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Abstract. Cartesian Genetic Programming (CGP) is often applied to design

combinational logic circuits. However, there is no consensus in the literature

regarding the more appropriate objective function when it is desired to minimize

the number of logic gates of the circuit. Thus, we analyze here two strategies:

the minimization of the number of logic gates and the maximization of the num-

ber of wire gates. Additionally, a biased mutation strategy for CGP, which were

previously presented and tested only to find a feasible solution, are extended

in this paper for the subsequent optimization step. Several configurations were

proposed and tested varying objective function and selection schemes. Compu-

tational experiments are conducted with some benchmark circuits to relatively

compare the proposed methods, and the results obtained are better than those

found by the other techniques considered here.

1. Introduction

In digital electronics, the design of combinational logic circuits (CLC) is a common task.

CLCs perform a desired function, defined by a truth table, and they are drawn using a

set of logic gates. This task requires complex knowledge of large collections of spe-

cific rules [Miller et al. 2000]. Over the years, several rules for optimizing CLCs have

emerged [Sasao 1993]. However, this task is still performed by humans, with the aid of

synthesis tools especially, when the focus is on designing complex circuits. Different al-

gorithmic methods have been developed in order to support human designers in this task,

and evolutionary computation is considered one of the most successful [Thompson et al.

1996]. One important feature of the evolutionary algorithms is the reduced interference

required from the specialist. Several approaches can be found in the so-called Evolvable

Hardware (EH) [Coello et al. 2000a, Coello et al. 2003b, Coello et al. 2000d, Garcı́a and

Coello 2002, Miller 2011b, Manfrini et al. 2016a] literature. Those approaches aim at

finding a functional solution that minimizes the number of logic gates. Recently, EH has

been questioned because its techniques are not showing to be competitive when the real

needs of practical applications are considered. The main justification is the scalability of



these techniques which makes the evolution of more complex circuits hard [Stepney and

Adamatzky 2017].

Currently, CGP (Cartesian Genetic Programming) [Miller 1999] is one of the

most efficient methods for the evolutionary design and optimization of combinational

logic circuits [Vasicek 2015, Miller 2011b]. Although the 4-bit multiplier is the most

complex circuit already evolved [Vassilev et al. 2000, Vasicek 2018], CGP is able to

minimize the number of logic gates of bigger circuits [Vasicek 2015].

In addition, different formulations can be found in the literature for the opti-

mization problem involving the design of combinational logic circuits [Coello et al.

2000a, Coello et al. 2000c, Stomeo et al. 2005, Karakatic et al. 2013]. In this con-

text, the present work intends to present and compare different optimization problems of

CLCs when using CGP, namely, (i) the minimization of the number of logic gates and (ii)

the maximization of the number of wire gates in the circuit.

It is important to notice that wire gates mean a boolean function where all the

outputs are equal of its inputs. We used the wire gates as an extension of a point of the

circuit and so the wire gates are not considered here as logic gates.

Also, as a set of constraints defined by the truth table must be satisfied, the design

of CLCs is a constrained optimization problem, and a constraint handling method has

been used to assist the search technique. A common strategy when using EH [Stomeo

et al. 2005] is the division of the problem into two, where the truth table is attempted

at first and then a solution that minimizes a given cost function is obtained. However, it

is not clear the importance of considering the objective function in the first step of the

evolution when two candidate solutions compared present the same quality with respect

to the constraints (error with reference to the truth table). Thus, two tournament selection

strategies are also analyzed here when the candidate solutions show the same constraint

violation: (i) the objective function is used to select the best candidate solution; and (ii)

the best design is randomly chosen.

A common version of CGP uses only a mutation operator. The point mutation

and the so-called SAM (Single Active Mutation) are mutation operators commonly found

in the literature. In addition, a biased mutation operator called Biased SAM [Manfrini

et al. 2016a] was also created, where a transition probability matrix (TPM) is used when

a logic gate is replaced. We propose here the use of Biased SAM (BSAM) after a feasible

solution is found, and its combination with SAM to generate the offspring.

