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Abstract. Problems related to traffic congestion and management have 

become common in many cities. Thus, vehicle re-routing methods have been 

proposed to minimize the congestion. Some of these methods have applied 

machine learning techniques, more specifically classifiers, to verify road 

conditions and detect congestion. However, better results may be obtained by 

applying a classifier more suitable to domain. In this sense, this paper 

presents an evaluation of different classifiers applied to the identification of 

the level of road congestion. Our main goal is to analyze the characteristics of 

each classifier in this task. The classifiers involved in the experiments here 

are: Multiple Layer Neural Network (MLP), K-Nearest Neighbors (KNN), 

Decision Trees (J48), Support Vector Machines (SVM), Naive Bayes and Tree 

Augmented Naive Bayes. 

1. Introduction 

The growing of vehicles on streets and highways has caused congestion and traffic 

management problems. Considering some factors, such as time and location, especially 

in large centers, congestion results in wasted time, fuel as well as people's quality of life 

[Djahel et. al., 2015]. 

 Another problem is the suggestion of individual alternative routes that create 

new traffic bottlenecks simply transferring congestion from one point to another. In this 

scenario, Intelligent Transport Systems emerged to solve several problems in traditional 

transportation systems using new technologies of information and communication. 

 An intelligent transport system relies on information obtained from vehicular 

networks or Vehicular Ad hoc NETworks (VANETs). The vehicular networks are a 

special type of mobile ad hoc networks composed of vehicles with onboard units (with 

storage, processing and communication capabilities) and fixed infrastructures with 

wireless capabilities deployed at the roadside, named RoadSide Unit (RSU) [Bila et. al., 

2017][Cunha et. al., 2016]. One of the main characteristics of this type of network is the 

high node mobility (vehicles), intermittent links among vehicles and strict latency 

requirements [Araujo et. al., 2014]. These networks use information from vehicles 

within a short time, propagating quickly such information and thus enabling vehicle 

routing applications to avoid congestion. A major challenge for these applications is to 

change the route of some vehicles without transferring the congestion to other places. 

 One way to avoid the creation of traffic bottleneck is to correctly classify which 

roads are congested, by then selecting non-congested roads to create alternate routes. 



  

Machine learning techniques have been applied in order to classify and reduce the 

problem of congestion transfer from one point to another. More specifically, methods 

that perform vehicle re-routing (alternative paths for vehicles inside a congestion area) 

[Meneguette et. al., 2016][Souza et. al., 2016][Van den Haak et. al., 2010] have been 

proposed. These methods apply classifiers to verify road conditions and assess the level 

of congestion before and after re-routing. 

 It is necessary to emphasize that different classifiers can present different results 

in each domain. Also, it is always important to remember that there is no classifier 

better than all the others on all the problems, as discussed in [Wolpert, 1996]. Therefore, 

for each problem, one must select the right algorithm. In this sense, this paper presents 

an evaluation of state-of-art classification algorithms applied to the identification of the 

level of road congestion. In order to evaluate and identify the behavior of the classifiers 

in different traffic scenarios, we performed experiments with six classification 

algorithms: Multilayer Perceptron neural network (MLP), K-Nearest Neighbors (KNN), 

Decision Trees (J48), Support Vector Machines (SVM), Naive Bayes and Tree 

Augmented Naive Bayes (TAN). The obtained results demonstrate that the classifiers 

are significantly different and thus the choice of the classifier may influence the result 

of a re-routing method. 

 The remainder of this paper is organized as follows. In section 2, the theoretical 

reference about classification algorithms is presented. Section 3 presents some related 

works and Section 4 describes the development methodology. Section 5 presents the 

analysis of results. Finally, section 6 presents the conclusions and future work. 

