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Abstract. Predictive maintenance of aeronautical systems is an important field
of study to reduce airlines operational costs and non-scheduled events. Valves
are important components of several aircraft systems. This fact motivates the
need for health monitoring and prognosis. In this context, this work compares
machine learning methods to predict pneumatic valves health conditions. A
multilayer perceptron artificial neural network model was able to discriminate
the three single failures modes with a mean accuracy of 99.9% and a support
vector machine model was able to diagnose single and concurrent failure modes
with an average accuracy of 94.3%. The results reveal an accuracy improvement
compared to a previous pneumatic valves health assessment study.

1. Introduction
The air transport industry is a competitive market, especially at the commercial segment
where aircraft direct operational costs, which are composed of fuel consumption, main-
tenance and other operational costs are critical for a profitable operation. One relevant
portion of the operational cost is directed related to maintenance. Unscheduled failures
and troubleshooting activities have a great impact on the airliners regarding logistic costs
and flight schedules. One important aspect to reduce this impact is to minimize the non-
scheduled maintenance of aircraft systems. One way to achieve this goal is the develop-
ment of Prognostics and Health Monitoring (PHM) programs.

The aerospace industry is investing in Integrated Vehicle Health Management
(IVHM) systems to reduce the impacts of the negative effects of unscheduled faults
[Jennions 2014]. The main idea of such systems is to get real aircraft systems data
to evaluate the health condition of the aircraft components and use this information to
schedule maintenance actions [1]. The use of PHM in other industries, such as listed on
[PHMSociety 2019], is evidence that not just the aerospace industry is researching this
technology, but also manufacturing, power generation and automotive.

The aircraft is composed of many systems which are responsible for its functions.
The Environmental Control System (ECS) is responsible for providing environmental con-
ditioning to cabin and cockpit. The ECS is composed of some valves which regulate the
hot air extracted from the engines to other subsystems as air conditioning, anti-ice, etc.
These valves are called Pressure Regulated Shutoff Valves (PRSOV). Figure 1 represents
these valves in the ECS architecture. Valves internal components are more susceptible to



failures due to their operation at high pressures and temperature environments. PRSOV
internal sub-components are shown in Figure 2.

Figure 1. Pressure Regulated Shutoff Valves (PRSOV) in the Environmental Con-
trol System (ECS) system.

Figure 2. Internal scheme of Pressure Regulated Shutoff Valves (PRSOV)
[Turcio et al. 2013].

There is a lack of studies considering a multi-fault classification of the PRSOV
using machine learning. In [Castilho et al. 2018] only single-fault has been analyzed.
Moreover, the evaluation of other machine learning algorithms to predict the PRSOV’s
health is demanded as well an analysis of which features influence the PRSOV prediction.

The objective of this paper is to evaluate the application of machine learning tech-
niques to classify the health of PRSOV. We considered the output responses due to their
most relevant parameters variation. As far as we know, this is the first work that analyzes
single and multiple failures on PRSOV. The contributions of this work are:

• Presenting the effectiveness of different types of machine learning algorithms to
predict the PRSOV health;
• Analyzing PRSOV multi-fault classification;
• Presenting the relevance of considering operational condition variables, as pres-

sures and temperature, to be part of the learning methods attributes;
• Studying the influence of PRSOV input command in the classification results.

The results show that the input command contributes to a more accurate diagnos-
tics as well as the environmental conditions for the multi-fault case. Machine learning



algorithms can also diagnose single faults with 99.9% accuracy and multi-fault with a
94.3% accuracy.

The remaining of this paper is organized as follows: Section 2 presents other
works that have studied machine learning to PHM purposes in some industrial applica-
tions and with a focus to determine the PRSOV health also. Section 3 presents the main
concepts of machine learning used in this paper. Section 4 describes the dataset and its
statistical analysis, the inputs type evaluation, the process of machine learning algorithm
parameter tuning, the sampling and the criteria to compare the algorithms. Section 5
describes the results obtained employing the concepts presented in Section 4. Finally,
Section 6 summarizes the main conclusions of this paper.