Finally, the contributions of this work can be summarized as: (i) an analysis of

two objective functions, (ii) a study of two tournament selection strategies, (iii) the use of

two probability transition matrices during the search, and (iv) the combination of SAM

and BSAM during the search.

The remainder of this paper is organized as follows. Section 2 presents the prob-

lem of evolving combinational logic circuits and Section 3 describes the Cartesian Genetic

Programming technique. The proposed approaches are presented in Section 4 and the re-

sults found in the computational experiments are analyzed in Section 5. Finally, Section 6

concludes the paper.



2. Evolutionary Design of Logic Circuits

The design of Combinational Logic Circuits (CLC) uses the data from a truth table that

lists all possible combinations of inputs with their corresponding outputs [Manfrini et al.

2016a]. A solution of this optimization problem must present the same outputs for the

inputs considered. Also, a set of available gates limits the search space, and a given

cost function is to be optimized. Human designers are limited to a set of conventional

rules and they commonly consider hierarchically structured systems. Simplification tech-

niques can be used, such as the Karnaugh map and the Quine-McCluskey computational

method [McCluskey 1956], in addition to heuristics, such as Espresso [Brayton et al.

1984]. These traditional techniques have limitations either in the number of variables al-

lowed or in the high computational cost. On the other hand, the automated design makes it

possible to transcend these restrictions and to explore a much richer space of possibilities

through evolutionary computation. In the meantime other difficulties appear; for example,

the problem of scalability that is related to the increment in the size of the chromosomes

required to represent complex solutions [Vasicek and Sekanina 2015]. Moreover, another

difficulty is related to the processing time of the objective function evaluations, which

grows exponentially with the number of inputs [Miller 1999].

Different ways of evaluating individuals and selecting them are found in the lit-

erature. The selection of the best design from a set of candidate solutions is important

as evolutionary techniques frequently require this decision to move through the search

space. Coello and collaborators developed two genetic algorithms, called NGA [Coello

et al. 2000c] (n-cardinality Genetic Algorithm) and MGA [Coello et al. 2000a] (Multi-

objective Genetic Algorithm). Both methods use an encoding similar to that adopted in

CGP but with a genotype that increases its lines and rows when the feasibility criteria is

not satisfied within a given number of iterations; that is, the cardinality can be expanded

during the search.

The search of NGA operates within two stages: at the beginning of the search,

only the error with respect to the truth table is evaluated, and when a feasible solution

is found, the fitness function considers the number of wire gates (to be maximized). In

MGA, the population is split into m+ 1 subpopulations, where m represents the number

of rows of the truth table, and a penalty handling strategy that combines the values of the

number of matches between the outputs of the circuit and those of the truth table with the

number of wire gates of the circuit. Circuits with few inputs and few outputs (maximum

3-4) were used in their experiments and the results were compared to circuits created by

humans. MGA was able to find results similar to or better than those obtained by NGA,

and MGA used a lower number of fitness evaluations.

Stomeo et al. [Stomeo et al. 2005] use an evolutionary algorithm (1+λ) where the

chromosome encodes the cell functionality and its connectivity. The fitness is calculated

by a dynamic function that initially counts the number of hits with respect to the truth

table and later, when a feasible circuit is found, the number of logic gates is minimized.

That approach works by gradually decomposing a complex system into a series

of simpler ones when the evolution does not bring any improvement in terms of fitness

function value. These simpler blocks are evolved separately and then merged together

once completely developed. Circuits with a maximum of 16 inputs and 128 outputs were

used in the computational experiments. That approach required less fitness function eval-
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Figure 1. CGP individual with a 2 × 4 matrix, 3 inputs, and 2 outputs [Manfrini
et al. 2016a].
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Figure 2. Example of a CGP individual with levels-back=number of column. In-

active nodes are in gray and the continuous lines define the phenotype.

uations than other methods from the literature when designing larger CLCs; the largest

circuit obtained was a 6-bit digital multiplier.

