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Abstract. Plants play an important role in nature, but correct plant species
identification is still a challenging task for non-specialized people. Many works
have been proposed towards the development of automatic plant species recog-
nition systems through Machine Learning methods, but most of them lack the
proper experimental analysis. In this work, we evaluate the performance of a
general-purpose Artificial Neural Network to perform plant classification task:
the Extreme Learning Machine (ELM). We compare ELM with several classifiers
from plant recognition literature by means of three real-world data sets obtained
from different image processing and feature extraction processes. A statistical
hypothesis test is employed to perform proper experimental evaluation.

1. Introduction

Plants exist everywhere on the Earth, performing many important functions to their en-
vironments. Plants are the major source of oxygen (through photosynthesis process) and
food on the planet, since no animal is able to supply the components necessary to its
survival without plants. Plants also provide shelter, clothing material, coal, medicines,
paper products, reduce noise levels and wind speed, reduce water runoff and soil erosion
[Rahmani et al. 2015].

Although people see many kinds of plants in their daily lives, correct plant iden-
tification is a difficult problem. Gathering information about unknown plants manually,
such as reading books or researching on Internet, is a time consuming and tedious task,
and users not familiar with botanical knowledge can make mistakes. In an attempt to
overcome such limitations, automatic plant identification has become an active area of re-
search in both botany and computer community. As machine learning, image processing
and hardware technologies advance, sophisticated systems have been proposed to deal
with this task, but despite many efforts (like in [Agarwal et al. 2006, Kumar et al. 2012]),
plant identification is still considered a challenging and unsolved problem.

Many works of automatic plant recognition literature focus on feature ex-
traction techniques [Charytanowicz et al. 2010, Kumar et al. 2012, Mallah et al. 2013,
Jin et al. 2015, Sahay and Chen 2016], leaving the choice of the classier as a secondary
task, what may compromise the accuracy obtained by such systems. In general, these
works lack the proper evaluation criteria, and yet, such works may not even provide any
form of statistical analysis to validate the obtained results. Also, it is common to find
works that do not furnish any kind of comparison among the proposed classifier and other
classifiers from literature (they only present the obtained results for the models being
proposed), like in [Kumar et al. 2012, Rankothge et al. 2013, Liu et al. 2016].



Artificial Neural Networks (ANNs) [Haykin 2001] are deeply connected bio-
inspired computational models known to be universal approximators, presenting good
performances even when dealing with hard problems. Some characteristics of ANNs
are adaptability, tolerance to failures, capacity of learning by examples and the abi-
lity to organize or to generalize data. ANNs have been applied as classifiers in
many fields, such as engineering, bioinformatics, medicine, time series forecasting,
and so on. The main limitation concerning the application of ANNs in real-world
systems is the fact that many traditional algorithms for ANNs training are gradient-
based strategies, demanding high computational costs to train. In this context, Ex-
treme Learning Machine (ELM) [Huang et al. 2006] was proposed as a fast algorithm
for Single-Hidden Layer Feedforward Neural Networks (SLFNs) training. ELM incre-
ases the learning speed by means of randomly generating input weights and hidden bi-
ases, differently from gradient-based approaches, which commonly tune iteratively the
network parameters. ELM has been successfully applied to a large variety of real-world
problems in the past years [Rahma et al. 2017, Pacifico et al. 2018a, Shen et al. 2018,
Sonmez et al. 2018, Song et al. 2019, Vijendran and Dubey 2019, Xu et al. 2019].

In this work, we evaluate the performance of Extreme Learning Machine neural
network to deal with plant classification task. Our main objectives are:

1. To present a brief review on the state-of-the-art of plant classification;

2. To show the main characteristics of Extreme Learning Machines;

3. To execute experiments on plant data sets obtained from different feature extrac-
tion processes;

4. To compare the performance of ELM in relation to some standard classifiers in
plant classification literature;

5. To evaluate the experimental results through the application of a statistical hy-
pothesis test.

This work is organized as follows. Section 2 presents a brief review on plant
identification systems. Next, ELM model is presented (Section 3). Section 4 describes
the adopted data sets. The experimental results are discussed in Section 5. Finally, the
main conclusions and trends for future works are given in Section 6.

