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Abstract. Deep clustering uses a deep neural network to learn deep feature
representation for performing clustering tasks. In this paper, we explored the
Deep Clustering Embedded Clustering (DCEC) method, which employs a stan-
dart clustering method to get initial weight for the neural model training incor-
porated to other clustering methods. The original DCEC uses K-Means with
Euclidean distance for the clusters center initialization step. We have applied
K-Means with Mahalanobis distance instead of Euclidean distance. In order
to improve the DCEC performance, we have included the standart K-Harmonic
Means clustering algorithm as well, which tries overcome the dependency of
the K-Means performance on the clusters center initialization. The Kernel ba-
sed K-Harmonic Means was also introduced in this study to reduce the effect
of outliers and noise. We evaluated the performance of these clustering appro-
aches wthin DCEC over benchmark image datasets and the results were better
than the baseline.

1. Introduction
Clustering is a fundamental task in data science and unsupervised machine learning. Clus-
tering divides data into a number k of subsets It consists of grouping of similar objects
into a set known as cluster [Tan et al. 2016]. Objects in the same cluster are likely to be
different when compared to those in other groups (clusters). It deals with finding a struc-
ture in a collection of unlabeled data. To divide a data into k clusters, some methods were
proposed in the literatura, like K-Means and Gaussian Mixture Model. These methods
have shown good results in small feature dimensions, although with higher dimensions
the clustering becomes inefficient and unreliable. A solution to this problem is to lower
the dimension of the feature space to a dimension where the traditional clustering methods
works with reliable and efficient results.

Recent works on clustering has been focused on using deep neural networks
(DNN) [Goodfellow et al. 2016] and this pairing is commonly referred to as deep clus-
tering. In order to surmount the limitation of the classical clustering methods over large
dimensional spaces, deep-learning-based clustering methods initially train a feature ex-
tractor and take, in a separate step, a clustering algorithm to the lower features dimension
in the embedded space.

Deep clustering algorithms have three main components [Guo et al. 2017b]: deep
neural network, network loss, and clustering loss. DNNs are applied to learn low di-
mensional non-linear data representations from the dataset. Most used architectures are



based on autoencoders, generative models and convolutional networks. The network loss
refers to the reconstruction loss of the DNN and it measures how different the recons-
tructed data are from the original data. Clustering loss guides the embedded features to
be prone to forming clusters and it can be divided in algorithms for cluster assignment
(to provide cluster assignments to the data points directly) and cluster regularization (to
enforce the network to preserve suitable discriminant information from the data in the
representations). The present paper focus on cluster assignment in deep clustering with
autoencoders.

Different clustering methods may be incorporated to the DNN to implement the
clustering loss, to be run on top the learnt data representations.

K-Means [Lloyd 1982] is probably the most known clustering method. It uses
random clusters centers at initialization and generally Euclidean distance to label the data
and update de centroids. This random initialization affects directly on the clustering per-
formance. All data has the same weight which makes the algorithm attribute more data to
dense centers, converging to a suboptimal local minimum.

The Euclidean distance creates a spherical cluster shape that may not be the op-
timal shape to represent a group of data. It increases the algorithm’s sensitivity to noise
and outliers. Changing the distance metric others shapes of cluster may represent bet-
ter the group of data, like Mahalanobis distance, that forms an elliptical shape of cluster
when the covariance matrix is not the identity matri (and is equal to Euclidean when the
covariance matrix is the identity).

To solve the initialization problem K-Harmonic Means [Zhang et al. 1999] was
proposed. The algorithm uses dynamic weights for each data that allows the same point
to belong simultaneously to different clusters, altough it uses Euclidean distance as well
and imposes the assumption of hyper-spherical clusters for the data. If the separation
boundaries between clusters are nonlinear, the K-Harmonic Means fails to identify these
clusters correctly. However, the algorithm is essentially insensitive to the initialization of
the centers.