Karakatic et al. [Karakatic et al. 2013] used a genetic programming technique

where each individual generated should be unique to enforce the diversity of the pop-

ulation. A penalty function is used here to evaluate the candidate designs, where the

objective function is the number of gates and the constraints are the errors with respect to

the truth table. The same circuits used to evaluate NGA and MGA are also considered in

the computational experiments of [Karakatic et al. 2013], and their approach was able to

find circuits with the same number of gates of those from the literature.

In general, there is no consensus in the literature regarding the most adequate

objective function and selection scheme for the design of CLCs when using EH. There-

fore, the present work intends to conduct a more in-depth study of the objective functions

and the tournament selection strategies. These analyses consider the approaches used

in [Coello et al. 2000a, Coello et al. 2000c, Miller 2011a].

3. Cartesian Genetic Programming

Miller [Miller 1999] proposed a new form of genetic programming, called Cartesian Ge-

netic Programming (CGP), in which programs are modeled as directed acyclic graphs

(DAG). In CGP, the genes that form the chromosome are integers, and they represent the

node inputs and the respective operation that the node performs. A candidate solution is

illustrated in Figure 1 and its phenotype is presented in Figure 2.

CGP has three user-defined parameters to represent a program: the number of

columns (nc), the number of rows (nr) of the matrix which encodes the graph, and levels-

back (lb), which limits the elements of the left side of the current one that can be used as

its inputs. Each node acts as an operator, and it can be arithmetic, logical, among others,

according to the nature of the problem addressed.

A variant of a simple evolutionary algorithm know as (1 + λ) is widely used by



CGP and usually λ is chosen to be 4 [Miller 2011a]. In each generation, one parent

generates all offspring using mutation, and the best solution among the parent and its

offspring is selected to form the next generation.

In CGP, the most used mutation operator is the point mutation [Miller 2011b].

However, when using the point mutation, the changes may occur in inactive nodes leading

to a lack of modifications in the phenotype.

These nodes which do not interfere in the output of the solutions are called inactive

nodes (gray nodes in Figure 2). The single active mutation (SAM) [Goldman and Punch

2013, Goldman and Punch 2015] is another common mutation operator, where (i) one

node and one of its elements (inputs or gate) are selected at random, and (ii) the value is

changed to another valid value. The steps (i) and (ii) are repeated until an active node is

modified. So SAM ensures that one active node is changed.

3.1. Biased single active mutation

In SAM, a given operator in a node of a candidate design is replaced by another randomly

selected using a normal distribution. Manfrini et al. [Manfrini et al. 2016a] developed a

new mutation operator called biased single active mutation (Biased SAM). The proposed

approach analyzes the behavior of the changes in the genotype during the evolutionary

process for a given set of (more simple) problems. Based on this analysis, a bias is

created to direct the modifications caused by mutation when CGP is applied to other

(more complex) problems.

Biased SAM (BSAM) uses a transition probability matrix to bias the changes

caused by mutation, and this matrix is created in a training procedure. For each run, every

time a child has a fitness value better than that of its parent (the child proceeds to the

next generation), we say that a beneficial mutation occurred. If this beneficial mutation

occurred by the change of the function performed by the gene (logic gate), the transitions

between operations observed in beneficial mutations are counted in a matrix. At the end

of the preliminary evolutionary process, we create the frequency table of all beneficial

transitions, giving rise to a probability distribution. This probability distribution is used

to guide the evolutionary process. Every time a function is to be changed in a candidate

design, this probability distribution is used.

4. The Proposed Approaches

In this section, the objective functions (minimize the number of logic gates and maximize

the number of wire gates) and the study regarding the tournament selection of the candi-

date circuits are described. Also, the use of the BSAM with two matrices are presented

and then, the proposed CGPs which use both SAM and BSAM are described.

