
End-To-End Imitation Learning of Lane Following Policies
Using Sum-Product Networks

Renato Lui Geh1, Denis Deratani Mauá1

1Institute of Mathematics and Statistics – University of São Paulo (USP)

{renatolg,ddm}@ime.usp.br

Abstract. Recent research has shown the potential of learning lane following
policies from annotated video sequences through the use of advanced machine
learning techniques. They however require high computational power, prohibit-
ing their use in low-budget projects such as educational robotic kits and em-
bedded devices. Sum-product networks (SPNs) are a class of deep probabilistic
models with clear probabilistic semantics and competitive performance. Im-
portantly, SPNs learned from data are usually several times smaller than deep
neural networks trained for the same task. In this work, we develop an end-to-
end imitation learning solution to lane following using SPNs to classify images
into a finite set of actions. Images are obtained from a monocular camera, which
is part of the low-cost custom made mobile robot. Our results show that our so-
lution generalizes training conditions with relatively few data. We investigate
the trade-off between computational and predictive performance, and conclude
that sacrificing accuracy for the benefit of faster inference results in improved
performance in the real world, especially in resource constrained environments.

1. Introduction
Autonomous driving has gained traction in recent years thanks to many advances in both
computer vision and machine learning. An important task in autonomous driving is lane
following, where the self-driving agent must act so as to remain inside lane boundaries.
Most approaches to lane following require accurate state estimations and on-line planning
[Levinson et al. 2011, Paden et al. 2016, Pan et al. 2018], whose financial and computa-
tional costs can be prohibitive for low-budget projects, such as educational robotics and
embedded devices. Recent work however has shown the potential of end-to-end imitation
learning of lane following policies from monocular images as a viable and cost-effective
alternative [Bojarski et al. 2016, Chen and Huang 2017, Pan et al. 2018]. While these
works show impressive results, they rely on very large deep neural networks, which are
difficult to deploy to resource-constrained agents.

Sum-product networks (SPNs) are deep probabilistic graphical models capable of
representing complex probability distributions over large domains. SPNs have achieved
impressive results in various traditional computer vision tasks, such as image completion
[Poon and Domingos 2011,Dennis and Ventura 2012] and image classification [Gens and
Domingos 2012,Sguerra and Cozman 2016,Peharz et al. 2018]. Exact inference in SPNs
is linear in the size of its computation graph, making them an attractive alternative to deep
neural networks for real-time image classification. The inherent probabilistic semantics
of SPNs allow for efficient structure learning [Dennis and Ventura 2012, Gens and Pedro
2013, Vergari et al. 2015] and facilitates debugging. SPNs can also take advantage of the

advanced optimization toolset of deep neural networks [Poon and Domingos 2011, Gens
and Domingos 2012, Zhao et al. 2016b, Rashwan et al. 2018], to obtain competitive
performance [Peharz et al. 2018].

In this work, we present an end-to-end learning approach for lane following in
low-performance low-cost vehicles that uses SPNs to classify images from monocular
cameras into actions in real-time. We develop several SPN classifiers by combining
known structure and parameter learning algorithms. Importantly, we evaluate our system
on a low-cost custom made mobile robot, under different lighting and floor conditions.
Our results show that, even in contrived environments, the ability to make timely deci-
sions is often more important than the accuracy of such decisions, and that less accurate
but faster policies display better behavior than more accurate but slower policies.

This document is organized as follows. We start in Section 2 with a review of the
recent literature on imitation learning applied to autonomous driving, and a brief descrip-
tion of our approach. We then provide in Section 3 the necessary background on SPNs.
We describe in detail our approach in Section 4, and discuss its empirical evaluation in
Section 5. Section 6 concludes the paper.

2. End-To-End Learning For Lane Following

In imitation learning, the agent learns a policy (i.e., a mapping from percepts to actions,
a.k.a. a controller) for a given task from a sequence of observations of a teacher, usually
a human expert [Hussein et al. 2017]. Thus, imitation learning reduces the problem of
planning in complex environments to supervised learning, where one estimates a function
from input-output pairs.

Possibly the first use of imitation learning for autonomous driving traces back
to the seminal work of Pomerleau [Pomerleau 1989], who designed a self-driving agent
for road driving based on a neural network policy that operated on monocular images
and distance sensor measurements. Most subsequent works adopted a model-plan-act
approach, which constructs policies on-the-fly, as needed [Levinson et al. 2011, Paden
et al. 2016].

