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Abstract. Supervised machine learning methods have been widely used in the
literature for many classification tasks. In this context, some aspects of these
algorithms, as the attributes used and the form they were built, have a direct
impact in the system performance. Therefore, in this paper, we evaluate the
application of classification algorithms, along with attribute selection, to study
an improved version of a computer vision system that performs the classification
of cocoa beans. The main aim of this investigation is to improve the performance
of a cocoa classification system that aims to help farmers to classify the different
cocoa beans based on images of these beans.

1. Introduction
Cocoa seed is a product widely used in chocolate fabrication. Regulative norms around
the world dictates several quality tests which those beans need to be subjected to in or-
der to be commercialized internationally. One of those tests in the Cut-Test technique, in
which a fixed amount of seeds are opened and their interior is analyzed by specialists to
characterize their coloration, compartmentalizing, defects and other external characteris-
tics [Brasil 2008, Catsberg and Dommelen 1990].

The Cut-Test technique is made manually in most parts of the world and, specifi-
cally in Brazil, only the manually characterization of cocoa beans characteristics is regi-
mented. In this context, since the Cut-Test technique is made by human eyes and it uses
linguistic variables to describe the outcome (e.g.: violet and partially violets beans), the
evaluation made by experts are subjected to imprecision and discordance, resulting in
cases where experts working at the same environment and conditions may provide differ-
ent classifications for the same bean, without considering human emotional factors, which
may also bias the classification process [Brasil 2008, Catsberg and Dommelen 1990,
Santos 2019, Savakar 2012, Majumdar et al. 1996].

In [Santos 2019], the authors, observing these imprecision and discordance, cre-
ated seven Cut-Test taxonomy for cocoa beans based on image-based cocoa dataset. Ad-
ditionally, they proposed a computational vision system that aimed to help experts in this



classification process. In this proposed model, a Multi-layer Percetron neural network
(MLP) was evaluated, varying only the number of neurons and hidden layers. Finally,
the authors suggested the investigation of other classification methods and a more refined
analysis of the MLP performance in order to prevent over-fitting and to potentially provide
a better performance in the classification process.

Following the suggestions made by the authors in [Santos 2019], in this paper we
will perform an extensive investigation of the use of classification methods in the cocoa
classification process. In order to do this, we selected four classification algorithms, which
are: k-NN, MLP, Naive Bayes and Decision Three. In addition, we intend to provide a
more refined analysis of the used MLP model. These algorithms were chosen because
they are simple, efficient and apply different classification criteria in their hypothesis.
Decision tree, for instance, builds a classification tree during its training and use it during
the test procedure, while k-NN is an instance-based algorithm. Finally, a feature selection
technique will be applied to all classification algorithms to evaluate the performance of
the cocoa classification task using a more compact representation of the cocoa images.

To this end, this article is organized in the following form: in Section 2.3 we
will explore the features firstly proposed in [Santos et al. 2018], and perform an attribute
selection using Decision Tree and Person Correlation; in Sections 3.2.1, 3.2.2 and 3.2.3
we will analyze the use of k-NN, Decision tree and Naive Bayes, respectively, to perform
the classification using the features selected; in Section 3.2.4 we will analyze the variation
of other parameters of the MLP to the construction of a classification model that does not
present over-fitting; in Section 4, we will select the best configuration attained in this study
to improve the system proposed in [Santos 2019] and propose potential continuations.

2. Material and Methods
In this section, we will present the methods and materials of the empirical analysis con-
ducted in this paper. First, the system architecture will be briefly described, followed by
a description of the used image dataset. Finally, the used feature selection techniques is
described.

2.1. System Architecture

The system architecture is presented in Figure 1. As it can be observed in this image, the
proposed system is composed of three phases, being the first one the feature acquisition,
in which some features are extracted from the cocoa bean images. The feature extraction
process will be described in Section 2.3.

Figure 1. System Architecture

Once the cocoa features were extracted, the second phase is the feature selection,
which will select the most influential image features for the classification. The main aim
is to have a more compact representation of the cocoa beans. In this paper, two feature
selection methods, Decision Tree and Pearson Correlation Coefficient, were used in a



combined way in a wrapper approach. Details of each selection method will be presented
in Section 2.4.