4.1. Objective Functions and Tournament Selection Schemes for Handling

Constraints

The first objective function considered here is the number of logic gates (to be mini-

mized) [Miller 2011a, Karakatic et al. 2013]. As the circuit’s cost is highly connected to

the number of gates, it is a natural objective function when designing combinational digi-

tal circuits. On the other hand, as CGP adopts a fixed length genotype, another possibility

is to maximize the number of wire gates [Coello et al. 2000a,Coello et al. 2000c]. As the



wire gates of a circuit can be discarded (because this function does not change the states

from its inputs), a circuit with many wire gates corresponds to a circuit with a potentially

reduced number of logic gates. Although both objectives could be considered similar, it

can be noticed that when maximizing the number of wire gates in CGP one also increases

the number of active nodes and, according to [Manfrini et al. 2016b], more active nodes

facilitate the search for feasible circuits.

Besides the objective functions, we also consider here two ways to handle the

constraints using tournament selection schemes. In the first, the best candidate circuit is

the one which minimizes the error with respect to the truth table and, when the error values

of the circuits are equal, the one with the best value considering the objective function is

preferable. Otherwise (both values are equal), the best solution can be randomly selected.

This method is similar to that used in [Coello et al. 2000c]. Formally, given the designs

x1 and x2, the best one between them (xb) is

xb =























x1, if error(x1) < error(x2)
x2, if error(x1) > error(x2)
x1, if error(x1) = error(x2) and objfunc(x1) is better than objfunc(x2)
x2, if error(x1) = error(x2) and objfunc(x1) is worse than objfunc(x2)
r1,2, otherwise,

(1)

where “error” is the number of errors of the circuit when compared to the truth table,

“objfunc” is the objective function, and r1,2 selects x1 or x2 randomly. We labeled this

approach as “ME”: tournament selection with constraint handling by minimizing the error.

Another approach is that adopted in [Miller 2011a], where the search is divided

into two stages: (i) to minimize the error with respect to the truth table, and (ii) to optimize

the objective function but keeping the feasibility of the best solution. In this case, initially

only “error” is used to compare two candidate designs; if the error values are equal, then

the best one is selected randomly. Once a feasible solution is found, “objfunc” is con-

sidered when the two solutions compared are feasible; otherwise, the unfeasible one is

discarded. In other words, this approach initially searches for a feasible solution and uses

the tournament selection defined by Equation 1 after one is found. This selection scheme

is labeled here as “2P”.

One can notice that both the minimization of the number of logic gates and the

maximization of the number of wire gates can be used as “objfunc” in ME and 2P

schemes. Thus, 4 strategies arise.

4.2. Biased SAM with Two Matrices

The original Biased SAM mutation operator was used to guide the search process for

finding feasible circuits. Our approach extends this view and uses Biased SAM not only

for finding one solution that matches all values in the truth table, but it is also adopted

for the optimization stage of the search. However, it is important to highlight that the

changes that generate improvement with respect to the objective function are not similar

to those observed when minimizing the error of the circuits. Thus, we propose here the

use of two independent probability transition matrices: one to be used when minimizing

the error with respect to the truth table values (constraints) and another when the objective

function is optimized. The first matrix guides the search for circuits that match the values



of the truth table (as in [Manfrini et al. 2016a]), while the second matrix conducts the

optimization process to find better solutions according to the objective function.

Despite the good results presented in [Manfrini et al. 2016a], Biased SAM does

not perform well in the first stage of the search (searching for a feasible solution) dur-

ing our preliminary experiments. We believe that the reduced number of available gates

adopted here contributed to this decrease of performance.