2. A Brief Review on Automatic Plant Identification Systems

The main steps in an automatic plant recognition system are: plant image acquisition,
image pre-processing, feature extraction and plant classification [Sahay and Chen 2016].

Plant image acquisition step is generally employed under controlled environmen-
tal situations (such as controlled background and illumination sources), to avoid image
acquisition problems like object partial occlusion, folding, illuminant changes, and so on.
For example, in [Mallah et al. 2013], the proposed data set is composed of color plant
images captured when each leaf sample is placed on a white surface, providing high con-
trast between the target objects (the plant leaf samples) and the background. The same
approach was adopted by [Sahay and Chen 2016] and [Kumar et al. 2012]. But in some
applications [Cerutti et al. 2013, Sun et al. 2017], plant images are captured from natural
environments.

After image acquisition, image pre-processing starts. The main objectives of
image pre-processing is to standardize the scale and orientation of the image before fe-



ature extraction step. Plant image pre-processing is generally employed through gray
scale or binary conversion, noise removal, contrast stretching and histogram modification
[Sabu and Sreekumar 2017].

Features generally considered for automatic plant recognition are: color, leaf
features, flower features, seed features and other organs features [Cope et al. 2012,
Rahmani et al. 2015, Sabu and Sreekumar 2017]. Many plant classification systems fo-
cus on the study of plant leaf features, such as shape, margin, texture, venation, teeth and
fractal dimensions [Cope et al. 2012, Jin et al. 2015, Sabu and Sreekumar 2017]. Plant
taxonomy suggests that a species can be successfully inferred from the leaves, since the
leaves are the more readily available, easily found and collected than other parts of the
plant [Mallah et al. 2013]. Although most plant identification systems consider only plant
organ images and their combination, some authors adopt external information (i.e., in-
formation that are not contained in the plant images) to help the recognition process.
For example, in [Liu et al. 2016] proposes to automatically identify plant species using
images from different plant organs, such as flowers and leaves, and also by taking into
consideration the location information (represented by GPS coordinates) about the region
where the plant specimens have been acquired.

The final step in automatic plant recognition systems is the classification
phase [Britto and Pacifico 2018, Pacifico et al. 2018b]. Some methods commonly em-
ployed as classifiers for plant identification systems are: K-Nearest Neighbors clas-
sifier [Cover and Hart 1967], Decision Tree classifier [Mitchell et al. 1997], Naive
Bayes classifier [Mitchell et al. 1997, De Stefano et al. 2012], Support Vector Machine
[Haykin 2001] and Artificial Neural Networks [Haykin 2001]. ELM has also been adop-
ted in the context of plant classification [Zhai and Du 2008], but its performance has only
been compared to an Artificial Neural Network, with a limited set of experiments.

In [Mallah et al. 2013] and [Mallah and Orwell 2013], a K-Nearest Neighbors
density estimation method is developed for plant leaf classification based on integration
of shape, texture and margin features. A weighted K-Nearest Neighbors is also adopted
as the classifier in [Sahay and Chen 2016] and compared to standard K-Nearest Neigh-
bors algorithm. In [Rahmani et al. 2015] present an evaluation on the performance of
Decision Tree classifier, Naive Bayes classifier and K-Nearest Neighbors algorithm for
different plant leaves classification scenarios. The Leafsnap system [Kumar et al. 2012]
is based on Support Vector Machine classifier. Support Vector Machine is also employed
by [Prasad et al. 2011], where Relative Sub-image Coefficients (RSC) are extracted from
plant leaves and used as features for the proposed plant leaf identification system. An
ANN trained with Backpropagation algorithm is used in [Rankothge et al. 2013]. Other
classifiers are also employed, as in [Jin et al. 2015], where a sparse representation ba-
sed classifier and four leaf tooth characteristics are employed to perform automatic plant
identification.

Some interesting reviews on plant recognition are presented in Cope et al.
[Cope et al. 2012], Sethulekshmi and Sreekumar [Sethulekshmi and Sreekumar 2014]
and Sabu and Sreekumar [Sabu and Sreekumar 2017].



3. Extreme Learning Machine

The Extreme Learning Machine [Huang et al. 2006] algorithm was presented as a fast
algorithm for single-hidden layer feed-forward neural networks training. A SLFN has
three layers of neurons, but the name single comes from the hidden layer (only layer
of non-linear neurons in the model). Input layer provides data features and performs
no computations, while an output layer is linear without a transformation function and
without biases [Akusok et al. 2015].

