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Abstract. This paper describes the application of KIII, a biologically more
plausible neural network model, for forecasting economic time series. K-sets
are connectionist models based on neural populations and have been used in
many machine learning applications. In this paper, this method was applied to
IPCA, a Brazilian consumer price index surveyed by IBGE. The values ranged
from August 1994 to June 2017. Experiments were performed using four non-
parametric models and seven parametric methods. The statistical metric RMSE
was used to compare methods performance. Freeman KIII sets worked well as
a filter, but it was not a good prediction method. This paper contributes with the
use of non-parametrics models for forecasting inflation in a developing country.

1. Introduction

This paper describes the application of a connectionist approach, Freeman K-sets, for
predicting Brazilian economic time series. These time series were extracted from the
Time Series Management System of the Central Bank - v2.1.

Economic time series are useful for two purposes. The first one is the possibility
of using the time series data to make future forecasts. This is the focus of this paper. The
second one is to provide a way of presenting the facts associated with the movements of
the economic time series [Harvey 1985]. Economic time series also serve for the Central
Bank to plan economic policy [Stock and Watson 2005].

The forecast of the consumer price index is a rather complex task because the
inflation indices of developing countries are high and volatile. Before the Plano Real,
they were extremely high and much more volatile, which made it impossible to predict
these indices. Soon after the Plano Real, inflation declined and its volatility too, but both
remained high, which is an ideal scenario for neural networks, especially Freeman K-
sets, to predict more realistic values than the other methods. Only in recent years has
volatility declined further, allowing exponential smoothing methods to perform better in
predicting price indices. But even so, this volatility is high enough that Freeman KIII-sets
can perform well in this task.

Freeman K-sets form a nested hierarchy of population dynamics models of ~ 10*
neurons with ~ 10® synapses that mediate between the microscopic activity of small
neural networks and the macroscopic activity of the whole brain. The topology of the
connections is modeled by networks of populations of excitatory and inhibitory neurons.
Dynamics are approximated by nonlinear parts of ordinary differential equations (ODE),



with distributed parameters to describe dynamics of neural populations starting from mi-
crocolumns to hemispheres [Kozma and Freeman 2001]. In this work we will use a hier-
archical approach to spatio-temporal neurodynamics, based on Freeman K-sets.

The objective of this work is to verify if the use of Freeman K-sets contributes to
more realistic previsions of economic time series in relation to models that already exist
in the scientific literature because these models work well with problems where there are
unstable time series and difficult to predict, which is the case of forecasting Brazilian
economic time series.

For the comparison, four non-parametric models were used (KIII, continuous
kNN, classical ANN, and SVM) and seven parametric methods: ARIMA, SARIMA,
Moving Average, SES, Holt, Additive Holt—Winters, and Multiplicative Holt—Winters.
KIII is expected to perform better in most experiments. Performance is evaluated using
the RMSE metric. It should be noted that K models have already been used successfully
for the prediction of time series [Kozma and Beliaev 2004][Li and Kozma 2003].

The remainder of this paper is organized as follows. Section II describes the theo-
retical background, including a description of K-sets model and IPCA index. Section III
introduces the proposed methods. Section IV shows the results obtained with the execu-
tion of our experiments. Section V presents concluding remarks.

2. Theoretical Background

2.1. K-sets models

K-sets were introduced by Walter Freeman in the 1970’s, and their name came from
Aharon Kachalsky, one of the first researchers of neural dynamics [Freeman 1975]. K
models use ordinary differential equations with distribuited parameters to describe dy-
namics of neural populations starting from microcolumns to hemispheres. The hierar-
chy of models is constructed starting from a basic unit (K0O). Networks of greater neu-
ral complexity are constructed from this base unit (Figure 1). K-sets models represents
a mesoscopic level, intermediate between microscopic neurons and macroscopic brain
[Kozma et al. 2013].

Figure 1. Hierarchy of neural network K models, from KO to KIV - Adapted from
[Rosa and Piazentin 2016]

KO sets represent the smaller mass of non-interacting neurons and are the
more basic building blocks for K-sets [Freeman 1975]. They represent a neu-
ral population of about 10,000 neurons and are motivated by cortical micro-
columns, the structure of columns of neurons in the brain. The KO sets are



governed by a point attractor that remains in equilibrium except when disturbed
[Kozma et al. 2013][Rosa and Piazentin 2016][Piazentin and Rosa 2015].