4.3. CGP with both SAM and Biased SAM

Finally, as both SAM and BSAM perform well in different problems, the last proposed

approach is to use both during the search. ES is then modified to a (1 + λSAM + λBSAM)
evolution strategy, where λSAM and λBSAM are the number of solutions generated by SAM

and BSAM, respectively. It is important to highlight that two TPMs are used by BSAM,

as in the first proposed search method: one when minimizing the error with respect to the

truth table and another when a feasible solution is found. This approach combines the

qualities of both SAM and BSAM. In order to maintain the standard λ = 4 of CGP, we

use here λSAM = λBSAM = 2.

5. Computational Experiments

Computational experiments were performed to comparatively analyze the performance

of (i) the proposed search techniques, (ii) the objective functions considered (number of

logic gates and number of wire gates), and (iii) the constraint handling method when CGP

is used to design combinational logic circuits.

5.1. Test-problems

The following test-problems were used to comparatively analyze the approaches. The

parameters were: µ = 1, λ = 4, nr = 1, nc = 100, lb = nc, and Γ = {AND, OR, NOT, XOR,

WIRE}, 30 runs and 100,000 evaluations were allowed for problems 1-4. For Problem

5 we used nc = 300, 10 runs and 1,000,000 evaluations, because this last one is more

complex.

• Problem 1: It is formed by 4 inputs and one output, was addressed in [Coello

et al. 2000a]. The minterms1 are: F =
∑

m(0, 1, 3, 6, 7, 8, 10, 13).
• Problem 2: It is composed by 4 inputs and 3 outputs, was also used in [Coello

et al. 2000a]. The minterms are: F0 =
∑

m(7, 10, 11, 13, 14, 15), F1 =
∑

m(2, 3, 5, 6, 8, 9, 12, 15) and F2 =
∑

m(1, 3, 4, 6, 9, 11, 12, 14).
• Problem 3: This problem is common in the literature [Coello et al. 2003a,Coello

et al. 1997, Coello and Aguirre 2002, Coello et al. 2000b, Coello et al. 2000c,

Hilder et al. 2010, Kazarlis et al. 2016, Kazarlis et al. 2014] and represents a 2x2

bit multiplier. It has 4 inputs and 4 outputs.

• Problem 4 It was used in [Coello et al. 2004], has 4 inputs and 2 outputs. The

minterms are: F0 =
∑

m(0, 1, 2, 4, 5, 8) and F1 =
∑

m(11, 14, 15).
• Problem 5 This final model is a benchmark circuit called CM85A2, and aims to

compare two 4-bit numbers and inform if the first number is greater than, equal to

or smaller than the second one. This problem, used in [Wang 2014,Damiani et al.

1995], is more complex than the others used here, and the circuit is composed by

8 inputs and 3 outputs.
1Minterms are the product terms where the function value is 1.
2http://ddd.fit.cvut.cz/prj/Benchmarks/LGSynth91.pdf



5.2. Objective Functions and Tournament Selection

The computational experiments were performed with SAM when minimizing the num-

ber of logic gates (SAM+G) and maximizing the number of wire gates (SAM+W). Both

techniques were applied when first we are looking for feasible solutions and after the op-

timization (2P) and when we want to reach both objectives together (ME). The results are

presented in Table 1. The success rate (SR) column means the percentage of the runs that

achieved feasible solutions.

Table 1. Number of gates of the best solution and number of evaluations for
finding the first feasible solution.

