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Abstract. Artificial intelligence advances have an important role on self-driving
cars development, such as assisting the recognition of traffic lights. However,
when relying on images of the scene alone, little progress was observed on se-
lecting the traffic lights defining guidance to the car. Common detection ap-
proaches rely on additional high-level decision-making process to select a rele-
vant traffic light. This work address the problem by proposing a deep regression
system with an outliers resilient loss to predict the coordinates of a relevant traf-
fic light in the image plane. The prediction can be used as a high-level decision-
maker or as an assistant to a cheaper classifier to work on a region of interest.
Results for European scenes show success in about 88% of the cases.

1. Introduction

Advances in artificial intelligence have an important role on enabling the automation of
several tasks, including the development of self-driving cars [Badue et al. 2019]. This
topic has received great attention in the recent years, and a great part of the related re-
search addresses machine learning techniques to provide perception and understanding of
the traffic environment.

Besides keep tracking of moving objects (e.g., other vehicles and pedestrians),
self-driving cars should be capable of adjusting their behavior according to the visual
signals that are presented along the road. In particular, for safety reasons, it is essential
that these vehicles perceive traffic lights along the road, i.e., identify (recognize) their
states (i.e., red, yellow, green). This general problem is referred in literature as Traffic
Light Recognition (TLR) [Philipsen et al. 2015, Jensen et al. 2016].

To enable TLR, self-driving vehicles are usually equipped with one or more
forward-looking cameras that capture traffic scenes from the driver point of view. The
images are later processed in order to detect (i.e., locate) traffic lights based on structural
and/or appearance models [Gómez et al. 2014, Diaz-Cabrera et al. 2015, Li et al. 2018],
or using learning-based techniques [Lindner et al. 2004, Franke et al. 2013,
Barnes et al. 2015, Jensen et al. 2015].

More recently, state-of-the-art deep networks were used to jointly perform the
detection and state classification of traffic lights [Behrendt et al. 2017, Jensen et al. 2017,
Pon et al. 2018, Müller and Dietmayer 2018]. Despite the significant advances in solving
TLR, when relying on images of the scene alone, little progress was observed for a more
specific and interesting (considering real world applications) problem: the recognition of



the state focusing on the relevant traffic lights [Fregin et al. 2018], i.e., a subset of the
visible traffic lights that define whether or not the vehicle can continue on its way.

The common strategy to address this problem comprises two major steps:
(i) the detection of traffic lights in a scene and (ii) a decision-making process to select
an exemplar of relevant traffic light. For the second step, several works [John et al. 2014,
Mu et al. 2015, Jang et al. 2017, Possati et al. 2019] propose to decide the relevant traffic
light by combining complex localization systems with priorly mapped traffic-lights which
are relevant for specific routes. The localization is the process of estimating the current
car’s pose in the world and is performed with the aid of several expensive sensors like
Global Positioning System (GPS) and Light Detection And Ranging (LiDAR). Although
this approach achieves high accuracy, it demands expensive annotations and restricts the
TLR system to work only with expensive sensors and on previously mapped areas. These
problems could be avoided by heuristically deciding the relevant traffic light based on po-
sition and size assumptions [Li et al. 2018]. Such approach, however, comes at the cost
of losing some accuracy since the selection is blindly performed without considering the
context of the scene.

To tackle the aforementioned issues, this work uses a deep regression model to
predict the 2-d coordinates (a single point per image) of a relevant traffic light in the image
plane. This information can be incorporated into a TLR system in order to decide which
traffic light the car should obey. The regression model – a convolutional neural network
(CNN) – is trained specifically to regress the coordinates of a particular traffic light: the
relevant traffic light closest (in euclidean distance sense) to the top-center position of the
input image (thereafter referred to as target). The training is driven by an outliers resilient
loss function proposed in the scope of this work.