KI sets are the next level in the hierarchy of models of neuron populations. KI
sets are the simplest form of interaction among neuron population and are built by two
inhibitory or excitatory KO sets with positive feedback. The KI dynamics is a convergence
to the non-zero fixed point. If a KI has the necessary connection density, then it is able
to maintain a non-zero state of background activity by mutual excitation (or inhibition)
[Kozma et al. 2013][Rosa and Piazentin 2016][Piazentin and Rosa 2015].

KII sets are formed by interactions betweens KI sets with negative feedback.
KII sets have four types of interactions: excitatory-excitatory, inhibitory-inhibitory,
excitatory-inhibitory, and inhibitory-excitatory. They give rise to limit cycle oscillations
due to their feedback between neural populations. KI sets that form the KII, when ac-
tive, oscillate at a characteristic frequency in response to an input stimulus. The more
interesting behavior of KII arises when it is built by KIs with inverse polarities. The con-
nections of the KII have fixed weights, and KlIs form oscillators when these connections
are configured [Kozma et al. 2013][Rosa and Piazentin 2016][Piazentin and Rosa 2015].

KIII is the lowest level of behavioral analysis and the first level with practical
applications of K-sets neural networks. KIII sets are built of three interacting layers of
KII. The first layer corresponds to olfatory bulb (OB) and has the size of the input of
the network. The OB bulb then connects to anterior olfactory nuclei (AON) and prepir-
iform cortex (PC), the second and third layers respectively. AON and PC have con-
nections between themselves and back to the OB. As the output is dispersed in the PC
layer of the KIII, a second algorithm is typically used to translate or classify this out-
put. The most commonly used algorithms for this task are the k-nearest neighbors and
the linear discriminant analysis. Learning in KIII is done through the Hebbian learn-
ing rule [Piazentin and Rosa 2014]. KIII sets generate chaotic, broadband oscillations
as background activity by the negative and positive feedback combined between vari-
ous populations of KII with incommensurate frequencies [Kozma et al. 2013]. KIII also
can serve as an associative memory, encoding input data in spatio-temporal AM patterns
[Kozma and Freeman 2001].

2.2. TPCA

IPCA (indice de Precos ao Consumidor Amplo - Broad National Consumer Price In-
dex) is a consumer price index surveyed by IBGE (Instituto Brasileiro de Geografia
e Estatistica - Brazilian Institute of Geography and Statistics), the official statisti-
cal institute of the Brazilian government. IPCA is part of SNIPC (Sistema Nacional
de Indices de Precos ao Consumidor - National System of Consumer Price Indices)
[Instituto Brasileiro de Geografia e Estatistica 2017].

SNIPC is a IBGE’s system which consists of a combination of processes designed
to produce consumer price indices. The system covers the metropolitan areas of Rio de
Janeiro, Porto Alegre, Belo Horizonte, Recife, Sao Paulo, Belém, Fortaleza, Salvador,
Curitiba, and Vitdria, as well as Distrito Federal and the municipalities of Goiania and
Campo Grande. The survey began in January 1979 for Rio de Janeiro; June 1979 to
Porto Alegre, Belo Horizonte and Recife; January 1980 to Sdo Paulo, Brasilia and Belém;
October 1980 to Fortaleza, Salvador and Curitiba; January 1991 to Goiania; and January



2014 to Vitéria and Campo Grande [Instituto Brasileiro de Geografia e Estatistica 2017].

The integral collection of prices occurs every 30-day period that is segmented,
without interruption, in 4 subperiods. Each of them lasts about 7 days with dates
defined by the SNIPC Annual Collection Calendar. The prices obtained are those
actually charged to the consumer for cash payment. The survey is conducted in
commercial establishments, service providers, households, and utility concessionaires
[Instituto Brasileiro de Geografia e Estatistica 2017].

The target population of the IPCA refers to families living in ur-
ban areas of the SNIPC regions with incomes of 1 to 40 minimum wages
($245.00[cal 2018b] to $9,800.00[cal 2018a], aproximately) regardless of income source
[Instituto Brasileiro de Geografia e Estatistica 2017]. Figure 2 shows IPCA indices from
August 1994 to June 2017.
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Figure 2. Broad National Consumer Price Index (IPCA) - Adapted from
[Brazilian Central Bank 2017a]

3. Proposed Working Methods
3.1. Datasets

The data used in this work were obtained from [Brazilian Central Bank 2017b]. From
that, a CSV file in English and another in Portuguese are downloaded both containing
values from August 1994 to June 2017. Values prior to August 1994 were disregarded
due to the high magnitude and instability of the index in that period. The CSV file has
277 rows: one header, one footer, and 275 rows with the index data, each corresponding
to one month. The data lines have two columns, the month/year and the index value one.