Recently, there has been a surge of interest in revisiting imitation learning for self-
driving, especially for high-speed and/or resource-constrained agents. Particularly, there
has been several proposals built around the idea of end-to-end learning where a steering
policy is learned directly from percept input (e.g. raw image data), with very few pre- and
post-processing on data [Pfeiffer et al. 2017, Chen and Huang 2017, Pan et al. 2018].

[Bojarski et al. 2016] trained a convolutional neural network from annotated video
footage obtained from three cameras attached to a car to generate a policy that maps raw
pixels to steering wheel angles. [Chen and Huang 2017] followed a similar approach
using a single monocular camera. [Pan et al. 2018] combined imitation learning and re-
inforcement learning to obtain a steering policy that takes data from a front camera and
wheel speed sensors. [Sguerra and Cozman 2016] employed imitation learning to learn
steering policies for aerial mobile vehicles that need to operate at high speeds and with
minimum weight; the latter requirement implies in a minimal sensoring set up. Simi-
larly to this work, they used a sum-product network to classify images into a finite set
of actions, and reported satisfactory performance on preliminary results. Their system

however focused on optimizing accuracy and did not consider the computational cost of
real-time decision making.

[Moraes and Salvatore 2018] adapted the approach of [Bojarski et al. 2016] to
operate on a very resource-constrained agent built using educational robotic kits and cus-
tom made hardware. They trained deep neural networks for classifying images obtained
from a low-cost monocular camera into three actions (move left, forward or right). They
also did not consider the interplay of accuracy and inference speed, and their effect on
real-time decision making.

In this work, we combine ideas from [Sguerra and Cozman 2016] and [Moraes
and Salvatore 2018], and cast lane following policy construction as an image classifica-
tion problem, where the goal is to learn a model that predicts one of three available actions
(move left, forward or right) given an image. Following [Sguerra and Cozman 2016], we
learn a sum-product network representing a probabilistic policy, that outputs a probability
distribution over the actions, from which the agent selects the action with highest prob-
ability. We use the same hardware setup used in [Moraes and Salvatore 2018]. Image
processing and classification is performed on a Raspberry Pi 3 Model B mounted on a
three-wheeled mobile robot. Once the action is selected, a message is sent to the Lego
Mindstorms NXT processing unit, which translates the action into power output signals
to motor actuators. Figure 1 shows the robot’s camera feed with the overlayed policy and
the assembled low-cost mobile robot.

Figure 1. Left: lane following camera feed overlayed with policy action. Right:
mobile robot used in our experiments.

3. Sum-Product Networks
In this work, we use a sum-product network (SPN) to represent a sophisticated proba-
bilistic policy. An SPN represents a tractable probability distribution over a set of random
variables (RVs) X = {X1, . . . , Xn}, called its scope, as a hierarchical mixture model.
SPNs can be defined inductively, as follows.
Definition 1. An SPN is either

1. a univariate probability distribution; or
2. a product of SPNs with disjoint scopes; or
3. a weighted sum of SPNs with identical scopes and nonnegative weights.

SPNs are usually graphically represented by their computation graph, which is a
rooted directed acyclic graph whose internal nodes are products and weighted sums, and
whose leaves are random variables associated to univariate distributions. Figure 2 depicts

+

× × ×

+ + + +

X1

(0.2, 0.8)

X1

(0.6, 0.4)

X2

(0.3, 0.7)

X2

(0.9, 0.1)

0.5 0.2 0.3

0.3 0.7 0.2 0.8 0.6 0.4 0.9 0.1

Figure 2. A sum-product network over Bernoulli random variables.

an SPN whose scope are Bernoulli random variablesX1 andX2. The numbers underneath
each leaf indicate the corresponding probability distribution.