2. Background 

Classification is a basic task in data analysis and pattern recognition and requires the 

construction of a classifier, that is, a function that assigns a class variable to an instance 

described by a set of attributes [Cirelo and Cozman, 2005]. There are several 

approaches available in the literature to build a classifier. Each approach is capable of 

inducing efficient classifiers in certain application domains. However, there is no an 

approach which induces an efficient classifier in all application domains. Each classifier 

has its specific characteristics, such as the adopted inductive bias, and may have 

different behavior in each domain. Thus, some classifiers can achieve better results than 

others in a specific domain.  

 Following, some state-of-art classification algorithms, which are applied here to 

classify the level of road congestion, are presented. 

2.1. Multilayer Perceptron Neural Networks 

Artificial Neural Networks (ANN) are a system composed of relatively simple 

processing elements, called nodes or units, which are connected, forming a network. 

 According to the structure, the units of an ANN can be arranged in layers, such 

that each unit receives input only from units in the immediately preceding layer. A 

Multilayer Perceptron Neural Network (MLP) has one input layer, one or more hidden 

layers, and the output layer [Russel and Norvig, 2013]. The input layer receives the 

values of the input attributes. The hidden layer does most of the processing, using 

weighted connections. The output layer has the final result of the neural network 

processing (forecast response). 



  

 ANN are suited for practical problems such as handwriting recognition, spoken 

word recognition, and face recognition. Some of their main characteristics are the 

robustness to noise, ability to learn with examples and the speed of processing. 

However, the learning often requires a high processing time. In addition, it is difficult to 

define the appropriate number of hidden layers of the structure to represent a specific 

problem, as well as the number of hidden units in each layer. 

2.2. K-Nearest Neighbours 

The K-Nearest Neighbors (KNN) algorithm is based on the concept of neighborhood, in 

which the neighbors are similar. Thus, it is possible to classify the elements of an n-

dimensional space into K sets. This parameter K represents the number of neighbors and 

is defined by the user in order to obtain a better classification.  

 This method requires little effort for training and it does not depend on the 

construction of a structure to store knowledge. The algorithm stores the training 

examples in memory. However, it takes more time to classify a new element. This is 

due to the fact of comparing the new information with all the examples of the training 

set in the worst case. 

 According to Russel and Norvig (2013), the classifier can get good results when 

there is an abundance of data in a low dimension (domains with few attributes). 

However, in large dimensional spaces, usually the closest neighbors are distant.  

2.3. Decision Trees 

Decision Trees is one of the most successful methods of machine learning [Russel and 

Norvig, 2013]. A decision tree represents a function that receives as input a vector of 

attribute values and returns a unique output value (a "decision"). 

 The decision tree returns a response after executing a test sequence. Each 

internal node in the tree corresponds to a test of the value of one input attribute and the 

branches of the nodes are sorted with the possible values of the attribute. Each leaf node 

in the tree specifies the value to be returned by the function. 

 Decision tree learning methods are robust to noise in training data. However, 

some functions cannot be represented concisely, although it is always preferable to 

obtain the smallest possible tree that is consistent with the training examples. 

2.4. Support Vector Machine 

The Support Vector Machines (SVMs) has become popular, especially when there is no 

prior expert knowledge about a domain [Russel and Norvig, 2013].  

 SVMs construct a decision boundary (maximum margin separator) with the 

greatest possible distance to example points. The idea of SVMs is to focus on points 

more important than others that lead to the best generalization. For this, a linear 

separation in hyperplane is created, even if the data are not separable linearly in the 

original input space, because they can incorporate the data in a space of superior 

dimension, using kernel trick. The linear dimension separator is actually nonlinear in the 

original space. 



  

 SVMs are robust in domains with many attributes (large dimensionality). The 

main limitations of SVMs are their sensitivity to parameter value choices and the 

interpretation difficulty of the generated model. 

2.5. Naive Bayes 

Naive Bayes (NB) is a classifier based on a strong constraint: all attributes are 

considered independent, given the value of the class variable. The structure of NB is 

fixed so that only the class variable is parent of the other attributes and it is not 

necessary to induce it from data. Thus, an NB classifier is automatically obtained by 

induction of the numerical parameters of the model, which requires only information 

about the attributes and their corresponding values to estimate the probabilities. 