The third phase comprises the classification one, in which the cocoa bean fea-
tures are classified into one Cut-Test class. In this paper, four supervised classification
models will be used, which are: Decision Tree, Naive Bayes, k-NN and MLP. Those
models were chosen due to their wide literature application in classification problems
[Samaniego et al. 2008, Im and Jensen 2005, Yang et al. 2003, Haralick et al. 1973].

2.2. Image Dataset

The image dataset used in this research is composed of 1400 beans images, along with
their respective Cut-Test classification, divided into 14 different classes, which was made
by experts. The Cut-Test classes considered are: Agglutinated, Brittle, Compartmen-
talized Brown, Compartmentalized Purple, Compartmentalized Partially Purple, Com-
partmentalized White, Compartmentalized Slatty, Flattened, Moldered, Plated Brown,
Plated Purple, Plated Partially Purple, Plated White and Plated Slatty [Brasil 2008,
Catsberg and Dommelen 1990, Santos 2019]. This dataset was originally proposed in
[Santos 2019] and is hosted in http://nbcgib.uesc.br/tedais, under the name of ”Sem Plano
de Fundo - Versão 1 - Método A”. Two samples of images of this base, as well as their
corresponding classifications, can be seen in Figure 2. In this figure, a sample of a Com-
partmentalized Purple and a Plated White bean are presented.

Figure 2. Samples of the dataset: a Compartmentalized Purple (left) and a Plated
White (right) bean

It is important to enhance that each bean was firstly classified by two specialists
and, if the two of them agreed in the classification, then it was registered in the original
dataset. In addition, this dataset and the algorithms used to extract the image feature
are the same as used in [Santos 2019], this was done to isolate variables in algorithms
and to enable the comparison the results obtained in this paper and the ones obtained in
[Santos 2019]. Finally, the dataset images are presented in JPG format, with 4320x3240
pixels [Santos et al. 2019].

2.3. Image Features

In order to create the original model, three sets of features were extracted, textural, color
and structural features.



• Textural features: the 14 Haralick’s Textural Features were chosen as textu-
ral features. Haralick’s textural features are a set of characteristics from an
image that can be used in classification models, including food-related ones
[Savakar 2012, Patil et al. 2011, Haralick et al. 1973]. Those features represent
image aspects such as homogeneity of color, contrast and linear dependency be-
tween pixels [Haralick et al. 1973];
• Color features: the means of each the RGB layer and of the grayscale-converted

image were used as color features;
• Structural features: the area and the perimeter of the bean were selected as struc-

tural features.

Regarding the dataset used in this paper, it has a total of 20 features. In compar-
ison with the dataset proposed in [Santos 2019], we included the perimeter of the bean
images. In order to map the characteristics used in the cocoa dataset, the following de-
scription is used, H1 to H14 represent the 14 Haralick’s features, in the same order of
[Santos et al. 2018]. Additionally, R Mean, G Mean, B Mean, GS Mean are the average
values of the RGB and Grayscale layers, respectively, and Area and Perimeter represent
the area and the perimeter of the bean images. Those features were chosen by analyzing
similar researches in the image processing literature. Once the image dataset is defined,
two different feature selection techniques are combined and applied to the cocoa images
and they are described in the next subsection.

2.4. Feature Selection Techniques
In order to perform the feature selection step, a combination of Decision Tree (DT) and
Pearson Correlation Coefficient (PCC) is used. The DT is applied aiming at obtaining the
most representative features (information gain) by ranking these features according to the
different level of the obtained decision tree. In other words, in analyzing the features of the
first levels, they potentially provide the features that are important for further classification
and, through an analysis of the obtained results, it is also possible to discard features that
will have a modest contribution in the classification step.

The procedure of providing a Decision Tree and using it as feature selector can be
described as follows.

1. The set of features available forms the input to the DT algorithm;
2. The Decision Tree has leaf nodes, which represent class labels;
3. The branches of the tree represent each possible value of the feature node from

which they originate;
4. The Decision Tree can be used to classify feature vectors by starting at the root of

the tree and moving through it until a leaf node, which provides a classification of
the instance, is identified;

5. At each decision node in the Decision Tree, one can select the most use-
ful feature for classification using appropriate estimation criteria. The crite-
rion used to identify the best feature of the original dataset, based on an es-
timation criteria. In this paper information gain is used as estimation criteria
[Fayyad and Irani 1992, Hall 2000].