The (unnormalized) probability S(x) defined by an SPN S for a given configura-
tion x of its scope can be computed recursively from the values of subnetworks as follows.
Denote by Sn the SPN rooted at a node n in the DAG of an SPN S, and by Ch(n) the set
of its children. The value of a leaf node n is the probability value Pn(x) of the associated
univariate distribution at the respective value in x. The value of an internal node n is given
by Sn(x) =

∏
j∈Ch(n) Sj(x), if n is a product node, and by Sn(x) =

∑
j∈Ch(n) wn,jSj(x),

if n is a sum node, where wn,j is the weight associated with the edge from n to its children
j. When the weights are normalized, that is, when

∑
j∈Ch(n) wn,j = 1 for each sum node

n, then S(x) computes the exact joint probability value P (x) [Poon and Domingos 2011].
In order to avoid duplicate computations, the value of S(x) is computed from the leaves
toward the root, in a dynamic programming approach. For example, the probability of
X1 = 1 and X2 = 0 specified by the SPN in Figure 2, computed by propagating values
from the leaves towards the root, is 0.24.

If the weights are not normalized, then the probability of x is given by the ratio of
S(x) and Z, where Z is the value computed by the network when every leaf sends value
1 (which therefore can be computed efficiently).

An important feature of SPNs is the ability of computing the marginal probabil-
ities in linear time, by a simple bottom-up propagation of values. The (unnormalized)
probability of evidence e corresponding to a configuration of a subset of the variables
in the scope, is obtained by the same recursive formulation as before with the following
modification: The value of a leaf node n is 1 if X is not part of the evidence, otherwise it
is the probability Pn(e) specified by the associated univariate distribution. For example,
the value of P (X1 = 1) = 0.5 specified by the SPN in Figure 2, can be obtained by setting
the values of leaves with scope X2 to 1, and then performing the bottom-up propagation.
Conditional probability values can be obtained with two passes over the network, hence
also in linear time in the network size.

While marginal and conditional inference is tractable, computing the most prob-
able configuration consistent with some evidence (a task known as MPE inference) is
NP-hard in SPNs [Peharz 2015, Conaty et al. 2017, Mei et al. 2018]. Nevertheless,
approximate algorithms, such as Max-Product [Poon and Domingos 2011] and Argmax-
Product [Conaty et al. 2017], are known to produce reasonably accurate prediction, while

maintaining efficiency. Max-Product, for instance, operates by replacing sums with max-
imizations in the computation of the value of sum and leaf nodes, and otherwise per-
forming bottom-up propagation of values as in marginal inference. The corresponding
configuration is extracted by backtracking the decisions of the maximizations, with a top-
down pass in the network. Hence, the whole procedure still takes linear time in the size
of the network.

3.1. Structure Learning

Several structure learning algorithms have been proposed to learn from data [Poon and
Domingos 2011, Dennis and Ventura 2012, Vergari et al. 2015, Peharz et al. 2018, Gens
and Pedro 2013]. In this work we consider the clustering architecture of Dennis and
Ventura [Dennis and Ventura 2012], and different implementations of the LearnSPN
schema [Gens and Pedro 2013].

Consider a dataset as a matrix indexed by variables on columns and values of
variables as rows. The LearnSPN schema works by recursively partitioning data into
clusters of rows, and sets of interdependent variables for columns. The schema takes the
dataset and its scope as parameters, and at each step, LearnSPN checks if the dataset has
column one, in which case a univariate distribution is created as a leaf. If that is not
the case, it attempts to find partitions of its scope P1, . . . , Pk such that for every pair of
variable, X is independent of Y , where X ∈ Pi, Y ∈ Pj , i 6= j. This can be done through
independence tests. A product node is created to represent this partitioning, with each of
its children the recursive calls to LearnSPN under each Pi scope. If k = 1, i.e. the entire
set is dependent, the algorithm creates a sum node with children as the recursive calls
under the clusters C1, . . . , Cm of the dataset as children. Each weight is then defined as
the proportion |Ci|/(|C1| ∪ . . . ∪ |Cm|). Figure 3 shows this recursive partitioning of the
dataset.

Figure 3. LearnSPN partition steps for sums and products.

The clustering architecture described in [Dennis and Ventura 2012], which we will
refer to as the ClusterArch algorithm, works in a similar fashion to LearnSPN with some
key differences. ClusterArch generates an SPN by k-means clustering both variables and
their values. In other words, it uses clustering for both sums and products. In practice,
this works by 2-clustering both rows and columns of the dataset, recursively partitioning
the data into two. At each cluster step, instead of creating a single node, the algorithm
creates a set of either sums or products. When the dataset has scope one, a mixture of
gaussians is created.