 Although NB has provided good results in several domains [Friedman et. al., 

1997], its estimates of probability are unrealistic and its classification performance can 

be improved. Moreover, the induced NB model cannot capture the actual relationships 

between the attributes, and thus it is considered a simple model. 

2.6. Tree Augmented Naive Bayes 

In [Friedman et. al., 1997], the authors introduced the Tree Augmented Naive Bayes 

(TAN) algorithm in order to obtain better classifiers than the NB algorithm. For this, the 

TAN algorithm relaxes the constraint imposed in the construction of the NB structure 

and considers the dependencies among the other attributes, in addition to the class 

attribute. Thus, in the structure of a TAN classifier, the class attribute has no parents and 

each attribute has as its parent the class attribute and at most one other attribute. 

3. Related Work 

There are vehicle re-routing methods in the literature that apply classifiers to identify 

road congestion. However, these methods do not consider the individual characteristics 

of the applied classifiers since the main interest is only in the traffic management. 

 In the work of [Meneguette et. al., 2016], a new solution called CARP 

(Congestion AwaRe Protocol) was proposed for the detection and control of congested 

roads based on inter-vehicle communication. CARP uses ANN to detect and classify 

congestion levels on highways. Simulation results showed that the proposed solution 

has obtained a relevant rate of adjustment in the level of congestion, reducing CO2 

emission, fuel consumption and travel time in the simulated scenarios. 

 In [Souza et. al., 2016], a cooperative routing solution called CO-OP is proposed 

and the solution applies the KNN algorithm to classify the congestion levels of roads. 

The results showed the effectiveness of the method, where it was able to reduce the 

average travel time, average congestion time. 

 In [Van den Haak et. al., 2010], the authors present a hybrid model that applies 

Bayesian networks to predict traffic congestion. The model was tested at a major transit 

point in Amsterdam. The experiments involved a comparison between the proposed 

model and Naive Bayes. The authors concluded that the results of the hybrid model are 

promising and outperform the Naive Bayes models.   



  

4. Methodology 

This work presents a study on the application of classifiers in the task of identifying the 

level of road congestion. The evaluated classifiers are: Multilayer Perceptron Neural 

Network (MLP), K-Nearest Neighbors (KNN), Tree Decision (J48), Support Vector 

Machine (SVM), Naive Bayes and Tree Augmented Naive Bayes (TAN). These 

classifiers were trained with information obtained from simulations performed with the 

SUMO1  simulator. 

 SUMO (Simulation of Urban Mobility) is a simulator of VANET, which allows 

simulating the traffic of vehicles and thus possible congestions. SUMO provides 

information on vehicles and roads in a traffic simulation, both on urban roads and 

highways, allowing the generation of datasets for the induction of classifiers. 

 To simulate vehicle traffic, SUMO allows representing the roads as a Grid (see 

Figure 1). There are back-and-forth traffic routes where vehicles can transit inside the 

Grid. When the vehicle can not proceed on a path due to congestion or to give 

preference to other vehicles in an intersection, they are stopped one after another. 

Vehicles stopped in this way cause congestion on that road. 

 

 

Figure 1. Example of a Grid 6x6 provided by SUMO to represent the vehicles traffic. 

  

 For simplicity, in this paper, the Grid was set to equal sizes roads during traffic 

simulations by SUMO. From this, three Grid configurations were performed to obtain 

the necessary information for the construction of the datasets. In the first Grid 

configuration, the roads were defined as 200 meters and the vehicles had a maximum 

speed of 13.9 m/s (50.04 km/h). The simulation performed with this Grid made it 

possible to generate the dataset called "Base200". In the second Grid configuration, it 

was defined that the roads had 400 meters and the vehicles had a maximum speed of 9.9 

m/s (35.64 km/h). The simulation performed with this Grid made it possible to generate 

the dataset called "Base400". Finally, the Grid was configured with the roads having 

1000 meters and a maximum speed of 19.9 m/s (71.64 km/h). Thus, the dataset called 

"Base1000" was built. 