Pearson’s correlation coefficient is a statistical measure that evaluates the power of
a linear relationship between two data variables (attributes). Therefore, suppose we have



two variables X ={x1, ..., xn} and Y ={y1, ..., yn}, both containing n values. Then, PC
is given by the equation 1:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

Where x̄ and ȳ are the average values for variables X and Y , respectively.

The PC coefficient (r) may to assume the following values: −1 ≤ r ≤ 1, in
which: 0 denotes no linear correlation; and The closer the value is to−1 or 1, the stronger
the correlation is, where negative values represent inverse correlation and positive values
represent direct correlation.

The main aim of this feature selection step is to apply both techniques, DT and
PCC, in a wrapper manner, and to select the feature subset which is common on both
technique.

3. Results and Discussion

In this section, the obtained results of the empirical analysis will be presented, starting
with the feature selection step, followed by the results of the classification algorithms.

3.1. The feature selection method

The first feature selection technique was a Decision Tree.

The features that appeared in the different levels the DT were mapped, in a cu-
mulative way per level. Each level contained all features that appeared in the tree un-
til said level [Hall and Holmes 2003, Quinlan 1986, Fayyad and Irani 1992, Hall 2000,
Al-Marakeby et al. 2013]. The feature distribution is the following.

• 1st Level: H6;
• 2nd Level: H6, H8 and H13;
• 3rd Level: H6, H8, H12, H13, R Mean, GS Mean and Area;
• 4th Level: H6, H8, H12, H13, R Mean, GS Mean, Perimeter and Area;
• 5th Level: H1, H2, H5, H6, H8, H12, H13, R Mean, GS Mean, Perimeter and

Area;
• 6th Level: H1, H2, H3, H4, H5, H6, H8, H12, H13, H14, R Mean, B Mean, GS

Mean, Perimeter and Area.

In order to define the most representative features, a wrapper-based procedure is
adopted. In this procedure, two classification algorithms, Naive Bayes (NB) and k-NN,
with odds values for k varying from 1 to 7, all with 10-fold cross validation, were applied
using the features obtained at each level of the decision tree. The obtained results are
presented in Table 1. This table presented the average accuracy level over all 10 folds in
the cross validation process. The bold numbers in this table represent the highest accuracy
level for each classification algorithm (column).

In analyzing Table 1, we can observe that the accuracy levels did not increase as
the number of features increases, since the highest accuracy levels were obtained between
the third and sixth level. An important aspect to observe is that the use of a feature subset



Table 1. Accuracy levels using Naive Bayes, k-NN and DT for the different levels
of the decision tree feature selector

Level DT NB k-NN (1) k-NN (3) k-NN (5) k-NN (7)
1st 12.6429% 19.000% 11.2857% 12.1429% 12.4286% 14.5714%
2nd 26.9286% 32.5714% 25.7143% 28.2143% 32.3571% 33.5000%
3rd 50.0000% 42.9286% 51.2857% 49.0000% 49.5000% 49.5714%
4th 49.5714% 46.4286% 50.5714% 50.0714% 52.0000% 52.1429%
5th 50.0000% 46.7857% 53.4286% 53.2857% 54.2143% 54.1429%
6th 48.8571% 47.3571% 54.0714% 53.0000% 54.3571% 53.7143%

All features 49.1429% 46.0000% 52.7857% 51.1429% 53.2857% 52.8571%

improved the performance of the classification system, for all classification algorithms,
since the bold numbers are always achieved by a feature subset.

The PCC measure was also applied to rank the image features. For PCC, all
features are analyzed, using Eq.(1), in comparison with the class label. The idea is to
assess the correlation of the features over the class labels (classification decision). Then,
the features are ranked, in a descending order, as presented in Table 2.

Table 2. Pearson Correlation Ranking

Ranking Attribute Ranking Attribute
1o H6 11o B Mean
2o H7 12o Perimeter
3o H4 13o GS Mean
4o H13 14o H11
5o H8 15o H10
6o H12 16o H2
7o G Mean 17o H1
8o H3 18o H5
9o R Mean 19o H14

10o Area 20o H9

The results provided in Table 3 are very promising. It can be observed that the
highest ranked attribute is the same of the first level at the DT. Additionally, when we
observe the results obtained by PCC wit the third level of the DT (Table 1), that contains
seven attributes, more than half of them are present in the seven best-ranked attributes of
PCC (Table 2). It shows that there is an agreement between the feature selection tech-
niques used in this paper.