The random generation of input weights and hidden biases and the straightforward
analytical determination of output weight matrix makes ELM too much faster than tradi-
tional gradient-based learning methods like Backpropagation algorithm. Also, there are
no parameters to tune during ELM training, once ELM provides a non-iterative linear so-
lution for the output weights, which is possible because there is no dependence between
the input and output weights like in the Backpropagation [Akusok et al. 2015].

Formally, suppose we are training SLFNs with N hidden neurons and activation
function f(z) to learn M distinct samples (x;,t;), where X; = |74, T2, ..., 7|7 € R
and t; = [ti1, ti, ... ,tid]T € R¢. By doing so, the nonlinear system has been converted
to a linear system:

Hf=T (D)

where H is the hidden-layer output matrix denoted by:

flwy-xy+0b1) -+ f(wn- X9 +by)
f(wy-xXp+01) -+ f(Wn-Xp +by)

where w; = [wj1,wja,...,wi|"(j = 1,...,N) is the weight vector connecting j-th
hidden neuron and input neurons, and b; denotes the bias of j-th hidden neuron; w; x; (1 =
1,..., M) denotes the inner product of w; and x;; 3 = [B1, Ba, . .., By]" is the matrix of
output weights and 8; = [B;1, Bj2,---,B;a) (j = 1,..., N) denotes the weight vector
connecting the j-th hidden neuron and output neurons; T = ﬁl,fg, o ,fM]T 1s the matrix
of targets (desired output). In the case where the SLFN perfectly approximates the data,
the errors between the estimated outputs t; and the actual outputs t; are zero and the
relation is:

N
ti = 5;f(w; X +0) 2)
j=1

Thus, the determination of the output weights (linking the hidden layer to the output layer)
is determined by the least-square solution to the linear system represented by Equation 3.
The minimum norm least-square solution to the linear system is:

B =H'T 3)

where H' is the Moore-Penrose generalized inverse of matrix H. The minimum norm
least-square solution is unique and has the smallest norm among all the least-squares
solutions. As analyzed by Huang et al. [Huang et al. 2006], ELM using such Moore-
Penrose inverse [Serre 2002] method tends to obtain good generalization performance
with dramatically increased learning speed.

A pseudocode for the ELM algorithm is presented in Algorithm 1.



Algorithm 1 Extreme Learning Machine

Randomly initialize all input weights and hidden biases.

Calculate the hidden-layer output matrix H.

Estimate H' as the Moore-Penrose generalized inverse obtained from H.
Calculate the output weights matrix B

4. Data sets

In this section, the adopted data sets are presented. All data sets are real-world problems
obtained from UCI Machine Learning Repository [Asuncion and Newman 2007].

Fisher’s Iris Plant [Fisher 1936] is composed of 150 samples equally distributed
in three classes, where each class refers to a type of iris plant. Each instance is described
by a set of four features: sepal length (in ¢m), sepal width (in cm), petal length (in cm)
and petal width (in cm). The sample values for each feature have been manually collected
at the same day and using the same instruments by Edgar Anderson [Anderson 1935].

The Wheat Seed Kernels data set [Charytanowicz et al. 2010] comprises 210 ran-
domly selected samples equally distributed in three varieties of wheat (Kama, Rosa and
Canadian). The features have been extracted using a soft X-ray technique to detect the
visualization of the internal kernel structure for each sample seed.

The 100 Plant Leaves data set [Mallah et al. 2013] comprises one-hundred species
of leaves (problem classes). The data set contains 1600 instances, and for each species,
there are sixteen distinct specimens, photographed as a color image on a white back-
ground. For each sample, three distinct features have been extracted: a Centroid Contour
Curve shape signature (Sha), an interior texture feature histogram (Tex), and a fine-scale
margin feature histogram (Mar). Each feature is represented by a 64-dimensional vector.

5. Experimental Results

In this section, the experimental results are presented. We compare the ELM method
to five different classifiers from plant classification literature and some of their variants:
Decision Tree classifier (DT), Naive Bayes classifier (NB), K-Nearest Neighbors (KNN,
with & = 3,4 and 5), Support Vector Machine with RBF' (SVM,¢) and Linear (SVMy;,,)
kernel functions and a Multi-Layer Perceptron trained with Backpropagation algorithm
(MLP).