2. Related work
Some works already explore PHM of PRSOV valves using machine learning techniques.
In [Castilho et al. 2018], the PRSOV has been analyzed using output data from a Simulink
model with a specific valve maneuver to obtain the PRSOV times as attributes for the ma-
chine learning algorithms. The author used Support Vector Machines (SVM) and Clas-
sification and Regression Trees (CART) to estimate the health state of the PRSOV. This
work uses these techniques to classify some PRSOV individual failures independently.

[Baptista et al. 2017a] investigated the use of the algorithms k-NN, feed-forward
ANNs, RFs and linear SVM to predict the End of Life (EOL) and Remaining Useful
Life (RUL) of engineering systems. The authors also showed that data-driven models
based on different data sources (sensors data, fault messages and reliability data) can
provide better prognostics than traditional prognostics based on historical time-to-failure
data [Baptista et al. 2017b]. The following algorithms have been used in this study, k-
Nearest Neighbors (k-NN), Artificial Neural Networks (ANN), CART, SVM, Bayesian
generalized linear models (Bayes), Gradient Boosting with Regression Trees (Boosted
Trees), Linear Regression (LR) and Random Forests (RF).

In [Caesarendra et al. 2010], the authors obtained the failure degradation of bear-
ing machine using data from a Matlab model simulation and experiment bearing run-to-
failure. The authors calculated a logistic regression (LR) model and compare this model
with the results of a trained relevance vector machine (RVM). Concurrent damage health
monitoring was investigated by [Daigle and Goebel 2013], where the author proposed a
prognostics methodology based on the state-parameter estimation which describes the
damage progression of a component. In [Vianna and Yoneyama 2018], the author stud-
ied degradation trends and future wear values estimation considering a multiple model
approach of the extended Kalman filter technique.

3. Machine learning algorithms
Machine Learning (ML) has been defined by [Mitchell 1997] as “A computer program
is said to learn from experience E with respect to some class of tasks T and perfor-
mance measure P if its performance at tasks in T , as measured by P , improves with
experience E”. ML are classified in different categories, where the Supervised Learning
aims to build a mathematical model from a set of data that contains both the inputs and
the desired outputs [Russell and Norvig 2009]. The supervised algorithms employed in
this work are: k-nearest neighbors algorithm (k-NN), Naive Bayes (NB), Classification



And Regression Tree (CART), Support-Vector machines (SVMs), Multilayer Perceptron
(MLP) and Multinomial Logistics Regression (MLR). Following a summary from these
methods are presented [Hastie et al. 2009].

K-nearest neighbors algorithm (k-NN) is a non-parametric method that selects the
k closest training examples in the feature space and classifies a new example by a plurality
vote of its neighbors. The parameter k is a positive integer, usually small. If k = 1, then
the example is assigned to the class of that single nearest neighbor. A commonly used
distance metric for continuous variables is the Euclidean distance.

Naive Bayes classifier is a probabilistic method based on Bayes’ theorem with
independence assumptions between the features. Given an example to be classified, rep-
resented by a vector x, it assigns to this instance probabilities for each of possible class
Cn as P (Cn|x) = p(Cn)p(x|Cn)/p(x).

Decision tree algorithm builds a tree by splitting the classification set into the root
node of a tree and successor “children”. The splitting is based on a set of rules based on the
classification feature. This process is repeated on each derived subset recursively. Each
interior node corresponds to one of the input variables. Each leaf represents a value of the
target variable given the values of the input variables represented by the path from the root
to the leaf. There are many specific decision-tree algorithms, here we used Classification
And Regression Tree (CART).

Support-Vector machines (SVMs) represent the examples as points in space and
separate them by categories with a hyperplane that maximizes the distance from each
example to the nearest data point on each side. Any hyperplane can be written as the set
of points ~x satisfying ~w · ~x − b = 0 where ~w is the normal vector to the hyperplane.
If the training data is linearly separable, two parallel hyperplanes can separate the two
classes of data, so that the distance between them is as large as possible. However, it can
efficiently perform a non-linear classification using a kernel trick that implicitly maps the
inputs into high-dimensional feature spaces.