3.2. Weight Learning

Weight learning in SPNs can take several forms [Poon and Domingos 2011, Gens and
Domingos 2012, Rashwan et al. 2018, Zhao et al. 2016b, Zhao et al. 2016a]. For this
work we explore generative and discriminative gradient descent and their soft and hard
variants [Poon and Domingos 2011, Gens and Domingos 2012].

Poon and Domingos [Poon and Domingos 2011] showed how to train weights
through generative gradient descent by taking the gradient of the log-likelihood and opti-
mizing. This can be done through a weight update step

wn,j ← wn,j + η
∂S(x)

∂wn,j

,

where ∂S/∂wn,j is the n → j edge component of the gradient and η the learning rate.
Gens and Domingos [Gens and Domingos 2012] proposed discriminative gradient descent
by computing the gradient of the conditional log-likelihood P (y|x), with weight update
taking the form

wn,j ← wn,j + η

(
1

S(y,x)

∂S(y,x)

∂wn,j

− 1

S(x)

∂S(x)

∂wn,j

)
.

These derivatives can be extracted through a single backpropagation-style top-down pass
through the network.

A key issue of gradient descent in deep models is gradient diffusion, wherein the
signal tends to fade the deeper the network. Both [Poon and Domingos 2011] and [Gens
and Domingos 2012] attempt to solve this by using hard inference gradient descent. By
using MPE instead of marginals, derivatives turn into constants. Each weight differential
for the hard generative case turns into simple counts wn,j ← η

cn,j

wn,j
, where cn,j is the num-

ber of times edge n→ j appeared in Max-Product’s top-down pass. Hard discriminative
gradient descent works similarly, with each weight update taking the form wn,j ← η

∆cn,j

wn,j
,

with ∆cn,j the difference between the counts for edge n→ j in S(y,x) and S(x). Table
1 shows the weight update equations for each method.

Table 1. Gradient descent weight updates for SPNs.

GENERATIVE

Soft ∆wn,j = η
∂S(x,y)

∂wn,j

Hard ∆wn,j = η
cn,j
wn,j

DISCRIMINATIVE

Soft ∆wn,j = η

(
1

S(y,x)

∂S(y,x)

∂wn,j

− 1

S(x)

∂S(x)

∂wn,j

)
Hard ∆wn,j = η

∆cn,j
wn,j

Figure 4. Samples from the training dataset: LEFT, UP and RIGHT, respectively.

Raw Gray Binarized

LearnWeight LearnStructure

SaveDisk

Pre-processing

Training

LoadDisk

BuildSPN Inference

SPN loading
Predicted: RIGHT

Figure 5. Pipeline for training and inference when using binarization.

4. Training SPNs for Lane Following

We applied image classification on Moraes and Salvatore’s artificial self-driving dataset.1

The dataset is composed of 56172 80× 45 RGB lane following images labeled UP, LEFT
and RIGHT, with labels representing actions taken by the human expert. Figure 4 shows
samples for each label. The dataset was generated from a single track, and label distribu-
tion is uniform.

Images were converted from RGB to grayscale. An additional image transfor-
mation stage was then applied before training and prediction. Otsu’s binarization [Otsu
1979], quantization, and equalization were used as possible pre-processing transforma-
tions. Figure 5 shows this pipeline. Pre-processing must be applied in real-time when
predicting the agent’s policy.

We trained structures with LearnSPN and ClassArch, with both hard generative
and discriminative gradient descent for weights. We found that soft gradient descent
yielded little to no improvement in accuracy. Derivatives were so small because of gradi-
ent diffusion, that weight updates were practically zero.

1Available at: https://github.com/felipessalvatore/self_driving_data

https://github.com/felipessalvatore/self_driving_data

For LearnSPN, two variations using different methods for clustering were imple-
mented. The first uses k-means with k = 2 and Euclidean distance as its metric, and the
other DBSCAN [Ester et al. 1996]. Both apply the G-test for variable splitting. We found
that, although DBSCAN with LearnSPN was able to achieve an impressive accuracy score
of 100% on the test set; size and inference speed of this network was prohibitive for our
mobile robot’s limited hardware, as computing the agent’s policy took almost 20 seconds
for each frame, and its network’s structure was 32 times larger compared to other trained
SPNs. For these reasons, we omit results for this variant.