All algorithms have been implemented in Python programming language, and
all tests have been executed in a computer with an 15-5250U CPU and 8 GB RAM.
DTC, NBC, KNN, SVM and MLP have been implemented using scikit-learn library
[Pedregosa et al. 2011, Buitinck et al. 2013] and ELM has been implemented using HP-
ELM library [Akusok et al. 2015]. No GPU acceleration has been employed for ELM, so
we could perform a fair comparison among all adopted algorithms in relation to average
execution times. All algorithms have been executed using scikit-learn default configurati-
ons, except for SVM, where two different kernel functions have been applied. For ELM,
the best number of hidden nodes for each data set has been selected by trial-and-error
method.

Our experiments have been conducted using a ten-folds cross-validation fra-
mework. Each data set has been randomly split into ten parts to form the training and



Tabela 1. Benchmark Plant Data Sets Description. Attr.. number of features;
Classes: number of classes; Total: total number of data patterns.

Data set Attr.  Classes Total

Iris 4 3 150

Seeds 7 3 210

Margin (M) 64 100 1600

Shape (S) 64 100 1600

Texture (T) 64 100 1600

Margin and Shape (MS) 128 100 1600
Margin and Texture (MT) 128 100 1600
Shape and Texture (ST) 128 100 1600
Margin, Shape and Texture (MST) | 192 100 1600

testing sets. Nine folds are used each time to compose the training set, and the remai-
ning fold is used as the testing set. To generate a large variety of tests, the ten-folds
cross-validation process has been executed ten times, and, for each execution, ten new
distributions have been obtained for each data set, in such a way that we could have one
hundred different tests for each data set (the ten-folds cross-validation method has been
executed ten times, each time starting with a new random distribution of the data pat-
terns into the folds). The adopted resampling process has been performed to avoid results
obtained by chance.

For the experiments, three benchmark plant data sets obtained from UCI Machine
Learning Repository are employed: Iris, Seeds and 100 Plant Leaves (see Section 4). 100
Plant Leaves is decomposed in seven data sets, so we could evaluate the influence of each
plant leaf feature (margin, shape and texture) and their combinations on the behavior of
the adopted classifiers: Margin, Shape, Texture, Margin and Shape, Margin and Texture,
Shape and Texture, and Margin, Shape and Texture [Rahmani et al. 2015]. The selected
data sets are summarized in Table 1.

The evaluation includes an empirical analysis concerning the average accuracy
for the testing set and the execution time for each data set. The evaluation also includes
a rank system employed through the application of Friedman test [Friedman 1937] to the
overall average testing accuracies. The Friedman test is a non-parametric hypothesis test
that ranks all algorithms for each data set separately. If the null-hypothesis (all ranks
are not significantly different) is rejected, Nemenyi test [Nemenyi 1962] is adopted as
the post-hoc test. According to Nemenyi test, the performance of two algorithms are
considered significantly different if the corresponding average ranks differ by at least the
critical difference

CD =q, Natg(Tatg + 1) (4)

6ndata

where 744, Tepresents the number of data sets, n,, represents the number of compared
algorithms and ¢, are critical values based on a Studentized range statistic divided by v/2
[Demsar 2006]. Given that the overall average test accuracy is a maximization measure,
the best ranked algorithms for the Friedman/Nemenyi test will obtain high ranks. Once
our experiments are executed with 144, = 9 and ny, = 9, we have C'D = 4.0043.



Tabela 2. Experimental results for all plant classification data sets. Mean: ave-
rage accuracy for the test set; Std: standard deviation for the test set;
Time: average execution time in seconds.