 Initially, the datasets have instances representing traffic routes with information 

of two attributes, according to some works found in literature [Araujo et. al., 

 

1 <http://sumo.dlr.de/wiki/Simulation_of_Urban_MObility_-_Wiki> 



  

2014][Meneguette et. al., 2016]: i) average speed of the roads and ii) the number of 

vehicles present in this road. These two attributes allow us to classify the level of 

congestion as: weak, moderate and severe. Next, two other attributes were added: (iii) 

the time that the vehicle was stationary on the road and (iv) the road occupancy rate. 

The addition of two more attributes to datasets aimed at providing more information to 

define congestion and to facilitate the learning of classifiers. 

 Table 1 shows the number of instances (examples of routes) entered in each 

dataset, representing different levels of congestion (having 2 and 4 attributes). In each 

traffic route (instance), the level of congestion (weak, moderate and severe) was 

identified as follows: 

• weak: up to 33.333% of the maximum number of vehicles and a reduction in 

33.333% of the maximum speed; 

• moderate: between 33.334% and 66.666% of the maximum speed of the road 

and the maximum number of vehicles; 

• severe: more than 66.667% of the maximum number of vehicles and a reduction 

more than 66.667% of the maximum speed. 

 

Table 1. Number of instances in training datasets. 

Datasets Road size (meter) Weak Moderate Severe Total of Instances 

Base200 200 5513 1607 3236 10356 

Base400 400 5447 2685 2098 10230 

Base1000 1000 3738 2679 4503 10920 

 The classification algorithms have been trained with the datasets of Table 1 to 

induce the classifiers. After, these classifiers were evaluated with a test dataset which 

was also built using the SUMO simulator. This test dataset contains information 

obtained from a map of the city of Los Angeles, USA. 

 Figure 2 presents an outline of the Los Angeles map and shows how different it 

is from the Grid adopted to represent traffic. It is possible to notice the streets with 

different sizes, allowing varying the maximum capacity of vehicles in each route and 

their maximum speeds. 

 

 

Figure 2. Outline of the Los Angeles city map. 



  

 In this scenario, there are about 470 different path sizes – some only appear once 

– and up to 6 maximum speed variations. There is no direct relationship between road 

sizes and vehicle speed. Using this dataset for testing, with diversified information, it is 

possible to analyze with more confidence the results of the classifiers, which are 

discussed in Section 5. 

 The classification algorithms have been trained and tested using Weka2 software 

[Hall et. al., 2009]. Weka (Waikato Environment for Knowledge Analysis) is a 

collection of machine learning algorithms implemented in Java and free code. Thus, it 

has been possible to perform several experiments to define some learning parameters of 

the algorithms in search of the configuration that has obtained the best results. 

 The J48 (decision tree), Naive Bayes, TAN and SVM algorithms have been 

executed with the Weka default parameters. The KNN has been configured with K = 3 

(number of neighbors) and Euclidean distance function. For neural networks (MLP), we 

have defined: i) a structure with one hidden layer having two units, when the training 

dataset contain 2 attributes; and ii) a structure with one hidden layer having 3 units, 

when the training dataset contain 4 attributes. 

5. Experiments and Analysis of Results 

The experiments performed with the classification algorithms have used the datasets of 

Table 1 for training and the dataset obtained from the Los Angeles map for validation 

(described in Section 4). 

 Initially, the classifiers were trained using the Base200, Base400 and Base1000 

datasets having two attributes: i) average speed of the road and ii) the number of 

vehicles present in this road. After, some experiments were carried out joining the data 

of these 3 datasets to diversify information: first the Base200 and Base400 data were 

merged (Base200-400), after Base200 and Base1000 (Base200-1000) and then Base400 

and Base1000 (Base400-1000). Finally, all three datasets have been joined on one 

dataset (Base200-400-1000). Then, the classifiers were trained using the datasets having 

4 attributes: i) average speed of the road and ii) the number of vehicles present in this 

road, iii) the time that the vehicle was stationary on the road and (iv) the road 

occupancy rate. In this case, the datasets were also merged. Sections 5.1 e 5.2 present 

and discuss the results obtained in the experiments using the datasets having two and 

four attributes, respectively. 