Artificial Neural Network (ANN) is an interconnected group of artificial neurons
that uses a mathematical or computational model for information processing. A Multi-
layer Perceptron (MLP) has multiple layers (an input and an output layer with one or
more hidden layers), non-linear activation and uses backpropagation for training. Back-
propagation is an efficient method for calculating the weights updates in the network until
it can perform the task for which it is being trained.

A binary logistic model has a dependent variable with two possible values repre-
sented by an indicator variable, where the two values are labeled 0 and 1. In the logistic
model, the log-odds (the logarithm of the odds) for the value labeled 1 is a linear combi-
nation of one or more independent variables. The corresponding probability of the value
labeled 1 can vary between 0 and 1, hence the labeling. The binary logistic regression
model has extensions to more than two levels of the dependent variable: categorical out-
puts with more than two values are modeled by Multinomial Logistic Regression (MLR).

4. Methodology
This section presents the materials and methods used in the work. Subsection 4.1 presents
the generation process of the dataset. Subsection 4.2 presents some statistics for the at-



tributes. Subsection 4.3 presents the attributes selection process. Subsection 4.4 presents
the experimental validation and parameter tuning.

4.1. PRSOV model simulation

In this study, a Simulink model of PRSOV was used to obtain samples of the valve with
variations at their internal characteristics. The constructive characteristics of the PRSOV
which includes the torque motor dynamics and its parts as the chamber volumes, the
spring and piston with its mechanical interference are represented in this model. We
also represent the airflow which passes through the valve characteristics as pressure and
temperature. This model has been validated with experimental data obtained from the
laboratory tests.

The model input is the command which controls the valve torque motor and mod-
ulates the differential pressure applied in the piston. This piston movement results in a
motion of the valve (shown in Figure 2). The model output is the valve flap position.
We have obtained PRSOV samples varying the valve parameters as friction coefficient,
leakage percentage and spring constant. The three parameters have a direct influence in
the piston dynamical movement which is mechanically linked to the valve flap. The in-
terval values of these parameters have been chosen based on the experience of a technical
specialist.

We performed simulations with two types of PRSOV commands. The first com-
mand (command 1) is the same shape used in [Castilho et al. 2018] and the second (com-
mand 2) has a shape with a higher rate transition based on the natural dynamic of the
PRSOV. In each simulation, we have collected some output information to classify the
valve’s health. These parameters are instant times to the PRSOV that achieves 5% and
85% of the fully open position (t1 and t2) and 5% and 85% of the full close position (t3
and t4). We also collected the total and ambient pressure (Pa and Pt) and temperature
(T ). The pseudo-code which describes the simulation of the model for each valve sample
is described in Algorithm 1.

Algorithm 1 Pseudocode to obtain valves responses
1: procedure PRSOV OUT(inputType, leakageDist, springDist, frictionDist)
2: for valve from 1 to 40000 do
3: Leak ← getLeakageV alue(leakageDist)
4: Friction← getFrictionV alue(frictionDist)
5: Spring ← getSpringV alue(springDist)
6: [t1, t2, t3, t4]← Simulate(model, inputType, Leak, Friction, Spring)

7: return t1, t2, t3, t4

We obtained the number of 40000 samples for each PRSOV command type. The
analysis of these dataset has been conducted in two parts. Firstly, we considered only
isolated failures as possible labels (Healthy, Spring Fault, Leakage Fault, Friction Fault).
Based on this information we evaluated the different types of input regarding its shape
(command 1 or command 2). The second part consisted of including the possibility of
simultaneous failures (Leakage and Spring Simultaneous Faults, Leakage and Friction
Simultaneous Faults, Spring and Friction Simultaneous Faults and All Faults occurring
simultaneously).