Algorithm

Data set | Metric DT NB KNN; [ KNN,; [ KNN;5 [ SVMy;,, | SVM,; | MLP | ELM

Mean | 0.949 | 0955 | 0954 | 0.961 | 0.959 0.843 0.895 0.963 | 0.974
Iris Std. | 0.048 | 0.048 | 0.051 | 0.049 | 0.050 0.086 0.076 0.044 | 0.039
Time | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.005 0.007 0.602 | 0.005

Mean | 0.914 | 0.902 | 0.929 | 0.951 | 0.930 0.912 0.915 0.924 | 0.961
Seeds Std. | 0.064 | 0.067 | 0.060 | 0.044 | 0.061 0.066 0.067 0.059 | 0.039
Time | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 0.007 0.006 0.236 | 0.003

Mean | 0.460 | 0.748 | 0.746 | 0.746 | 0.756 0.718 0.711 0.827 | 0.806
M Std. | 0.039 | 0.035 | 0.035 | 0.035 | 0.033 0.035 0.033 0.026 | 0.031
Time | 0.081 | 0.019 | 0.197 | 0.211 | 0.196 0.831 0.949 3.955 | 0.565

Mean | 0.440 | 0.532 | 0.591 | 0.588 | 0.579 0.409 0.477 0.516 | 0.576
S Std. | 0.041 | 0.034 | 0.038 | 0.038 | 0.035 0.036 0.038 0.035 | 0.037
Time | 0.268 | 0.018 | 0.2054 | 0.214 | 0.2010 | 2.729 1.121 3913 | 0.443

Mean | 0.516 | 0.668 | 0.766 | 0.764 | 0.761 0.736 0.724 0.822 | 0.847
T Std. | 0.040 | 0.033 | 0.033 | 0.034 | 0.033 0.034 0.036 0.033 | 0.032
Time | 0.125 | 0.019 | 0.203 | 0.212 | 0.199 0.809 0.929 3.866 | 0.755

Mean | 0.679 | 0.851 | 0.937 | 0.931 | 0.934 0.916 0.880 0.954 | 0.951
MS Std. | 0.043 | 0.026 | 0.019 | 0.020 | 0.018 0.021 0.027 0.015 | 0.016
Time | 0.395 | 0.025 | 0.619 | 0.614 | 0.617 1.388 1.554 4.645 | 1.982

Mean | 0.607 | 0.741 | 0.967 | 0.964 | 0.961 0.975 0.938 0.977 | 0.976
MT Std. | 0.035 | 0.031 | 0.015 | 0.014 | 0.015 0.010 0.018 0.012 | 0.011
Time | 0.216 | 0.025 | 0.605 | 0.609 | 0.610 | 1.1703 1.463 4.576 | 1.099

Mean | 0.666 | 0.801 | 0.922 | 0918 | 0.916 0.905 0.874 0.941 | 0.945
ST Std. | 0.036 | 0.031 | 0.019 | 0.020 | 0.021 0.024 0.025 0.018 | 0.015
Time | 0.452 | 0.025 | 0.606 | 0.608 | 0.607 1.379 1.551 4.6011 | 0.757

Mean | 0.720 | 0.756 | 0.987 | 0.987 | 0.985 0.993 0.973 0.992 | 0.993
MST Std. | 0.038 | 0.032 | 0.009 | 0.009 | 0.010 0.007 0.013 0.008 | 0.007
Time | 0.570 | 0.032 | 0.906 | 0.906 | 0.906 1.6983 2.100 5.377 | 2.010

The experimental results are shown in Table 2.

From Table 2, in an empirical analysis, we can see that ELM is able to obtain per-
formances at least as good as the best classifiers from literature for most of the evaluated
data sets. ELM achieved the best performances according to the empirical analysis for
seven out of nine data sets. Both ANNs (ELM and MLP) showed the higher degrees of
robustness among the employed algorithms. ELM, MLP, KNN3 and KNN, presented the
best stability among all algorithms.

For the 100 Plant Leaves data set, we can observe that some features taken indivi-
dually present a reduced discriminatory power, but when the extracted features are com-
bined, the discriminatory power is enhanced. The performance of all adopted classifiers
have been considerably compromised when only the shape feature vector is used. That
is completely understandable, since the shape of a leaf may vary considerably according
to some problems, like deformations caused by disease, insects, human or mechanical
damage [Jamil et al. 2015], compromising its discriminatory power. Another point to be
considered is the fact that some plant species may have very similar leaf shapes to each
other, like some plant species belonging in the same family. For all three evaluated leaf
features, texture has presented the best individual discriminatory power according to the



Tabela 3. Overall Evaluation: Average Ranks for the Friedman/Nemenyi Test.

Algorithm | Average Rank
DT 152.0972
NB 285.2706
KNN3 543.5028
KNNy4 537.9994
KNNj; 524.6883
SVMyin 395.3672
SVM,. ¢ 310.4961
MLP 615.5828
ELM 689.4956

experimental results.