In order to validate the results obtained by PCC, a similar procedure to the one
made with DT is applied to the ranking obtained in Table 2. All features that appeared
until a specific level of PCC are used as feature subset ans used as input for Naive Bayes
and k-NN classification algorithms. The classification algorithms have the same param-
eter setting of the DT procedure, generating the results showed in Table 3. Once again,
the bold numbers represent the highest accuracy level for each classification algorithm
(column).

As it can be observed in Table 3, the highest accuracy levels were obtained using
around 13 attributes, for the majority of classification algorithms. Once again, it shows



Table 3. Pearson Correlation level and the Naive Bayes, k-NN and DT results for
the classification of the attributes

Level DT NB k-NN (1) k-NN (3) k-NN (5) k-NN (7)
1o 12.6429% 19.000% 11.2857% 12.1429% 12.4286% 14.5714%
2o 20.2857% 19.6429% 19.5000% 19.5714% 23.2857% 23.5000%
3o 21.0000% 19.6429% 20.5714% 19.3571% 23.4286% 22.7143%
4o 25.5714% 26.9286% 26.2143% 25.5714% 26.1429% 27.7143%
5o 28.9286% 31.8571% 27.9286% 28.5000% 31.5000% 33.2143%
6o 28.8571% 31.9286% 27.9286% 27.5000% 30.5000% 32.3571%
7o 33.6429% 36.0714% 34.9286% 36.1429% 37.2857% 38.4286%
8o 35.7857% 36.2143% 38.1429% 39.0714% 41.5000% 41.8571%
9o 39.6429% 37.2857% 39.5714% 39.5714% 42.5000% 42.7857%

10o 49.5714% 42.3571% 50.8571% 49.4286% 50.2857% 51.2857%
11o 52.0000% 43.0000% 52.2143% 50.7857% 51.5714% 51.6429%
12o 49.7857% 45.0000% 52.6429% 53.5000% 53.7143% 54.3571%
13o 53.1429% 45.7143% 56.0714% 55.6429% 56.8571% 56.7143%
14o 53.5714% 45.5000% 54.5714% 53.0000% 54.4286% 54.5000%
15o 51.0000% 47.7143% 54.4286% 54.7857% 56.4286% 56.1429%
16o 50.8571% 46.7857% 54.1429% 54.0000% 56.0000% 56.2143%
17o 49.2857% 47.5000% 55.3571% 55.1429% 56.1429% 56.5714%
18o 49.0000% 47.3571% 55.2143% 54.3571% 56.4286% 56.0714%
19o 49.0000% 47.1429% 53.7143% 52.2857% 53.2857% 53.2857%
20o 49.1429% 46.0000% 52.7857% 51.1429% 53.2857% 52.8571%

that the use of a more compact representation of the cocoa image can lead to more efficient
classification systems.

Finally, we need to select the most representative features to compose the feature
subset to be evaluated in the next subsection. In observing Tables 1 and 3, we can see that
the first 13 features in Table 3 are usually selected in the first levels of the decision tree.
Therefore, we decided to select 13 highest ranked features of PCC as the feature subset to
be used in the cocoa classification system.

3.2. Classification Methods

As mentioned previously, four supervised learning classification methods are used in this
empirical analysis, which are: k-NN, Naive Bayes, Decision Tree and Multi-Layer Per-
ceptron Neural Network. Those methods were select due to their wide use in the literature
for classification problems, including image-based ones, providing several other stud-
ies for comparison purposes [Warfield 1996, Samaniego et al. 2008, Im and Jensen 2005,
Yang et al. 2003].

3.2.1. k-NN

k-NN methods were applied to eight different numbers of neighbour, being those: k=1,
3, 5, 7, 9, 11, 13 and 15. Also, these classifications were also evaluated under two dif-
ferent weighted distance procedures, considering 1/distance and 1-distance as weights, as
showed in Table 4.