Table 1 presents the main information of the generated dataset. There are the same
number of samples (5000) which results in 12.5 % samples for each class.

Table 1. Summary of the dataset attributes.

] Examples ] Attributes (simb./num.) % Absences % Majority
40000 7 (0/7) 0 12.5

4.2. Dataset analysis

Analyzing the statistics of the attributes, we can observe differences at the magnitude of
values between the time and the operational attributes as pressures and temperatures (see
Table 2). Therefore, there is a necessity to normalize the attributes where the machine
learning methods demand. We normalize the data to be mean zero and standard deviation
one (Equation 1) where X̄i is the mean and sd(Xi) is the standard deviation of the Xi

data. Another aspect observed in the absence of outliers in the dataset due to the median
and the mean have almost the same value for the attributes.

XNi =
Xi − X̄i

sd(Xi)
(1)

Table 2. Dataset attributes summary.

t1 t2 t3 t4 Pa Pt T

Min 1.273 3.327 21.57 23.4 90000 230000 290
1st Quartil 1.338 3.583 21.98 24.21 92496 232504 295
Median 1.411 3.807 22.15 24.54 94990 235037 300
Mean 1.427 3.882 22.12 24.55 94990 235021 300
3rd Quartil 1.504 4.078 22.25 24.94 97480 237546 305
Max 1.734 5.457 22.71 25.75 99999 240000 310

4.3. Input commands and attribute selection

We can notice in the boxplot of Figure 3 that one-time variable is not enough to separate
classes. In the case of two variables shown in Figure 4, it is possible in some time com-
binations to separate the healthy class (green) from the others. In Figure 5, considering
three-time variables, two classes can be separated and the other two have a little overlap
between them. There is a tendency of increasing the classification performance with the
number of attributes. Due to this fact, in our study, we compared two groups of attributes,
the first with four attributes (t1, t2, t3 and t4) and the other with the addition of the pres-
sures and temperature. For this comparison, we analyzed the accuracy and the confusion
matrix of both groups of attributes applied at the CART algorithm.

4.4. Validation and parameter settings

The dataset has been divided into training and test set with the proportion of 90% and
10% respectively. The test partition represents new data which has not being used in the
training process of the machine learning algorithms.



Figure 3. Attributes boxplot.

Figure 4. Correlation times 2d.

After the machine learning training process, the best algorithm tuned with the
hyper-parameter with higher accuracy has been trained and tested using the training and
test partitions respectively. As a result, we obtain the accuracy of this test and the respec-
tive confusion matrix to analyze the classification errors.

The training process used a k-fold cross-validation method with n = 10. We
use the training portion (a subset of 90% of the total dataset) which is divided into n
folds. For the k-NN, SVM, and MLP hyper-parameter selection, the algorithm is trained
and validated n times. For all methods, it is calculated a mean accuracy over the n runs
of the cross-validation. In the k-NN, SVM and MLP cases, the hyper-parameter with
highest mean accuracy value is selected. We applied this 10-fold cross-validation for the
following algorithms with the configuration below:

• k-NN: Euclidean distance and k varied in the range of 1, 3, 5, 7, 9. The used im-



Figure 5. Correlation times 3d.

plementation is the one described in [Ripley and Venable 2019].
• SVM: linear kernel, type= C-Classification, ε = 0.1, tolerance = 0.001, cost var-

ied in the range of 0.1, 1, 2. The used implementation is the one described in
[Dimitriadou et al. 2006].
• MLP: configurations (neurons on the two hidden layers):

(3, 2), (4, 0), (3, 0), (6, 0), (7, 0), learning rate from 0.5 to 1.2, maximum
number of step = 10e5, number of training repetitions = 10, no start weights,
algorithm: resilient back-propagation (rprop-), activation function: logistic,
error function = sum of square error of prediction, linear output=false. The
threshold parameter is customized during the training process to allow the
network training to converge. The used implementation is the one described in
[Günther and Fritsch 2010].
• CART: Gini split criteria, maximum number of surrogate splits = 5, minimum

number of observation to split = 20, minimum number of observations on terminal
nodes = 7, complexity parameter = 0.01. The used implementation is the one
described in [M. Therneau and Atkinson 1997].
• NB: gaussian distribution. The used implementation is the one described in

[Dimitriadou et al. 2006].
• MLR: λ = 0. The used implementation is the one described in

[Tibshirani et al. 2010].