All classifiers presented better average accuracies when the features are combined
two-by-two. The best combination of two features for most of the evaluated algorithms
have been obtained when margin and texture features have been combined (except for
DT algorithm, where the best average accuracy have been obtained by the combination of
margin and shape features). For example, ELM was able to achieve an average accuracy
of 80.64% when considering leaf margin feature and 84.67% and considering leaf texture
feature, but when leaf margin and leaf texture have been combined, the algorithm was
able to achieve an average accuracy of 97.59%.

For most of the evaluated algorithms, the best results for 100 Plant Leaves data
set have been achieved when all three features have been combined (for example, ELM
obtained an average test accuracy of 99.31% in this situation). The only exception is
NB, where the best average accuracy have been obtained when only leaf margin and leaf
texture have been combined. The obtained results for 100 Plant Leaves problem showed
that it is quite important to find the best set of features when dealing with automatic plant
recognition, since some features present better discriminatory power than others. But,
as pointed out by the average execution times, the computational cost for the classifiers
may increase considerably when dealing with problems with higher dimensionalities (the
curse of dimensionality problem [Bellman 1957]).

Table 3 presents the average ranks obtained by Friedman/Nemenyi hypothesis test.
The Friedman/Nemenyi test shows that ELM obtained the best average performances
according to an overall evaluation, in comparison to all other selected algorithms. The
second and the third best ranks have been obtained by MLP and KNN3, respectively.
The worst overall performance have been achieved by Decision Tree classifier, followed
by Naive Bayes classifier and Support Vector Machine. Figure 1 presents the obtained
results for the Friedman/Nemenyi test, from the worst method (on the left side) to the best
method (on the right side).

From the experiments, we can see that ANNSs are good options to deal with plant
classification problem. Although MLP has presented high computational costs in relation
to all other classifiers, what may limit its application in real-world systems, ELM showed
to be fast, presenting average execution times compatible with some other classifiers from
the state-of-the-art (like Support Vector Machines), and yet presenting the capability to
achieve high performances, what makes ELM algorithm a good option as a tool for the
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Figura 1. Overall Evaluation: Average ranks for the Friedman/Nemenyi test.

deployment of real-world plant recognition applications.

6. Conclusion

In this work, we evaluate the performance of Extreme Learning Machine algorithm in the
context of plant classification. Five well-established supervised learning methods from
plant classification literature are compared to ELM: K-Nearest Neighbor, Decision Tree
classifier, Naive Bayes classifier, Support Vector Machine and a Multi-Layer Perceptron
trained with Backpropagation algorithm. Different configurations for K-Nearest Neigh-
bors algorithm (different k& values) and for Support Vector Machines (two different kernel
functions - Linear and RBF functions) are employed.

For comparison purposes, three real-world plant data sets obtained from UCI Ma-
chine Learning repository are employed: Iris, Wheat Seeds and 100 Plant Leaves. 100
Plant Seeds data set have been divided in seven data sets, so we could test each individual
plant leaf feature and all possible combinations of the three features (leaf margin, leaf
shape and leaf texture).

The evaluation criterion is based on an empirical analysis complemented by a
hypothesis test of type Friedman/Nemenyi test in relation to the average test accuracy
obtained by each classifiers for each of the nine adopted data sets.

The experimental results pointed out that Extreme Learning Machine is able
to achieve better performances then all comparison approaches according to Fried-
man/Nemenyi hypothesis test, and it is at least as good as the best methods for most
of the tested data sets (seven out of nine). The experimental results also showed that
ELM is able to achieve good generalization performances independently from the feature
extraction process employed by the data sets, avoiding data set bias problem.

As future works, we intend to extend our study by the application of image pro-
cessing techniques to extract other plant features (such as leaf venation and leaf tooth
features) automatically, evaluating the influence of each individual new feature and their
combination on the behavior of the selected classifiers. With a higher set of plant featu-
res, we intend to implement an automatic method for feature selection, aiming to reduce



the dimensionality and the computational costs for the final plant recognition system by
eliminating redundant features and features with low discriminatory power. We also in-
tend to develop a general purpose application for automatic plant identification as tool for
botanists and researchers on the field of plant taxonomy.
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