Table 4. k-NN non-normalized attributes

k values
k-NN 1 3 5 7

Non-Weighted 56.0714% 55.6429% 56.8571% 56.7143%
Weighted (1/distance) 56.0714% 57.5714% 57.9286% 58.2857%
Weighted (1-distance) 56.0714% 57.3571% 57.7143% 58.0714%

k values
k-NN 9 11 13 15

Non-Weighted 56.0000% 56.8571% 57.2143% 55.7857%
Weighted (1/distance) 58.3571% 57.9286% 58.9286% 58.1429%
Weighted (1-distance) 57.9286% 57.7143% 58.8571% 57.7857%

When observing Table 4, we can a see that, for all analyzed number of neigh-
bours, the weighted distance procedures delivered similar or higher accuracy levels than
the non-weighted versions. Additionally, the increase of k did not necessarily caused an
improvement the accuracy level of k-NN, as observed with k = 1 and k = 3, in the
non-weighted version, that resulted in a decrease of the accuracy level from 56.0714% to
55.6429%. The same pattern of behavior can be seen in weighted distance procedures,
with 1/distance for k = 9 to k = 11, that decrease in the accuracy level from 58.3571%
to 57.9286%. In general, the highest accuracy level was delivered by one weighted pro-
cedure (1/distance), with k = 13, resulting in a accuracy of 58.9286%.

Once the different weighted procedures were evaluated, the impact of normaliza-
tion will be assessed and the obtained results are illustrated in Table 5.

Table 5. k-NN normalized attributes

K values
k-NN 1 3 5 7

Non-Weighted 49.2857% 48.6429% 50.1429% 49.5000%
Weighted (1/distance) 49.2857% 50.0714% 50.9286% 49.8571%
Weighted (1-distance) 49.2857% 49.4286% 50.4286% 49.7857%

K values
k-NN 9 11 13 15

Non-Weighted 49.5000% 48.2857% 47.4286% 46.2143%
Weighted (1/distance) 49.8571% 49.0000% 48.2143% 47.7143%
Weighted (1-distance) 49.7143% 49.0714% 48.2857% 47.5714%

The attribute normalization, as showed in the differences of the accuracy levels
presented in Tables 4 and 5, did cause a decrease in the accuracy levels of the k-NN
method. We believe that this occurred due to a numerical representation problem. In the
cocoa dataset, many attribute values have very large numbers, with six or more decimal
numbers, with values varying in the order of 103. In this sense, when calculating distances
of normalized numbers, it will result in a very low number, with many decimal digits, and
the use of rounding operations that can cause a numerical representation problem.



3.2.2. Decision Three

For this classification method, four DT versions are evaluated, with and without pruning
for the non-normalized and for the normalized dataset, as showed in Table 6.

Table 6. Decision Tree Results

Non-normalized Normalized
Non-Pruned Pruned Non-Pruned Pruned

Accuracy 53.2143% 53.0714% 50.1429% 48.8571%
Tree Size 495 473 721 360

Laves Number 248 237 538 483

It can be observed that, for the non-normalized dataset, the pruning strategy has
caused a relative decrease of accuracy level, less than one percentage point. On the other
hand, the size of the provided tree and the number of leaves decreased approximately
4.5%, suggesting an improvement in the pruned tree. For the normalized attributes, the ac-
curacy level decreased more steadily than for the non-normalized dataset, approximately
1.3 percentage points. However, the tree size decrease was almost 50.0% while the de-
crease of the leaves number was 10.3%, suggesting that this tree was over-fitted before
the pruning strategy.

3.2.3. Naive Bayes

For the Naive Bayes methods, three different versions will be evaluated, using the nor-
malized and the non-normalized values, one with the standard NB configuration, one with
the use of Kernel Estimator instead of the normal distribution and one with the use of a
supervised discretization procedure instead of using the normal distribution, generating
the results showed in Table 7.

Table 7. Naive Bayes results

Non-normalized Normalized
Standard 45.6429% 45.7857%

Kernel Estimator 44.8571% 45.7857%
Supervised Discretization 43.5000% 45.7857%

When observing Table 7, we can see that, just as it happened with k-NN and DT,
the attribute normalization did not cause an improvement of the accuracy level. Addition-
ally, it is also shown that all three versions with the normalized attributes provided the
same accuracy level. Finally, for the Non-normalized dataset, the use of kernel estimation
as well as supervised discretization caused a decrease in the accuracy level, suggesting
that the numeric data do follow a normal distribution.