 After training, the classifiers were evaluated with the test dataset of the city of 

Los Angeles, which provided scenarios closer to reality. In this evaluation, three 

different routes were configured to represent the traffic scenarios. In each route, the start 

point, end point and path of each vehicle are changed. Thus, three distinct scenarios that 

have allowed the presence or absence of congestion in different points of the city were 

created. In each scenario, the classification rate of the congestion level of Los Angeles 

city roads obtained by each classifier was stored. 

 

2 <http://www.cs.waikato.ac.nz/ml/weka/> 



  

5.1. Training using two-attributes datasets 

In these experiments, the classifiers were trained using the datasets having two 

attributes. After, the classifiers were assessed using the Los Angeles dataset. Tables 2, 3 

and 4 present the classification rates obtained by the classifiers in scenarios 1, 2 and 3, 

respectively. 

 
Table 2. Classification rate obtained by classifiers (when trained using dataset 

with two attributes) in the Los Angeles dataset in first scenario. 

Dataset NB TAN KNN MLP J48 SVM 

Base200 62.55 62.02 62.09 62.02 62.01 61.78 

Base400 59.74 60.88 59.51 59.51 59.51 59.51 

Base1000 59.21 59.21 59.21 59.21 59.21 59.21 

Base200-400 69.6 61.71 61.49 60.73 61.25 61.41 

Base200-1000 79.61 61.71 61.71 60.05 61.71 61.71 

Base400-1000 59.44 59.44 59.44 59.44 59.43 59.43 

Base200-400-1000 79.61 61.71 59.44 59.97 61.33 61.25 

Rank (Friedman) 1.71 2.57 3.42 4.42 4.28 4.42 

 Observing the results presented in Tables 2, 3 and 4, it is possible to notice that 

the classifiers obtained similar results in the three defined scenarios. This shows that 

information about the congestion level available in datasets allow to induce classifiers 

able to evaluate any suggested route. However, all classifiers did not get a good 

classification rate, especially when they are trained with datasets having single-sized 

streets (Base200, Base400 and Base1000). This is understandable since the streets of the 

city of Los Angeles have different sizes. When the information in these datasets is 

joined (Base200-400, Base200-1000, and Base200-400-1000), there is a reasonable 

improvement in the accuracy rate of the Naive Bayes classifier. Although this classifier 

is considered simpler (due to its strong assumption about the independence of attributes, 

given the class variable), its performance has been higher than the other classifiers with 

more complex models in the three scenarios. 

 
Table 3. Classification rate obtained by classifiers (when trained using dataset 

with two attributes) in the Los Angeles dataset in second scenario. 

Dataset NB TAN KNN MLP J48 SVM 

Base200 58.47 57.67 57.67 57.67 57.67 57.05 

Base400 54.94 55.82 54.59 54.5 54.58 54.49 

Base1000 54.23 54.23 54.23 54.23 54.23 54.23 

Base200-400 65.7 57.32 57.14 56.79 56.79 56.79 

Base200-1000 77.25 57.32 56.97 55.2 56.96 56.96 

Base400-1000 54.41 54.41 54.32 54.32 54.23 54.32 

Base200-400-1000 77.42 56.23 54.23 55.11 56.34 56.43 

Rank (Friedman) 1.57 2.5 3.71 4.57 4.21 4.42 



  

 The performance of the other classifiers in relation to the Naive Bayes can be 

explained by the little knowledge on the congestion levels represented in the training 

datasets. Neural networks (MLP) and SVM generate complex models that need more 

information to define the appropriate parameters that correctly represent the problem. 

