples of meteors and atmospheric events
were downloaded from the EXOSS website, and examples of miscellaneous objects were
found in online archives of participants captures. The extended dataset is comprised of
1000 meteor images and 660 images of other objects in the night sky.

Figure 2. Meteor capture (left) and non meteor capture (right).

We investigated the effect of run-time augmentation on our models. Before being



fed to the network, each image is slightly zoomed, rotated in a random angle, and has a
chance of being flipped. This augmentation is a way of artificially increasing the training
set, and aids the model in learning angle invariance. We tested and compared models
without data augmentation, with on side data augmentation (small angles and horizontal
flip), and complete data augmentation. Since our experiments indicated that data aug-
mentation worsens performance in this meteor classification case, models were trained
without any data augmentation.

Most experiments involve fine tuning a pre-trained CNN, rather than learning
the weights from scratch. The network is at first trained on a large dataset, in the case
Imagenet or Fashion-MNIST. Fashion-MNIST [Xiao et al. 2017] is a benchmark dataset
comprised of 70,000 images of various fashion products, intended to be a more complex
substitute to the original MNIST digit recognition dataset. Similar to MNIST visually
and in structure, the images have low resolution and the objects of interest are presented
in grayscale against a black background. Since Fashion-MNIST is comprised of simpler
black and white pictures, it is closer to our CCTV captures of the night sky. Imagenet, on
the other hand, is a large visual object recognition dataset which presents colorful images
with more clutter and detail.

The pre-training optimizes weights for the convolutional layers that are capable
of extracting meaningful features from the raw data. The weights of the convolutional
layers will be reused for the meteor detection, while the final and fully connected, non
convolutional layers will be replaced with random weights to be trained in the meteor
dataset. This process is the core of transfer learning, allowing us to use the knowledge
learned in Imagenet or Fashion-MNIST for a different task. The features learned by the
weights of the convolutional layers are used by the new fully connected layers, that learn
how to use these features in the meteor detection context. We compare this approach to
networks trained from scratch, to assess the usefulness of transfer learning.

After finding optimal weights for the fully connected layers on top of the learned
features, we can also alter the convolutional weights, training the network as a whole.
This process is called fine-tuning, and will find features that are more suited for the meteor
dataset in lieu of Imagenet or Fashion-MNIST, possibly providing better results than using
the features as they are. We kept the first 6 convolutional layers frozen because the very
first layers tend to find general features, suitable for any dataset. We considered that a
dataset as small as ours would not be capable of further optimizing these general features,
trained on a very large dataset and capable of achieving very high accuracy in various
domains.

Although the meteor images are in black and white, we used CNNs architectures
designed for RGB images in the case of Imagenet. This allowed us to use the weights
trained on Imagenet available on the PyTorch framework, that would require a few days
to train from scratch if we decided to convert Imagenet into black and white before train-
ing. The conversion of the meteor images to RGB works by replicating the pixel intensity
of one original channel to all three RGB channels. It is worth noting that since the con-
volution operation will output a single channel image for each filter, the only difference
in the network architecture would be the dimension of the first layer filters, that would
be reduced from depth three to depth one. [Hafemann et al. 2015] also pre-trained a net-
work using a colored dataset for an application in a black and white context, but decided



instead to convert the pre-training images into black and white beforehand. They reported
an insignificant performance gain.

The architectures used here are the same as described in [He et al. 2016], with a
difference in the fully connected layers. While [He et al. 2016] uses an average pooling
layer followed by a fully connected softmax layer, we apply another fully connected layer
before the softmax layer. This layer is able to combine the convolutional features in
another level of abstraction, useful when working without fine-tuning. The architectures
used are available in 1. The filters are applied with stride 1 for layers that maintain the
previous output size, and stride 2 for layers that reduce the output size.

Table 1. Network architectures

In order to assess model accuracy, precision and recall, we used a complete 10-
fold stratified cross validation. The data was divided into 10 folds, each maintaining
the original proportion of meteors to non meteors. Afterwards, each fold is used for
testing while the other nine folds are used for training the model. We compare model
performance based on accuracy, averaged over the 10 runs.

5. Experimental Results

We compared the performance of different approaches in our meteor detection problem,
investigating the efficacy of various methods for our particular case. These results can
give us an indicative of how these techniques behave in a particular setting with few total
images, validating previous studies on larger datasets. All experiments were performed on
a NVIDIA Quadro P4000 GPU, equipped with 8GB memory and 1792 parallel workers.

Dropout was used in the fully connected layers, with a 50% dropout rate on the
first fully connected layer and 25% on the second. In the Imagenet experiments, the learn-
ing rate finder procedure suggested a learning rate of 0.03 for training the fully connected
layers, and a learning rate of 0.001 for fine-tuning. For training from scratch on the me-



teor dataset, a learning rate of 0.0002 was used, and a learning rate of 0.01 was used for
training in Fashion-MNIST.