The conducted experiments evaluated the feasibility of using the predicted coor-
dinates to recover relevant traffic lights when used in conjunction with an ideal detector
(i.e., the ground-truth bounding boxes). Results for European traffic scenes show that our
method was able to recover a relevant traffic light in approx. 88% of the cases.

The remainder of the text is organized as follows. The next section describes the
proposed localization method. In Section 3, the experimental methodology is described.
Results and discussing are in Section 4, whereas conclusions are withdrawn in Section 5.

2. Relevant Traffic Light Localization

The pipeline of the proposed method (illustrated in Figure 1) is broadly divided into the
learning and test stages. The learning stage (left part of Figure 1) requires a collection of
images depicting traffic scenes which are annotated with the respective target’s position
(2D coordinates of the relevant traffic lights in the scene, indicated by the yellow cross
marker). Then, given an input image and its annotation, a deep convolutional neural
network (CNN) is trained as a regression model in order to predict the target position of
the traffic light. In the test stage, the current image captured with the car’s onboard camera
is passed to the trained model in order to regress the current target position. The remainder
of this section focuses on describing the deep regression model and the loss function
proposed to guide the model training. Details of the training procedure are presented in
the next section.
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Figure 1. Overview of the proposed method for relevant traffic light localization.
The yellow circle with a cross marks the position of the relevant traffic light
in the image.

2.1. Deep Regression Model

The regression model (illustrated in Figure 2) is a deep neural network with input size
1024 × 512 × 3 comprising a backbone for feature extraction, and some fully con-
nected layers appended in the end. The backbone is a modified ResNet-50 architecture
[He et al. 2016] (referred to as ResNet-50*) resulting from removing the average pooling
layer (avg pool) and the subsequent fully connected layer (fc 1000). Instead, the final
features are obtained by convolving the 32× 16× 2048 volume outputted by the last con-
volutional block of ResNet* (conv5 x) with a 1× 1× 16 filter, with ReLU activation, and
then flattening the resulting volume.

The regression part comprises a stack of 7 fully connected layers (fc 256) – each
one outputting 256-d features – followed by a single fully connected layer (fc 2) that out-
puts a 2-d vector. ReLU is used as the activation function of the fc 256 layers, whereas
an identity function is applied in fc 2. Instead of directly predicting the target’s posi-
tion p̂t = (x̂t, ŷt) ∈ [0, w] × [0, h], with w = 1024 and h = 512, the model regresses
normalized coordinates p̂m = (x̂m, ŷm) such that:

x̂t = [(x̂m + 1)/2]w (1)
ŷt = ŷmh. (2)

This normalization preserves the aspect ratio, and maps the top-center position of the input
image onto (0, 0) in the (normalized) regression domain. The x̂m, ŷm values are expected
to be (most of the time) within the ranges [−1, 1] and [0, 1], respectively. However, this
is not ensured since the image of the identity activation function (in fc 2) is unbounded.
Therefore, the final prediction p̂t is not restricted to the image frame, making it possible
to predict the position of traffic lights that are cut by the image boards with it middle point
outside the image.
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Figure 2. Deep regression model.



2.2. Loss Function

The loss function used to train the regression model was adapted from the Huber loss func-
tion [Huber 1992] in order to be still less sensitive to outliers, i.e., to have less influence
of those predictions too far from ground-truth positions. Given a ground-truth position pt
in the image domain, a prediction p̂t is considered an outlier iff ||p̂t − pt||2 > 16. There-
fore, in the regression domain, p̂m is an outlier iff ||p̂m − pm||2 > 1/32, or, analogously,
iff z = 32||p̂m − pm||2 > 1. Based on this last relation, the loss function was piecewise
defined as

L(z) =

{
z2, if z ≤ 1

log(z2) + 1, otherwise.
. (3)

The function in Equation 3 is also continuous and differentiable for z = 1, since z2 =
log(z2)+1 = 1 and d

dz
(z2) = d

dz
(log(z2)+1) = 2. Our loss function is depicted in Figure

3 together with 2×Huber and L2 losses for comparison (Huber loss is doubled for better
visualization and comparison). Note the smoother behavior of the proposed function for
z > 1.
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Figure 3. The proposed loss function together with 2×Huber and L2 losses.