Method
Number of Gates Number of Evaluations

SR
Best Median Mean Std Worst Best Median Mean Std Worst

Problem 1

SAM+G+2P 7 10 10.33 1.77 14 1649 8030,5 12925,97 10.51 ×10
3 39477 100%

SAM+W+2P 7 12 11.87 1.98 16 1232 4922 8054.27 7.24 ×10
3 26703 100%

SAM+G+ME 7 9 8.79 0.92 11 3273 27248 36201.16 29.33 ×10
3 91964 63.30%

SAM+W+ME 8 11 11.84 2.76 18 753 12770 21532.88 23.16 ×10
3 94830 83.30%

Problem 2

SAM+G+2P 7 9 9.13 2.01 13 2923 10509 17981.87 18.34 x 10
3 76488 100%

SAM+W+2P 10 14 13.93 1.89 17 1567 8692.5 14783.5 16.53 x 10
3 86262 100%

SAM+G+ME 7 8 7.81 0.83 10 3132 24737 28461.37 23.63 x 10
3 95637 90%

SAM+W+ME 10 14 14.1 2.45 20 2183 15060.5 27084.05 24.43 x 10
3 79025 66.67%

Problem 3

SAM+G+2P 7 8 9.10 2.54 16 1937 9422 11790.77 11.02 ×10
3 59275 100%

SAM+W+2P 10 13 13.8 2.14 18 2265 9285.5 11333.47 9.94 ×10
3 48803 100%

SAM+G+ME 7 8 8.39 1.29 13 6402 28064.5 32263.46 23.01 ×10
3 95637 93.33%

SAM+W+ME 8 14 14.48 2.99 19 4319 10550 29387.76 30.75 ×10
3 86984 70%

Problem 4

SAM+G+2P 7 8 8.10 1.16 11 714 8192.5 10095.53 8.98 ×10
3 29699 100%

SAM+W+2P 9 13 13 2.44 19 845 7379 12091.63 12.72 ×10
3 51939 100%

SAM+G+ME 7 7 7.75 1.14 11 3815 28961 37299.11 27.85 ×10
3 96637 93.33%

SAM+W+ME 9 13 12.57 2.53 17 1619 11922.5 14582.21 14.77 ×10
3 52293 46.67%

Problem 5

SAM+G+2P 22 25 26.17 3.60 31 471377 636709 671532.83 17.69 ×10
4 995283 80%

SAM+W+2P 34 39.5 38.67 2.8 42 336907 434590 545908.2 24 ×10
4 968798 60%

SAM+G+ME - - - - - - - - - - 0%

SAM+W+ME - - - - - - - - - - 0%

It was possible to observe that using the maximization of the number of wire gates

(W) as objective function requires fewer fitness evaluations to find the first feasible circuit.

Also, the techniques using the maximization of the number of wire gates as objective

function cannot reach circuits with the same number of gates available in the literature.

In addition, an increment in the number of logic gates during the optimization process

was observed, as the objective function seeks to increase the number of wire gates.Thus,

despite the use of the maximization of the number of wire gates as objective function in

the literature [Coello et al. 2000c, Coello et al. 2000a], we concluded that this idea does

not work well with CGP.

SAM minimizing the number of logic gates (G) worked well for both the two-

step process (2P) and for the tournament selection over the entire search space (ME). In

particular, SAM+G+2P reached feasible circuits in 100% of the runs for problems 1-4 and

in 80% for Problem 5. On the other hand, SAM+G+ME presented the smallest standard

deviations, showing the consistency of this method for optimizing circuits.

We concluded here that SAM+G+2P is the best variant between the approaches

using SAM only. As SAM performed better with the G+2P combination, only the results

using these components are presented for the remaining techniques.
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Figure 3. Bar plots of the first stage(left) and second stage(right).

Table 2. Results obtained by BSAM+G+2P+1M and BSAM+G+2P+2M.

Method Best Median Mean Std Worst Success Rate

Problem 1

BSAM+G+2P+1M 7 11 10.27 1.62 13 100%

BSAM+G+2P+2M 7 9 9.62 1.42 13 100%

Problem 2

BSAM+G+2P+1M 7 9 9.8 2.44 15 100%

BSAM+G+2P+2M 7 10 10.24 2.75 18 100%

Problem 3

BSAM+G+2P+1M 7 9 9.73 2.27 14 100%

BSAM+G+2P+2M 8 13 12.71 2.61 18 100%

Problem 4

BSAM+G+2P+1M 7 9 8.53 1.28 11 100%

BSAM+G+2P+2M 7 9 8.89 1.25 12 100%

Problem 5

BSAM+G+2P+1M 24 26 27.5 4.09 34 60%

BSAM+G+2P+2M 22 23 23 1 24 60%

5.3. Biased SAM with Two Matrices

As concluded in Section 5.2, the use of minimization of the number of logic gates with