The decision tree algorithms construct a tree structure based on the information gain of 

the attributes. The KNN algorithm compares the new examples to be classified (the Los 

Angeles dataset) with the training dataset examples. The TAN algorithm, because it is 

an improvement on Naive Bayes, needs to identify the relationships between the 

attributes. Therefore, the training datasets did not offer sufficient knowledge about 

congestion levels for these classifiers to obtain more accurate results in the Los Angeles 

dataset. 

Table 4. Classification rate obtained by classifiers (when trained using dataset 
with two attributes) in the Los Angeles dataset in third scenario. 

Dataset NB TAN KNN MLP J48 SVM 

Base200 64.83 64.37 64.37 64.37 64.36 64.06 

Base400 61.84 63.06 61.61 61.61 61.6 61.6 

Base1000 61.38 61.38 61.38 61.38 61.38 61.38 

Base200-400 71.72 64.06 63.52 63.37 63.6 63.98 

Base200-1000 80.31 64.06 64.06 62.53 64.06 64.06 

Base400-1000 61.53 61.76 61.53 61.61 61.53 61.53 

Base200-400-1000 80.54 63.68 61.53 62.22 63.75 63.9 

Rank (Friedman) 2 2.5 4.07 4.14 3.92 3.78 

 In general, to provide a better perspective on the relative performance of the 

algorithms under study, we further report the results of comparisons of statistical tests. 

Following Demšar (2006), we applied the well-known Friedman’s statistical test and, 

when applicable, the post-hoc Nemenyi test to assess the obtained results. Under the 

null hypothesis, which states that all algorithms are equivalent, we have p = 0.002, so 

we reject the null hypothesis (e.g., for α=5%) and proceed with the Nemenyi post-hoc 

tests. In this case, it is worth mentioning that the critical difference between six average 

ranks for the Nemenyi post-hoc test is equal to 2.85. These tests show that the 

performance of Naive Bayes did not bring significantly different results when compared 

to TAN, KNN and J48, although there is a tendency. In the second scenario, the Naive 

Bayes classifier achieved better results than SVM (4.42-1.57=2.85  2.85 – see the last 

row of Table 3) and the MLP (4.57-1.57=3  2.85). Thus, it is possible to conclude that 

Naive Bayes can find better solutions than the other algorithms when there is little 

traffic information. 

5.2. Training using four-attributes datasets 

In these experiments, the datasets having four attributes have been used for training the 

classifiers. The addition of two more attributes to datasets aims to bring more 

information to help improve the learning of the classifiers. However, it is important to 

note that, in practice, this information would have a high associated cost, as more 

sophisticated equipment would be needed to collect this data. In these experiments, 

these costs are not taken into account, since the data were obtained through a simulator. 



  

 After training, the classifiers were assessed using the Los Angeles dataset. 

Observing the results showed in Tables 5, 6 and 7 (scenarios 1, 2 and 3, respectively), it 

is possible to notice that all the classifiers trained using the datasets having 4 attributes 

have obtained a higher classification rate than the classifiers trained using the datasets 

having 2 attributes, except the SVM classifier. As in the previous experiments, the 

classifiers have also obtained similar results in the three defined scenarios. It is also 

noticed that the classifiers induced by the decision tree (J48) have obtained the best 

results in the three scenarios, followed by the MLP. The Naive Bayes classifier has 

maintained the tendency to get good results when the datasets are merged. 
 

Table 5. Classification rate obtained by classifiers (when trained using dataset 
with four attributes) in the Los Angeles dataset in first scenario. 