3. Experimental Methodology
This section describes the experimental evaluation of the proposed method, which in-
cludes: the training and test datasets, the data augmentation process, the experiments, and
the software/hardware platform.

3.1. Training and Test Datasets

The experiments were run on the DriveU Traffic Light Dataset (DTLD)
[Fregin et al. 2018], the largest publicly available dataset of traffic lights. DTLD
was assembled based on daytime records of 11 German cities in different weather
conditions. Scenes were originally captured by two cameras (stereo), being the left
camera data used to annotate traffic lights, resulting in more than 40,000 frames of
2048× 1024 pixels with more than 230,000 hand-labeled bound-boxes.

For our purposes, as discussed in Section 2, images without relevant traffic lights
were discarded since the proposed method assumes the car is already in a place where a



decision should be made, i.e., there is a relevant traffic light in the scene. Such information
could come, for example, from navigation systems based on inexpensive GPSs. The
remaining images were resized to 1024 × 512 in order to fit the network’s input. The
ground-truth annotation (i.e., traffic light positions) was derived from the bounding boxes
annotation by computing the middle point of the boxes. We leveraged the original DTLD
train and test splits, both including images from the 11 cities. The images from Bremen
and Fulda cities in the training split were used only for validation. Trivial scenes with
only relevant traffic lights were discarded from the test partition.

3.2. Data Augmentation

To increase variability in the training data, the images of the training partition were sub-
mitted to an off-line data augmentation process. Two new instances were produced from
each training image. In some cases, a third additional instance was generated to reach
the total of 65,536 (216) instances. The augmentation process comprises four sequential
operations: (i) luminosity transformation, (ii) affine transformation, (iii) blur and (iv) hor-
izontal flip. The parameters of the operations were picked randomly for each image.

Luminosity Transformation The luminosity transformation consists in multiplying the
image pixels by a factor in [flum(m), 2flum(m)], where flum is the function defined in
Equation 4 and m is the mean value of the luminosity image (taken as the channel-
wise maximum for each pixel). In summary, the transformation was designed to avoid
over/underflow for high/low luminosity images.

flum(x) =


0.5, if x > 128

64/x, if 64 ≤ x ≤ 128

1.0, otherwise.
, (4)

Affine Transformation The affine transformation comprises uniform scaling by a fac-
tor in [31/32, 33/32], rotating by an angle in [−π/64, π/64], and finally translating the
image in both axis (independently) restricted to the interval [−16, 16]. Background pixels
(i.e., those not defined by the original image) were assigned 128 for the three channels.
This transformation is not applied only when target is closer than 64 pixels from some of
the image’s borders.

Blur The blur is one between a gaussian blur with σ in [0, 1] or, with same chances, a
median blur with a 3× 3 kernel.

Horizontal Flip In the end, some generated images are horizontally flipped. If two
instances were generated from a training image, one of them was flipped. In the cases
where three instances were generated, one of them was flipped in half of the cases and
two instances were flipped in the other cases.



3.3. Experiments

The conducted experiments aim to assess the ability of the proposed method in selecting
relevant traffic lights in scenes containing (simultaneously) relevant and irrelevant exem-
plars. Since the method outputs coordinates, a traffic light is said to be selected if it is the
closest traffic light with respect to the regressed point and (optionally) if the respective
distance is not above a predefined threshold.

The model was trained and tested with the proposed loss (Section 2.2) and with
the Huber loss as a performance baseline. A single training-test section was conducted
for each loss. For quantitative evaluation, the accuracy was defined as the ratio between
correct choices (for all the test images) and the number of tested images. The “correct”
choice means (i) the selected traffic light is among the relevant ones or, more strictly, (ii) it
is exactly the target traffic light when using the same criteria as in the training phase. Both
scenarios were investigated in the experiments. Additionally, the method’s performance
was also investigated for a subset of difficult instances, here defined as those scenes whose
the traffic light closest to the top-center position is not a relevant one.