Table 2. Accuracy and prediction speed for each model

Accuracy (%) DV+g DV+d DV+s GD+g GD+d GD+s
B 78.8 78.8 78.8 82.8 83.8 85.0
Q2 78.6 78.0 78.0 78.6 80.4 79.4
Q2 + E 76.6 76.6 76.8 79.6 82.8 81.8
Q3 77.4 77.4 77.4 77.6 80.2 79.8
Q3 + E 70.4 76.6 76.6 79.2 81.2 77.4
Q4 78.2 78.4 78.2 76.0 78.2 76.4
Q4 + E 76.6 76.6 76.8 76.0 74.6 80.6
Q5 77.8 78.4 78.4 77.6 74.0 73.8
Q5 + E 76.6 76.6 76.6 72.0 72.8 72.0
Q6 77.4 78.4 78.4 75.2 74.4 72.0
Q6 + E 76.0 76.4 76.4 73.0 75.0 73.6
Q7 78.2 78.4 78.4 62.8 72.2 71.4
Q7 + E 76.2 76.4 76.4 70.6 71.4 71.6
∅ 78.0 78.4 78.4 62.4 62.4 62.4
E 76.4 76.4 76.4 60.4 60.0 61.2
Speed (secs) DV+g DV+d DV+s GD+g GD+d GD+s
B 0.23 0.25 0.25 0.38 0.37 0.31
Q2 0.22 0.24 0.23 0.28 0.34 0.16
Q2 + E 0.22 0.23 0.23 0.38 0.30 0.27
Q3 0.22 0.23 0.22 0.22 0.32 0.17
Q3 + E 0.22 0.23 0.22 0.34 0.32 0.31
Q4 0.22 0.22 0.23 0.16 0.17 0.13
Q4 + E 0.23 0.27 0.29 0.13 0.14 0.13
Q5 0.22 0.26 0.28 0.07 0.05 0.02
Q5 + E 0.22 0.29 0.25 0.05 0.05 0.02
Q6 0.23 0.24 0.23 0.04 0.05 0.01
Q6 + E 0.22 0.24 0.28 0.03 0.04 0.02
Q7 0.23 0.23 0.26 0.03 0.01 0.01
Q7 + E 0.22 0.26 0.24 0.01 0.01 0.01
∅ 0.22 0.26 0.23 0.02 0.01 0.01
E 0.23 0.23 0.22 0.01 0.01 0.02

All SPNs were trained with 500 samples of the 56172 total images of the dataset.
This portion corresponds to only 0.9% of all available data. Another 500 were used for
testing. When trained with 1000 samples, the SPNs generated were much more accu-

rate, but inference speed decreased considerably. Both training and testing were run on
a desktop computer. Table 2 shows test results for LearnSPN, referenced as GD; and
ClassArch, referenced as DV. The letters d and g are used for indicating whether dis-
criminative or generative gradient descent was used. We also trained ClassArch without
optimizing weights by simply setting them as random, and LearnSPN through the pro-
portional weights method discussed earlier. To distinguish such cases, an s is used. Pre-
processing tasks are shown as B, for Otsu’s binarization; Qn, for n-bit quantization; and
E for image equalization. An ∅means images were trained with no image pre-processing.

5. Experiments and Results
Once all models were trained and evaluated on the test set, we picked three for testing on
the custom-made mobile robot. These models correspond to the three bolded values in
Table 2. We chose these models in order to evaluate performance on three cases: when
using an accurate classifier with slower prediction speed, a fast model with poor accuracy,
and a balanced middlepoint classifier.

As expected, we found that the difference between computation time on the desk-
top computer (an i7-4500U 1.80 GHz CPU), and the Raspberry Pi 3 Model B (Quad Core
1.2GHz Broadcom BCM2837 ARMv7) was quite significant. Table 3 shows the three
chosen models with averages for their accuracy, desktop and mobile robot computation
time for each prediction. We also show equivalent results for deep feed-forward neural
networks (DFN) and convolutional neural networks (CNN) from [Moraes and Salvatore
2018]. Notice how, despite neural networks having much higher accuracy, inference takes
twice as long at best, and 18 times longer at worst compared to SPNs.