3.2.4. Multi-Layer Perceptron

For MLP, seventy five different architectures of a single hidden-layered MLP are evalu-
ated, varying the number of hidden neurons, the learning rate and the number of epochs,



as showed in Table 8. For all architectures, the momentum rate was set to 0.8, apply-
ing a 2-fold cross-validation (CV) technique. The 2-fold CV technique was selected due
to limited computational resources but, for the selected architecture, five 10-fold cross-
validation tests were made and the mean of each test will be presented along with the
mean and standard deviation of the five tests combined.

As showed in Table 8, the highest accuracy level was with the following architec-
ture: 28 hidden neurons, learning rate of 0.005 and 10000 epochs, resulting in 90.2143%
accuracy. When analyzing the other results, we can see that, for the same configuration
with 10 times lower epochs, the accuracy level was 77.8571%, leading to a decrease in
performance approximately 12.3572 percentage points. This observance of decrease is
important because, it would strongly suggest an under-fitting event in the training model.

Therefore, once the most accurate architecture is selected, it will be investigated
in a 10-fold CV technique, executed five times. The obtained results are shown in Table
9.

Table 8. ANN architecture tests

Epochs
Neuron No L. Rate 100 1000 10000

7

0.1 74.0000% 82.2143% 82.6429%
0.05 70.0714% 78.0000% 82.1429%
0.01 24.2857% 79.3571% 86.5714%
0.005 9.2857% 72.0000% 84.6429%
0.001 7.2857% 24.1429% 79.4286%

14

0.1 80.0714% 85.5714% 88.4286%
0.05 73.7143% 87.2857% 89.0714%
0.01 31.4286% 83.9286% 88.7857%
0.005 12.3571% 75.6429% 89.5714%
0.001 7.1429% 31.0714% 84.2857%

21

0.1 78.5000% 87.0000% 89.7143%
0.05 73.9286% 87.0714% 88.3571%
0.01 34.5714% 84.2143% 89.9286%
0.005 14.7143% 76.9286% 89.9286%
0.001 7.1429% 34.9286% 85.2143%

28

0.1 79.2857% 87.6429% 87.9286%
0.05 74.6429% 87.6429% 89.4286%
0.01 36.9286% 84.0000% 89.5000%
0.005 17.4286% 77.8571% 90.2143%
0.001 7.5000% 37.5714% 85.3571%

35

0.1 78.3571% 86.5000% 88.1429%
0.05 74.3571% 88.0714% 88.2857%
0.01 36.4286% 84.5000% 87.9286%
0.005 18.5000% 77.7857% 88.7143%
0.001 10.6429% 37.2857% 85.2143%

As it can be observed from Table 9, the use of a 10-fold cross-validated technique



resulted in higher accuracy level than with the 2-fold version. Additionally, the average
accuracy was 92.9714%, with a standard deviation of 0.2178.

Table 9. Five executions of the most accurate MLP architecture

Executions
1o 2o 3o 4o 5o

Accuracies 92.7857% 93.2143% 93.0000% 93.1429% 92.7143%

In summary, we can conclude that the highest accuracy level was achieved by a
MLP, just as the original work [Santos 2019]. However, in this paper, we performed a
wider investigation, with different aspects, less complexity and with care of not losing
generalization potential of a MLP and avoiding over-fitting. In this paper, the most ac-
curate model achieved 92.9714% accuracy with a 0.2178 standard deviation. This result
is lower than the one provided by the original work, which was 99.64%. However, we
believe that the model achieved in this paper is better in terms of generalization and much
lower in terms of complexity, given that in [Santos 2019] only neuron quantity were eval-
uated for the MLP construction. Therefore, we believe that the model obtained in this
paper provide a better version to be used in a computer vision model, when compared to
the one originally presented in [Santos 2019].

4. Conclusions and Future Works

In this paper, we presented an extensive investigation of classification algorithms to an
important image-based decision making problem, cocoa beans classification. In order to
do this, an empirical analysis with four classification algorithm was conducted. Finally,
a feature selection technique was applied to all classification algorithms to evaluate the
performance of the cocoa classification task using a more compact representation of the
cocoa images. As a result of this empirical analysis, we believe that the model obtained
in this paper provided a better version to be used in a computer vision model, when
compared to the one originally presented in [Santos 2019].

As future work, we suggest a deeper investigation of neural network architectures,
since we firmly believe that it can generate an even better model. In addition, it is pos-
sible to assess the application and study of unsupervised classification methods for this
problem.
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