the search space divided into two steps (G+2P) we propose the use of the Biased SAM

with one matrix for the first step (finding a feasible solution) and another different matrix

for the second step (minimizing the number of logic gates). The matrices were built with

the same problems used in [Manfrini et al. 2016a] and are formed by four inputs and one

output. For these problems, 30 independent runs using SAM+G+2P were performed and

100,000 evaluations were allowed. The number of beneficial mutations obtained in the

first and second stages are represented in the bar plot shown in Figure 3. The parents are

represented in the lines while the offspring are in the rows of this table. One can notice

that the most frequent beneficial mutation is to replace an OR by an XOR. Also, changing

WIRE and NOT gates to another gate with 2 inputs improves the quality of the solution.

The computational experiments were performed using only the matrix, where we

want to minimize the number of logic gates (1M) and using the two matrices: finding a

feasible solution and minimizing the number of logic gates (2M). The results are presented

in Table 2. The results indicate that the use of the matrix on the second stage can help

finding more compact circuits, mainly when we take into account bigger problems, such

as Problem 5. On the other hand, the same effect is not obtained for smaller problems.



5.4. CGP with both SAM and Biased SAM

In order to take advantage of the high success rate of the SAM+G+2P and the capability

of find compact circuits of the BSAM+G+2P+2M, we propose the use of the SAM with

Biased SAM in both stages of the search as defined in Section 4.3. The results obtained

by this approach are presented in Table 3.

Table 3. Results obtained by SAM+BSAM+G+2P.

Problem Best Median Mean Std Worst Success Rate

Problem 1 7 9 9.59 1.43 13 100%

Problem 2 7 9 9.33 1.86 13 100%

Problem 3 7 10 10.30 2.58 16 100%

Problem 4 7 8 8.17 0.95 10 100%

Problem 5 21 22.5 22.5 1.29 24 50%

This approach performed better than or similarly to the other techniques when

(i) the number of objective function evaluations and (ii) the number of gates of the final

circuit are considered. In particular, SAM+BSAM+G+2P found the designs with the

smallest number of gates in all the test-problems. Also, this technique obtained the second

lowest standard deviation, indicating that this method is consistent. In Problem 5, which

is the most complex circuit considered here, SAM+BSAM+G+2P found the best number

of gates with respect to all the metrics presented; the exception is the standard deviation.

Despite the smaller success rate of SAM+BSAM+G+2P in Problem 5 when compared

to the other approaches, SAM+BSAM+G+2P obtained success rates equal to 100% on

the other problems. As the main focus here is to minimize the number of logic gates,

SAM+BSAM+G+2P was shown to be a robust and a good performing approach.

6. Concluding Remarks

Different objective functions and constraint handling techniques can be found in the litera-

ture for designing CLC’s. This paper analyzed the behavior of some of those approaches.

Analyzing the results obtained in the computational experiments, we can conclude that

CGP obtained the best results when the problem is solved (i) searching by a feasible

solution and, in the sequence, (ii) minimizing the number of gates of the circuit.

Also, two approaches using the Biased Single Active Mutation (BSAM) are pro-

posed here. In the first, two transition probability matrices are considered, where one

is used when searching by a feasible solution and another matrix is adopted when min-

imizing the number of gates. The other proposed approach uses SAM and BSAM in

both stages of the search. CGP with SAM and BSAM achieved the best results in all the

problems tested here.

In spite of that, a deeper study of the evolutionary mechanisms is necessary,

mainly when CGP is applied to more complex problems. Also, adaptive techniques are

an interesting research avenue in the designing of digital circuits.
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