Table 3. Accuracy and speed of models chosen for field testing

Model Accuracy (in %) Desktop (in ms) Robot (in ms)
1: Q4, GD+d 78.2 170 700
2: Q6, GD+d 74.4 50 150
3: ∅, GD+d 62.4 10 75
DFN 81.3 - ≈1350
CNN 80.6 - ≈1350

Our approach to testing the trained models differ from Moraes and Salvatore’s. In
their work, movement is dependent on prediction, meaning the mobile robot only moves
when the whole policy is readily available. This favors a more accuracy-based form of
evaluation, as the agent may take as much time as it needs to decide on an action. We
address the problem differently. In our implementation, the robot is always in motion.
Once an action has been taken by the agent, it repeats itself until told otherwise. In this
approach, prediction speed has a huge weight on performance, as an untimely decision
might cause the vehicle to run off-track. This new environment mimics a more realistic
scenario, as time sensitive decisions are often more relevant in the real-world. However,
this new setting makes both the DFN and CNN models impractical, as a whole second is
often too long to react to an incoming curve.

Three tracks were assembled for evaluation, as shown in Figure 6. Each of these
tracks aimed to evaluate the classifier in different ways. The first is a simple square shaped

circuit. The robot should ideally be able to smoothly navigate through both long straight
lines and 90 degree angle curves. The second circuit is∞-shaped, and sought to evaluate
the model’s ability of correctly identifying curves and lane intersections. The third and
last track was a series of steep curves and narrow lines, simulating a road going down a
mountain. Table 4 shows how each model performed on each circuit. The first and second
columns refer to the classifier used and track run on. The third column indicates whether
the agent was able to finish the track, i.e. whether it went out of bounds at any time.
Column five shows the percentage of time spent within (but not on) lane markings. Video
footage of the tracks and performance of each of the three policies is available online.2

Results were evaluated by analyzing the footage of each model in each track.

Table 4. Performance of each model on the three tracks

Model Track Finished? In
1: Q4, GD+d Yes 82.0%
2: Q6, GD+d Track 0 Yes 100%
3: ∅, GD+d Yes 98.5%
1: Q4, GD+d No 50.0%
2: Q6, GD+d Track 1 Yes 97.0%
3: ∅, GD+d Yes 69.6%
1: Q4, GD+d No 44.4%
2: Q6, GD+d Track 2 No 97.0%
3: ∅, GD+d No 95.8%

Although Model 1 was the most accurate, we found that it was too slow to react
when faced with new information. Model 3 performed better, but due to its low accuracy,
often made mistakes that required further correcting. Having said that, it still achieved
moderately good results, even though its movements were often spasmodic. Ultimately,
Model 2 performed the best, as it provided a good balance between accuracy and latency.
We emphasize the gaping difference between a fast but not so accurate policy versus an
accurate but slow agent, noting that even though it often made mistakes, it still outper-
formed more accurate, slower models, as it had more chances to correct itself.

Figure 6. The three tracks used for evaluation.

The source code and data will be released as free and open software.3

6. Conclusions
We presented an end-to-end imitation learning approach for lane following policy gener-
ation in resource-constrained mobile robots. Our approach uses a sum-product network

2Available at: https://youtu.be/vhpWQDX2cQU.
3Available at: https://github.com/RenatoGeh/godrive.

https://youtu.be/vhpWQDX2cQU
https://github.com/RenatoGeh/godrive

to learn a sophisticated probabilistic policy from a dataset of annotated images. We show
that sum-product networks achieve performance comparable to deep neural networks on
this task, often with much smaller models. Our empirical results show that sacrificing
classification accuracy for the sake of faster inference often leads to improved behavior.
The results also show that sum-product networks learn effective policies, that generalize
for different conditions such as lighting, floor color, and track topology. We leave as fu-
ture work the evaluation in more realistic scenarios, such as city-like maps and under the
presence of moving obstacles (e.g. other robots).

Acknowledgment
This work was supported by CNPq grant 133787/2019-2 and CAPES grant
88887.339583/2019-00. We would also like to thank Paula Moraes and Felipe Salvatore
for useful discussion on the dataset and our implementation.

References
Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,

L. D., Monfort, M. P., Muller, U., Zhang, J., Zhang, X., Zhao, J. J., and Zieba, K.
(2016). End to end learning for self-driving cars. CoRR, abs/1604.07316.