Since the MLR is estimated through least square error minimization and no reg-
ularization, no hyperparameter is selected on the cross-validation. The assumption of a
Gaussian distribution is adopted for the NB case and also no hyperparameter is selected
for this case. Finally, to compare this work with [Castilho et al. 2018], the default param-
eters for the CART implementation of [M. Therneau and Atkinson 1997] is used.

5. Results

The results are presented as follows. Subsection 5.1 analyzes the influence of the com-
mands (command 1 and command 2) to produce better outputs of PRSOV classification
and the number of variables (times t1, t2, t3 and t4, temperature and pressure) that are



suitable to be considered for the fault diagnostics. Subsection 5.2 presents the classifi-
cation results for single-faults and Subsection 5.3 presents the classification results for
multi-faults.

5.1. Input types evaluation
The first experiment is the comparison between a command used in [Castilho et al. 2018]
(command 1) and a higher rate transition command input (command 2). The objective of
this experiment is to verify the hypotheses that a command with a rate higher than used
in [Castilho et al. 2018] is more effective to produce outputs (times) which reflect better
the PRSOV healthy to classification analysis.

We applied the CART algorithm following the configuration described in subsec-
tion 4.4 for the attributes obtained from the command 1 and command 2. The tree trained
from the attributes obtained from command 2 input provides a more accurate diagnos-
tics information than the command 1 used in [Castilho et al. 2018]. Furthermore, the tree
trained from command 2 has a better classification than command 1 as shown in Table
4. The error in predicting Spring instead of Friction is higher in the tree from command
1. For these reasons, the attributes from command 2 input will be considered in further
experiments.

Table 3. Accuracy (Acc) and standard deviation (Dev) comparison between com-
mand 1 and command 2 inputs.

Input Type Method Mean Acc Dev

command1 CART 97.64 0.36
command2 CART 99.42 0.16

Table 4. Confusion matrix comparison betwenn command 1 and command 2
inputs for CART classification of single-fault (Friction (F), Healthy (H), Leak
(L) and Spring (S)).

Command1 Command2

F H L S F H L S

Pred F 461 0 0 0 495 0 0 0
Pred H 0 500 0 0 0 500 0 0
Pred L 0 0 497 1 0 0 495 2
Pred S 39 0 3 499 5 0 5 498

The second experiment is related to the number of variables that are suitable to
be considered for the fault diagnostics. Only the times’ variables were considered in
[Castilho et al. 2018]. The accuracy of the CART tree trained using the environmental
conditions inputs (pressures and temperature) in addition to the time attributes is the same
as the tree trained without those parameters as shown in Table 5. The addition of new
sensors for diagnostics is costly, so the remaining experiments of this work will only
consider the t1, t2, t3 and t4 times without the pressure and temperature environmental
condition. The other operation inputs (pressures and temperature) only has been used
in case of an accuracy lower than 90% or the non-convergence of an algorithm during
training.



Table 5. Variables evaluation.

Variables Method Mean Acc Dev

Times (t1, t2, t3, t4) CART 99.42 0.16
Times (t1 to t4), temp and press CART 99.42 0.16

5.2. Single-fault experiments
Based on the results in subsection 5.1, the time attributes (t1, t2, t3 and t4) have been used
as inputs to the machine learning algorithms. The results show all the algorithms have an
accuracy superior to 90% as shown in Table 6. It seems the classification of the individual
fault is simple for the algorithms due to the defined separated classes. This behavior can
be observed in the 3d plot (Figure 5). The MLP algorithm had a superior accuracy, for
this reason, the confusion matrix of MLP after the test set being applied to this model is
shown in Table 7 considering the hidden layer with the best performance (3,2).