3.2. Overview

An overview of the forecasting process used in this paper is shown in Figure 3 and de-
scribed below.

Initially, the CSV file in English was read by R and the CSV file in Portuguese was
read by Scilab. The values was converted to double type. After conversion, the absolute
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Figure 3. Overview of the Forecasting Process Used in This Paper

value of the smallest vector element and an extremely small positive number were added
for all values to be positive, because some methods do not work with negative inflation.
The header, footer, and month/year column were removed.

The series was divided into three subsets: set A, which contains the months from
August 1994 to March 2002 and size of 92 months, set B, from April 2002 to October
2009 and size of 91 months, and the set C, with the indices from November 2009 to June
2017 and size of 92 months. Gaps at the end of each series were withdrawn, so that they
could be used to compare forecasts with real values.

Finally, we generated the test series, which are nothing more than the data im-
mediately after the series without gaps, until the maximum forecast horizon used in this
paper, which was 6. Once the base was created, the program was started. The RMSE of
all predictive methods were set to a very large maximum value, in this case 10%°.

The KIII method required the creation of training, validation, and reference sets.
These sets were created using index matrices, which in turn were generated through index
vectors. We also created a set of tests, which is the set of validation transposed.

3.3. Models

Forecasts were started using Moving Averages. The parameter size of seasonal period
from 3 to 12, in steps of 2. The input was the series without gaps. Specific test series
were required for this method, due to the fact that there were no moving average values
at the extremes of the series.

Subsequently, predictions were made using the SES method. This method re-
ceived as input the time series without gaps, the forecast horizon and the parameter a.
The parameter o ranged from 10~% (minimum allowed by R) to 1, in steps of 0.05.

In the time series prediction using the linear method of Holt, there are two param-
eters, o and 3. Both ranged from 10~ to 1, in steps of 0.05. For the method to work,
£ must be less than or equal to «. The prediction was made, for each combination of «
and /3, passing to the method the time series without the gap, the forecast horizon, and the
parameters o and 3.

The predictive mode made by the additive and multiplicative methods of Holt-
Winter is quite similar. Both models have three parameters: «, (3, and . What differs
from one model to the other is the value of the seasonal variable. In the additive method,
this value is configured for additive and in the multiplicative method, for multiplicative. In
addition to these parameters, the models also receive the time series with the withdrawn
gap and the forecast horizon. The parameters o, (3, and ~ ranged from 10~ to 1, in
steps of 0.05. There are many combinations of «, (3, and  that prevent prediction. The
most trivial combinations were avoided by nested statement structures if. However, more



complex combinations are very difficult to avoid and need to be addressed using the try
command. When the prediction gave error, the forecast model returned an object of the
class try-error. When the class was different, the prediction was made.

At the end of each forecast, the value obtained is compared with the actual value.
The error is calculated and, from it, the RMSE. A smaller RMSE replaces a larger RMSE
stored in memory and, at the end, the smaller RMSE obtained is used.

At the beginning of the predictions using non-parametric methods, Root Mean
Square Error (RMSE) measurements of each model and set were started. As the goal was
to lower the values of this measure, they were initialized with the value 10%°. This value
was used as a very large value, and it was expected that all RMSE values that appeared
throughout the paper were smaller than it. If values greater than this initial measure
appeared, this value would be increased so that it was always a maximum value.

The first non-parametric method started was KIII. It is implemented in the object-
oriented paradigm. Then, at the beginning of the execution, an object of the class KIII
was created, having as parameter the size of the layer of Kll-sets. Other configurations
were then made and the network started.

The next step was the configuration of the counters to be used in the iterative loop.
Within the iterative loop, the parameters varied within a predefined range, based on the
work [Parmezan 2016].

The KIII objects were initially trained with the training sets and the results were
obtained by filtering the reference sets through the respective KIII sets, generating the
matrix kresult. To compare the prediction, we selected the last 15 indexes of the three
initial sets, A, B, and C, forming the matrix kprediction. Each column of the test set was
traversed by its respective KIII object and the results concatenated in a array kexp. The
three matrices, plus the number of nearest neighbors, were passed to kNN, which returned
a prediction result.

The process for the single KNN was simpler. The k value was varied from O to 10.
As parameters to kNN, the reference set, the training set, the matrix kprediction, and the
number of nearest neighbors (k) were passed.