5.1. Data Augmentation

Run-time data augmentation worsened the results in our experiments, as shown in Ta-
ble 2. This indicates that the transformations can be incompatible to the data, producing
unrealistic trajectories that worsened classification. The issue is more pronounced when
complete flipping and rotation are applied, since the resulting trajectories are more distant
from the originals. Fine tuning also failed in this particular case, whilst in the other cases
(no augmentation and on side augmentation) the results were improved after fine-tuning.
The on side transformations preserve the trajectory better, and give results similar to using
original non-augmented data. This first experiment was performed with deep networks of
18 layers pre-trained on the ImageNet dataset.

Table 2. Accuracy for different forms of run-time augmentation
No Augmentation On side Augmentation Complete Augmentation

No fine tuning 89±2% 88±3% 88±3%
With fine tuning 91±1% 90±3% 87±3%

5.2. Network depth

We compared the accuracy achieved by networks with different depths (namely 18, 34,
50 and 101), all trained in ImageNet. As shown in Figure 3, we observed an improvement
in the results when using deeper networks even when fine tuning is not performed. This
is consistent with claims of [Azizpour et al. 2016] that the use of deeper features does not
worsen representation, indicating that it holds for even very deep networks.

0 18 34 50 101
84

86

88

90

92

94

96

98

100

Network depth

A
cc

ur
ac

y

Impact of network depth

No fine tuning
With fine tuning

Figure 3. Comparison of classification accuracy for Resnets of different depths.



5.3. Pre-training

In this section we present comparative results of pre-training on two distinct datasets:
Fashion-MNIST and ImageNet. We found that the use of Fashion-MNIST led to better
off-the-shelf features, ultimately leading to better results, as seen on Table 3. The fea-
tures learned in Fashion-MNIST outperformed the features learned by fine tuning a neural
network previously trained in ImageNet, improving the F1 score of the final model from
91±2 to 94±1 . We compare here the deep network of 50 layers trained in ImageNet
to a deep network of 18 layers trained on Fasion-MNIST and one trained from scratch.
We opted for an 18 layer network for Fashion-MNIST because training on this dataset is
computationally intensive, while in Imagenet the trained weights are available online. We
also chose 18 layers for training from scratch due to overfitting in such a small dataset.
The pre-training approaches were better than training a network from scratch. The ob-
tained results highlight the importance of using initial networks which are pre-trained on
datasets with more similar characteristics to those of the transferred domain.

Table 3. Accuracy between different pre-training datasets
ImageNet Fashion-MNIST No pre-training

No fine tuning 92±2% 94±1% -
With fine tuning 93±2% 96±1% 82±3%

5.4. Fine tuning

Fine tuning was shown to improve performance in our case study, as seen in Tables 2 and
3 and also in Table 4, being consistent with previous literature [Girshick et al. 2014]. Ta-
ble 4 presents the impact of fine tuning in the deep networks of 18, 34, and 50 layers pre-
trained in ImageNet, and in the deep network of 18 layers pre-trained on Fashion-MNIST.
All models benefited from fine-tuning, reinforcing the usefulness of the approach.

Table 4. Impact of fine tuning across different models
ImageNet 18 ImageNet 34 Imagenet 50 Fashion-MNIST

No fine tuning 89±2% 88±3% 92±2% 94±1%
With fine tuning 91±1% 91±2% 93±2% 96±1%

6. Conclusion

In this paper, state-of-the-art techniques were applied in a novel image classification prob-
lem: the recognition of images containing meteor captures. Different deep learning ap-
proaches were explored and compared, such as the use of fine tuning, the choice of a
different pre-training dataset, the depth of the network, and the use of data augmentation.
Our investigations lead to results consistent with previous literature, despite the relative
small size of our dataset compared to those commonly used in the literature.

By pre-training a deep network in a black and white object-centric dataset, more
similar to our captures of the night sky, we successfully achieved a low error rate (4 %)
on our study case. We now plan to deploy the obtained model on the UNIVAP monitoring



station, filtering meteor images for the specialists. It would be also interesting to em-
ploy incremental models which may take advantage of new validated images and increase
further the predictive performance achieved.

References
Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A., and Carlsson, S. (2016). Factors

of transferability for a generic convnet representation. IEEE transactions on pattern
analysis and machine intelligence, 38(9):1790–1802.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). Decaf: A deep convolutional activation feature for generic visual recognition.
In International conference on machine learning, pages 647–655.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587.

Hafemann, L. G., Oliveira, L. S., Cavalin, P. R., and Sabourin, R. (2015). Transfer learn-
ing between texture classification tasks using convolutional neural networks. In 2015
International Joint Conference on Neural Networks (IJCNN), pages 1–7.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Loshchilov, I. and Hutter, F. (2016). SGDR: stochastic gradient descent with restarts.
arXiv preprint arXiv:1608.03983.

Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). Cnn features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 806–813.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In Applications
of Computer Vision (WACV), 2017 IEEE Winter Conference on, pages 464–472. IEEE.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2015). Going deeper with convolutions. In Computer Vision
and Pattern Recognition (CVPR).

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features
in deep neural networks? In Advances in neural information processing systems, pages
3320–3328.



Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning deep
features for scene recognition using places database. In Advances in neural information
processing systems, pages 487–495.


	Introduction
	Related Work
	Tools and Methods
	Experimental Methodology
	Experimental Results
	Data Augmentation
	Network depth
	Pre-training
	Fine tuning

	Conclusion