Table 6. Accuracy (Acc) and standard deviation (Dev) results for machine learn-
ing algorithms in single-fault classification.

Method Mean Acc Dev

k-NN (k=1) 99.75 0.14
SVM (cost=2) 99.76 0.086

MLP (3,2) 99.91 0.01
CART 99.42 0.16

NB 98.73 0.26
MLR 99.87 0.03

Table 7. Confusion Matrix of MLP with hidden layer (3,2) for single-fault classifi-
cation (Friction (F), Healthy (H), Leak (L) and Spring (S)).

F H L S

Pred F 1000 0 0 0
Pred H 0 1000 0 0
Pred L 0 0 999 1
Pred S 0 0 1 999

5.3. Multi-fault experiments
Table 8 shows the accuracy comparison of several models with the step input and the times
(t1, t2, t3 and t4) as features and also with the environmental condition (temperature and
pressure) in case of accuracy lower than 90%. The input type and the predictors were
defined based on the analysis shown in Tables 3 and 5, respectively. The SVM algorithm
had a superior accuracy, for this reason, the confusion matrix of SVM after the test set
being applied to this model is shown in Table 9 considering the cost = 2. Analyzing the
confusion matrix, we can notice that there is an overlap between the LSF and FL classes.

6. Conclusion
This work compared machine learning methods to diagnose failures of a simulated open-
loop bleed valve. Based on this study we can conclude:



Table 8. Accuracy (Acc) and standard deviation (Dev) results for machine learn-
ing algorithms in multi-fault classification.

4 inputs 7 inputs

Method Mean Acc Dev Method Mean Acc Dev

k-NN (k=9) 89.25 0.37 k-NN (k=3) 85.08 0.43
SVM (cost=2) 90.14 0.51 SVM (cost=2) 94.28 0.30

MLP (3,2) 84.69 0.41 MLP (7,0) 87.7 1.85
CART 80.25 0.69 CART 80.25 0.69

NB 82.91 0.45 NB 82.94 0.49
MLR 49.74 0.08 MLR 49.88 0.06

Table 9. Confusion Matrix of SVM with cost = 2 for multi-fault classification (Fric-
tion (F), Healthy (H), Leak (L), Spring (S), Leakage and Friction (LF), Leak-
age and Spring (LS), Spring and Friction (SF) and All Faults occurring si-
multaneously (LSF)).

F H L LF LS LSF S SF
Pred F 500 0 0 0 0 0 0 0
Pred H 0 500 0 0 16 0 0 0
Pred L 0 0 497 0 0 0 0 0

Pred LF 0 0 0 445 0 151 0 1
Pred LS 0 0 0 0 484 0 0 0

Pred LSF 0 0 0 52 0 330 0 0
Pred S 0 0 3 0 0 0 500 0

Pred SF 0 0 0 3 0 19 0 499

• The type of PRSOV input signal is relevant to produce attributes which allow a
better classification performance of the machine learning algorithms. An input
command with a higher rate than the input used in [Castilho et al. 2018] increased
the mean accuracy of diagnostics methods when compared with the accuracy ob-
tained in that previous study.
• The environmental conditions variables are relevant mostly to the diagnostics of

concurrent failures.
• Regarding the learning algorithms for the single fault scenario, all methods pre-

sented an accuracy greater than 90% and the MLP method presented the greatest
accuracy (99.9%).
• In the multi-fault diagnostics, where even simpler approaches (such as NB) has

an accuracy greater than 80%. The SVM algorithm provided the model with the
greatest mean accuracy for the concurrent failure diagnostics (94.3%). The con-
fusion matrix for this method also shows that there is an overlap between the LSF
and LF classes.

Further studies could evaluate the machine learning methods on a closed-loop
operation of this valve considering the normal operational commands which the ECS
system applies. This other approach could result in a simpler and cheaper ECS system.
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