Training Details The model was trained during 8 epochs with the Stochastic Gradient
Descent (SGD) algorithm (0.9 of momentum) using 16-size mini-batches (in fact, for
hardware limitations, images were passed in 8-size batches and the gradients for every 2
subsequent batches were accumulated). The loss considered for each batch was the sum
of the losses for it images. If the mean loss was considered, it would be necessary to take
the mean instead of accumulating gradients. The training images were shuffled off-line
and the resulting order was kept throughout the epochs. A validation step was performed
every 1

8
of epoch to determine the best model, defined as that with lower average loss on

the validation set. The initial learning rate was 2−14 for the Huber loss and 2−16 for the
proposed loss. In both cases, the learning rate was halved every 2 epochs. The model
was initialized with pretrained weights for ImageNet [Krizhevsky et al. 2012], except for
the altered layers, which were randomly initialized. For compatibility with the pretrained
model, the input images’ channels were normalized to values in [−µ

σ
, 1−µ

σ
], being µ and σ

the mean and standard deviation (normalized to values in [0, 1]) of the respective channel
averaged across the ImageNet instances.

3.4. Experimental Platform

The experiments were conducted in an Intel R© CoreTM i7-4770 CPU @ 3.40GHz with
16GB of RAM equipped with Linux Ubuntu 16.04 and 1 TITAN X (Pascal) GPU with
12GB of memory. Python 3.5 was used to implement the experiments. Training and in-
ference were performed using PyTorch 1.1 deep learning framework [Paszke et al. 2017]
configured with CUDA 9.0 and cuDNN 7.3 for low-level computations. The average
time (approximate value) for training was 7 hours and 20 minutes, and the inference
time per image was, on average, less than 20 ms (more than 50 FPS). The implemen-
tation will be made available at https://github.com/LCAD-UFES/publications-horimoto-
eniac2019/blob/master/README.md.



4. Results and Discussion

Figure 4 shows the method’s accuracy in selecting relevant traffic lights without set any
distance threshold. The curves were plotted considering the increasing number of relevant
exemplars present in the image (3+ indicates three or more exemplars). The numbers
inside the graph (i.e., 2340, 4386, etc.) represent the amount of images for each subcase
(the quantities are the same for both losses).

Clearly, the proposed loss yielded better accuracy than Huber loss, notably for the
challenging instances (Difficult). It can be noticed, nevertheless, that the losses tend to
perform more similarly (and better) with the increasing of relevant traffic lights in the
scene. As expected, the lower accuracy is observed for scenes with only one relevant
traffic light (this exemplar is also the target). Interestingly, for this case, the accuracy
achieved with proposed loss on difficult cases (73.60%) also surpassed the Huber loss
accuracy on the entire dataset (68.42%). Moreover, grouping all the three subcases (i.e.,
1+ relevant images), the Huber loss yielded accuracies of 81.92% and 60.47% for the
entire dataset and the difficult instances, respectively, whereas the proposed loss yielded
88.59% and 76.62%. This shows a great improvement, mainly in the difficult cases.
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Figure 4. Selection of a relevant traffic light. The numbers inside the graph indi-
cates the total number of images of each subcase.

Figure 5 shows the accuracy of selecting relevant traffic lights, but now with the
additional distance threshold constraint. Different accuracies were obtained by varying
the distance threshold (horizontal axis). The right graph depicts the same information of
the left graph but restricted to the interval [0, 64].