Dataset NB TAN KNN MLP J48 SVM 

Base200 69.83 74 64.9 82.33 97.19 30.55 

Base400 72.63 68.54 60.42 87.79 96.81 59.43 

Base1000 59.89 63.91 59.29 62.93 98.55 52.76 

Base200-400 92.34 68.84 79.98 96.21 97.8 28.8 

Base200-1000 92.65 83.32 96.47 97.5 97.57 40.78 

Base400-1000 91.81 68.01 82.11 98.26 91.81 47.83 

Base200-400-1000 93.18 71.57 95.68 95.83 97.64 39.42 

Rank (Friedman) 3.5 4.14 4.14 2 1.21 6 

 Applying Friedman’s statistical test, we have p = 0.0001, so we reject the null 

hypothesis (e.g., for α=5%) and proceed with the Nemenyi post-hoc tests. In this case, 

the critical difference between the six ranks for the Nemenyi post-hoc test is 2.85. Thus, 

these tests show that the classifier J48 obtains a better result than TAN, KNN (except in 

the third scenario – 4.07-1.92=2.15  2.85) and SVM. Neural networks (MLP) also 

perform better than SVM in all scenarios. The other algorithms, however, do not 

perform significantly differently from each other. 

 

Table 6. Classification rate obtained by classifiers (when trained using dataset 
with four attributes) in the Los Angeles dataset in second scenario. 

Dataset NB TAN KNN MLP J48 SVM 

Base200 66.49 69.84 61.02 81.31 97.35 34.21 

Base400 70.37 64.02 55.56 86.15 97.08 54.32 

Base1000 55.03 58.64 54.23 57.76 98.67 57.31 

Base200-400 91.8 65.87 79.28 96.56 97.79 33.33 

Base200-1000 91.71 80.25 95.59 97.35 97.88 44.11 

Base400-1000 91.45 63.76 82.36 98.24 93.29 51.76 

Base200-400-1000 92.42 68.08 96.38 96.38 97.79 43.29 

Rank (Friedman) 3.57 4.14 4.35 2.07 1.14 5.71 

 



  

Table 7. Classification rate obtained by classifiers (when trained using dataset 
with four attributes) in the Los Angeles dataset in third scenario. 

Dataset NB TAN KNN MLP J48 SVM 

Base200 71.57 74.33 67.51 84.75 97.77 31.57 

Base400 76.01 68.66 62.76 89.12 96.93 61.53 

Base1000 62.07 65.13 61.38 64.67 98.69 53.48 

Base200-400 93.1 71.88 82.53 96.86 98 31.95 

Base200-1000 93.72 83.29 96.47 98.47 98 43.29 

Base400-1000 92.8 69.35 85.52 98.47 93.79 47.5 

Base200-400-1000 94.02 72.49 96.7 96.7 98.31 42.14 

Rank (Friedman) 3.57 4.14 4.07 1.92 1.28 6 

6. Conclusions and Future Works 

This paper presents a study about the behavior of state-of-art classifiers applied to the 

identification of the road congestion level. We evaluated six classification algorithms in 

3 traffic scenarios: Multilayer Perceptron Neural Network (MLP), K-Nearest Neighbors 

(KNN), Tree Decision (J48), Support Vector Machine (SVM), Naive Bayes and Tree 

Augmented Naive Bayes (TAN).   

 In the experiments, we tried to create traffic situations with superficial 

information to induce more general classifiers that could adapt to actual traffic 

situations. The results of the experiments showed that the Naive Bayes classifier can 

perform significantly better than the other classifiers when there is little information 

about traffic (average speed of the road and the number of vehicles present in this road). 

In scenarios with more traffic information (average speed of the road, the number of 

vehicles present in this road, the time that the vehicle was stationary on the road and the 

road occupancy rate), the J48 classifier (decision tree) can outperform all other assessed 

classifiers. However, Naive Bayes has maintained a good performance in these 

scenarios as well, even though it is considered a simpler classifier. 

 In practical applications, we must consider that the traffic scenarios are dynamic 

and the cost of obtaining more information is high (number of messages). Thus, more 

accurate and faster classifiers in environments with little information should be 

considered. 

 Considering the performance presented by the Naive Bayes classifier in the 

experiments, we intend to apply it in the identification of congestion levels to assist 

vehicle re-routing methods, in order to avoid new congestion and reduce the caused 

damage. 
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