Another non-parametric method used for the comparison was the classical arti-
ficial neural networks. To prepare the data for the forecast using this model, the raw,
training, and test data sets were initially normalized to the interval [0 1]. A variable cor-
responding to the value to be compared was separated to find out the accuracy of the
forecast. All datasets generated in this manner have been resized to the same size. The
sizes of the input and output layers followed the sizes of the data sets that went in and
out, and therefore only the size of the middle layer was varied. This size ranged from 3 to
11, which is the odd number immediately below 12, size of the seasonal period. Once the
network size has been defined, the weights have been initialized and adjusted, the tests
performed to define the network accuracy.

The last non-parametric model used was the SVM. The type of SVM used was
the nu-SVR with core-based radial function [Chang and Lin 2016]. In the use of this
model, two parameters were considered: the regularization parameter, which varied from
a very small positive number, close to zero, to 1, with a step of 0.25, and the gaussian



width of the radial base function, which varied 0.005 to 0.25, in a step of 0.05. To make
predictions, first the models were trained using a vector with random elements and normal
distribution, the standard training data already used in the forecast with classical neural
networks, the type of SVM, the type of core function, the normalization parameter and
the Gaussian width of the radial basis function. Next, the predictions were calculated by
moving to the Scilab function corresponding to the vector with the random elements, the
vector with the data and the object with the trained models.

At end of each forecast, the RMSE was calculated. The calculated value was com-
pared to the current value. If the value obtained was less than the value stored in memory,
the value obtained became the new value of RMSE. Otherwise, the RMSE remained as it
was.

4. Experiments and Results

Figure 5 shows the overall performance of the methods used in the comparison. Figure
6 shows the performance of the methods in the experiments made using only the non-
parametric methods and Figure 7 shows the performance considering only the parametric
methods. The results represented in the figures are those obtained by the best combi-
nations of parameters in each method. The non-parametric methods used were KIII Set
with kNN (KIII), continuous kNN (kNN), Artificial Neural Networks (ANN) and Sup-
port Vector Machines (SVM). The parametric methods used were AutoRegressive Inte-
grated Moving Average (ARIMA), Seasonal AutoRegressive Integrated Moving Average
(SARIMA), Moving Average (MA), Simple Exponential Smoothing (SES), Holt Linear
Method (Holt), Additive Holt-Winters (AHW) and Multiplicative Holt-Winters (MHW).
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Figure 4. Comparison between the performance of Klll and kNN

The comparison measure used was the Root Mean Squared Error (RMSE). It was
chosen because the square root smoothes the values of the MSE measure, making it easier
to be understood by human readers, without losing the ability to compare performance.
The equation of the measure can be seen just below (Equation 1).

RMSE — \/Z?:l(!)t - yt)2 (1)
n

where ¢, is the predicted value for time t, y; is the actual value of time t and n is the
number of predictions.
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Figure 6. Non-parametric Methods Winners

Our initial objective and hypothesis was that the application of a KIII filter would
improve the performance in the forecast of economic time series. From the results re-
ported here, this hypothesis was partially confirmed, since the performance of KIII with
kNN exceeded the performance of predictions made only with kNN, with two excep-
tions (Figure 4), demonstrating that it is a good filter. However, the KIII overcame the
other methods only in four situations, tying with SARIMA and Additive Method of Holt—
Winters (Figure 5).

Among the non-parametric methods, the KIII performed well, winning in nine
situations, surpassing all other methods (Figure 6). The single continuous kNN, in most
cases did not perform well, surpassing the other non-parametric methods in only two
situations (Figure 6). RNAs and KIII had the best performance in the oldest indices,
showing that inflation was more unstable during this period. In the more recent indexes,
other methods had a greater chance, due to the less instability of the series, however the
neural networks continued to dominate.

In the parametric methods, the Holt—Winters method was the winner because the
time series has a linear tendency and seasonality. It is unclear whether this seasonality
is additive or multiplicative, since in some cases the additive Holt—Winters won, and
in others it was the multiplying Holt—Winters who won. The (S)ARIMA methods also
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Figure 7. Parametric Methods Winners

performed well, especially the seasonal version, a fact that occurred due to the presence
of seasonality and the presence of autocorrelation among the elements of the series.

In the set A, among the non-parametric methods, the KIII filter had better per-
formance in three of the prediction horizons, the classic neural networks in two and the
kNN in one. Both the classical neural networks and the KIII filter are neural networks
and are more robust to noise and volatility. Since this data set contains the period with
the first months immediately after the Plano Real, IPCA volatility was still very high at
that time. Among the parametric methods, the additive method of Holt—Winters gained
in 2 prediction horizons, whereas the ARIMA, Holt linear, SARIMA and Multiplicative
Holt—Winters methods gained in one horizon each.