As can be seen in the left graph, the four curves increases very sharply, reaching
close to the maximum for low distance thresholds. Note that the accuracy converge to
the values obtained by grouping the three subcases in Figure 4. This means that applying
a relatively small threshold does not affect significantly the performance. Based on this
observation, the predicted position could be used to restrict an area of interest surround-
ing a relevant traffic light. Therefore, instead of using our method in conjunction with
detectors, it could be leveraged to crop traffic lights whose state could be determined by
a classifier. The right graph shows more detailed the same curves for smaller thresholds.
Considering the entire test set, the Huber loss yielded accuracies of 56.66% and 74.24%
for the threshold values 16 and 32, respectively, whereas proposed loss yielded accuracies
of 80.22% and 84.49%.
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Figure 5. Selection of a relevant traffic light with threshold distance.

Figure 6 shows a more strict scenario where accuracy is related to the ability of
correctly selecting the target traffic light. Comparing to Figure 5, the curves in Figure 6
present a similar behavior (i.e., they quickly increase towards the maximum) but achieving
slightly lower accuracies. The maximum accuracies for the Huber loss were 76.35% and
56.98% for the entire test set and the difficult cases, respectively, while the proposed loss
yielded 82.91% and 72.21%.
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Figure 6. Selection of the target traffic light with threshold distance.

Figure 7 shows results on several images from DTLD test partition. First row
shows very easy cases with multiple relevant. Second row shows successful cases with a
relatively great irrelevant traffic light next to the target. Third row shows difficult cases
failures, mostly occur when the irrelevant that is closer to the top-center position is also
relatively great. Fourth row shows false failures due to wrong annotated data. Fifth row
shows failures where a relevant was surrounded by many smaller irrelevant. Sixth row
shows cases where the target traffic light is cut by the image’s boards, in some of these
cases the middle point of the traffic light is outside the image and the model was also
capable to predict a close position outside.

As can be seen the system delivery high quality predictions in most of the scenes
and for most of it failuers it is possible to identify reasons for difficulty, giving direction
on what need to be enhanced in future works.



Figure 7. Results on several images from DTLD test partition. Relevant and irrel-
evant traffic lights are marked in the images with yellow and lower magenta
squares, respectively. The predicted coordinates are marked with a circle
of the same color of the selected traffic light square. A cyan line connects
the prediction to its selection. First row shows very easy cases. Second
row shows successful cases with a great irrelevant traffic light next to the
target. Third row shows difficult cases failures. Fourth row shows false
failures due to wrong annotated data. Fifth row shows failures where a rel-
evant was surrounded by many irrelevant. Sixth row shows cases where
the target traffic light is cut by the image’s boards

5. Conclusion

This work explored the Traffic Lights Recognition problem, more specifically the local-
ization of the, or one of the, relevant traffic lights of a scene. A particularly challeging
task, considering the small size of traffic lights compared to the image and considering
the presence of other traffic lights rather than the relevant ones. A deep regression model
and also a novel regression loss that is less sensitive to outliers were proposed. The pro-



posed model training rely just on the position of the relevant traffic light (the closer to the
top-center position of the image in case of multiple options), a relatively cheap annotation
compared to others detection systems that need bound-boxes of all the traffic lights of the
scene.

The proposed model was trained/tested over the DTLD dataset training/test parti-
tions, with the proposed loss and also the Huber loss for comparison. The training with
the Huber loss led to 81.92% of success rate in selecting a relevant traffic light from test
annotations, 74.24% when imposing a maximum threshold distance of 32 pixels between
the regression and the selection, and 56.66% further decreasing this threshold to 16 pix-
els. The training with the proposed loss led to the improvement of these rates to 88.59%,
84.49% and 80.22%, respectively.

The results are promising and show that the system can assist other detecting sys-
tems selecting a relevant from it detections. In addition, they also show that the successful
regressions are, mostly, very close to the selected relevant, which makes it possible to de-
fine a region of interest to assist a cheaper traffic light state classifying system.

Future work include integrating the proposed system into a complete system to
predict the relevant state of traffic lights in the road.
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