Chen, Z. and Huang, X. (2017). End-to-end learning for lane keeping of self-driving cars.
In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1856–1860.

Conaty, D., de Campos, C. P., and Mauá, D. D. (2017). Approximation complexity of
maximum A posteriori inference in sum-product networks. In Proceedings of the
Thirty-Third Conference on Uncertainty in Artificial Intelligence.

Dennis, A. and Ventura, D. (2012). Learning the architecture of sum-product networks
using clustering on variables. In Advances in Neural Information Processing Systems
25, pages 2033–2041. NIPS.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96, pages
226–231. AAAI Press.

Gens, R. and Domingos, P. (2012). Discriminative learning of sum-product networks. In
Advances in Neural Information Processing Systems 25, pages 3239–3247. NIPS.

Gens, R. and Pedro, D. (2013). Learning the structure of sum-product networks. In
Proceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 873–880, Atlanta, Georgia, USA.
PMLR.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. (2017). Imitation learning: A survey
of learning methods. ACM Computing Surveys, 50(2):21:1–21:35.

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J. Z.,
Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Teichman, A.,
Werling, M., , and Thrun, S. (2011). Towards fully autonomous driving: Systems
and algorithms. In Proceedings of the IEEE Intelligent Vehicles Symposium, pages
163–168.

Mei, J., Jiang, Y., and Tu, K. (2018). Maximum a posteriori inference in sum-product
networks. In AAAI Conference on Artificial Intelligence.

Moraes, P. and Salvatore, F. (2018). Self-driving pi car. https://github.com/
felipessalvatore/self_driving_pi_car.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans-
actions on Systems, Man, and Cybernetics, 9(1):62–66.

Paden, B., Cap, M., Yong, S. Z., Yershov, D., and Frazzoli, E. (2016). A survey of motion
planning and control techniques for self-driving urban vehicles. IEEE Transactions on
Intelligent Vehicles, 1(1):33–55.

Pan, Y., Cheng, C.-A., Saigol, K., Lee, K., Yan, X., Theodorou, E. A., and Boots, B.
(2018). Agile autonomous driving using end-to-end deep imitation learning. In Pro-
ceedings of Robotics: Science and Systems XIV.

Peharz, R. (2015). Foundations of Sum-Product Networks for Probabilistic Modeling.
PhD thesis, Graz University of Technology.

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., and Ghahra-
mani, Z. (2018). Probabilistic deep learning using random sum-product networks.
CoRR, abs/1806.01910.

Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., and Cadena, C. (2017). From per-
ception to decision: A data-driven approach to end-to-end motion planning for au-
tonomous ground robots. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1527–1533.

Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In
Advances in Neural Information Processing Systems, pages 305–313.

Poon, H. and Domingos, P. (2011). Sum-product networks: A new deep architecture. In
Proceedings of the Twenty-Seventh Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-11), pages 337–346, Corvallis, Oregon. AUAI Press.

Rashwan, A., Poupart, P., and Zhitang, C. (2018). Discriminative training of sum-product
networks by extended baum-welch. In Proceedings of the Ninth International Con-
ference on Probabilistic Graphical Models, volume 72 of Proceedings of Machine
Learning Research, pages 356–367, Prague, Czech Republic. PMLR.

Sguerra, B. M. and Cozman, F. G. (2016). Image classification using sum-product net-
works for autonomous flight of micro aerial vehicles. In 2016 5th Brazilian Conference
on Intelligent Systems (BRACIS), pages 139–144.

Vergari, A., Mauro, N. D., and Esposito, F. (2015). Simplifying, regularizing and strength-
ening sum-product network structure learning. In ECML/PKDD.

Zhao, H., Adel, T., Gordon, G., and Amos, B. (2016a). Collapsed variational inference
for sum-product networks. In Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1310–1318. PMLR.

Zhao, H., Poupart, P., and Gordon, G. J. (2016b). A unified approach for learning the
parameters of sum-product networks. In Advances in Neural Information Processing
Systems 29, pages 433–441. NIPS.

https://github.com/felipessalvatore/self_driving_pi_car
https://github.com/felipessalvatore/self_driving_pi_car

	Introduction
	End-To-End Learning For Lane Following
	Sum-Product Networks
	Structure Learning
	Weight Learning

	Training SPNs for Lane Following
	Experiments and Results
	Conclusions