In set B, among the non-parametric methods, classical neural networks performed
better in four prediction horizons and KIII in two horizons. In this set, with respect
to parametric methods, the multiplicative methods of Holt—Winters, additive of Holt—
Winters, and SARIMA have gained in two horizons each. This makes it clear that the
series has seasonality. However, it is not clear whether seasonality is additive or multi-
plicative.

In the set C, among the non-parametric methods, the biggest winner was the KIII,
which won all the first four forecast horizons. The classical neural networks overcame
horizon 5, more difficult. The kNN overcame horizon 6, very difficult and randomly pre-
dicted. In the parametric methods, there was the victory of the method of Holt—Winters,
being 2 horizons for the additive and one for the multiplicative. SARIMA won on two
horizons and SES on horizon six. The SES method won in horizon 5. The SARIMA
method won in horizon 6, the most difficult to predict among all the horizons of this
research.

5. Conclusion

The main objective of this paper was to demonstrate that a biologically plausible connec-
tionist approach, Freeman K-sets, more specifically the KIII level, provides more realistic
predictions for the economic time series of a developing country, more specifically a
Brazilian time series of economic activity, a consumer price index, the Broad Consumer
Price Index, collected and released monthly by the Brazilian Institute of Geography and



Statistics.

Throughout the development of this paper, predictions were made using KIII,
which were compared with other state-of-the-art techniques, based on [Parmezan 2016]
and [Gooijer and Hyndman 2006]. At the end of the research, the hypothesis was par-
tially verified, because the KIII sets worked well as a filter to improve the performance of
the continuous kNN. However, they outperformed other techniques tested in only a few
results, indicating that this is not a good regression model.

As a future work, it is proposed to use the KIII sets as a filter not only for kNN
but also for other techniques in order to confirm if the low performance of KIII was due
to the continuous kNN regression algorithm or to the KIII filter itself. Another possibility
of continuation of the work would be the use of other similarity prediction methods, such
as KNN-TSPI [Parmezan and Batista 2015] and kNN-Time Series Prediction (kNN-TSP)
[Ferrero 2009]. We intend to remake the experiments, considering more advanced semi-
parametric and non-parametric methods, that are used in the economy for the forecasting
of time series, and to compare them with the forecast made using KIII.

It is also intended to use techniques for parameter estimation, such as holdout
validation, cross validation and Box-Jenkins method, to obtain more optimized parame-
ters and better performance. An interesting future work would be a more comprehensive
empirical assessment, based on the data sets available in the ICMC-USP Time Series Pre-
diction Repository [Parmezan and Batista 2014]. An interesting research question would
be the in-depth study of K-sets, especially the KIII level, with the aim of creating a new,
better-performing variant based on Freeman K-sets.
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0,0023299

0,0053654

0,2933041

0,1300000

0,0366433

0,2826099

0,0266770

0,0010083

0,0038394

0,0140000

0,2210000

0,1882608

0,0699648

0,2182344

0,0013951

0,0058812

0,0586385

0,0441788

0,1130154

0,0000153

H=5

KIII

KNN

ANN

SVM

ARIMA

SARIMA

MA

SES

Holt

AHW

MHW

0,0005666

0,0300000

0,0035916

0,7653237

0,1010652

0,0000000

0,1183606

0,1155048

0,0011275

0,0948402

0,0462471

0,0000000

0,0240000

0,0001754

0,5723659

0,1995173

0,0004853

0,1564554

0,1926099

0,0713806

0,1400928

0,0900865

0,1160000

0,3210000

0,0922634

0,5970874

0,3513492

0,0026639

0,0258530

0,1686385

0,1518710

0,1145268

0,0197270

H=6

KIII

KNN

ANN

SVM

ARIMA

SARIMA

MA

SES

Holt

AHW

MHW

0,0943333

0,2080000

0,0069655

0,7123337

0,2571433

0,0374895

0,0111151

0,2755048

0,0163146

0,1691680

0,0023422

0,0000000

0,0385000

0,0004977

0,6675241

0,1563772

0,1180324

0,1700000

0,1526099

0,1194382

0,0016472

0,0001998

0,0065000

0,0031429

0,1781777

0,6924037

0,1966414

0,0374863

0,0030527

0,0013614

0,0204368

0,3316610

0,2071911

Table 1. Results of each method for each forecast horizon and data set considering the best combination of parameters.