An alternative approach to raise the robustness to the factors presented by K-
Harmonic Means is to map the data into a highdimensional nonlinear feature space
and accomplish the clustering within this space. Kernel based K-Harmonic Means
[Li et al. 2007] was proposed, incorporating spatial information from images. This ap-
proach is imune to initialization and less prone to oversegmentation, outliers and noise,

The purpose of the present paper is to evaluate the classical clustering algorithms
decribed above, taking part of the clustering loss of deep convolutional embeddes cluste-
ring [Guo et al. 2017b], applied to the image clustering task.

The paper is so organized. Section II describes some related work. Section III
presents the details of DCEC algorithm. Section IV describes the proposed initialization
in embedded space. Section V evaluates the different proposed initializations. Section VI
concludes and suggest future works.

2. Related work
According to the different network architectures and the nature of loss functions used,
deep clustering models can be roughly based on autoencoders, generative model and di-



rect cluster optimization. Our interest is on autoencoders based models. Most of them use
a pre-training scheme in which the encoder and decoder network parameters are initiali-
zed with the reconstruction loss before clustering loss is introduced.

Deep Clustering Network (DCN) [Yang et al. 2016] carries out reconstruction and
K-Means clustering simultaneously. The loss compasses penalties on both the reconstruc-
tion and the clustering losses.

Deep Embedded Clustering (DEC) [Xie et al. 2016] model learns feature repre-
sentations with feed forward autoencoder and cluster assignments using K-Means at the
same time. DEC learns a mapping from the data space to a lower-dimensional feature
space in which it iteratively optimizes a clustering objective.

Improved Deep Embedded Clustering (IDEC) [Guo et al. 2017a] is based on DEC
and the algorithm adds reconstruction loss to DEC’s objective. IDEC did not incorporate
convolutional layers.

Discriminately Boosted Clustering (DBC) [Li et al. 2017] is built on DEC by
using a unified clustering framework to learn image representations and cluster centers
jointly based on a fully convolutional autoencoder instead of feed forward autoencoder
and soft K-Means scores. It uses the same training scheme, reconstruction loss and clus-
ter assignment hardening loss as DEC. DBC neglected the local structure preservation
problem

Deep Convolutional Embedded Clustering (DCEC) algorithm [Guo et al. 2017b]
presented an improvement of DEC by incorporating convolutional autoencoders structure
to learn embedded features in an end-to-end way. A clustering oriented loss is directly
built on embedded features to jointly perform feature refinement and cluster assignment.
DCEC takes care of both convolutional networks and preservation of local structure of
data generating distribution.

3. Deep Convolutional Embedded Clustering
The DCEC algorithm [Guo et al. 2017b] was proposed to improve the Deep Embed-
ded Clustering (DEC)[Xie et al. 2016] algorithm by replacing the Stacked Autoencoder
(SAE), which is initialized layer by layer with each layer trained as a denoising autoen-
coder to reconstruct the previous layer output, to the Convolutional Autoencoder (CAE).
By adding the reconstruction loss (Lr) to the objective function, they propose that in DEC
the feature space may be distorted by using only the clustering loss (Lc).

3.1. Convolutional AutoEncoders
An autoencoder is a neural network that is trained to attempt to copy its input to its output.
A traditional autoencoder may be viewed as consisting of two parts, a encoder layer fW (x)
and a decoder layer gU(x). It has a objective of minimizing the mean squared errors
(MSE) between the input and the output over all samples:

min
W,U

1

n

n∑
i=1

‖gU(fW (xi))− xi‖22 (1)

In fully connected autoencoder,

fW (x) = σ(Wx) ≡ h



gU(h) = σ(Uh) (2)

where x and h are vectors, and σ is an activation function. After training, h is the em-
bedded space that represents the input sample and can be used to try to reconstruct the
original feature space by using layer-wise pretraining, performing the Stacked Auto En-
coder (SAE). For using in images we can use a convolutional autoencoder, defined as:

fW (x) = σ(W ∗ x) ≡ h

gU(h) = σ(U ∗ h) (3)

with x and h being matrices or tensors, and ∗ the convolutional operator. A Stacked
Convolutional Auto Encoder (SCAE) is implemented Using this structure and the layer-
wise pretraining.

In the Convolutional AutoEncoder (CAE) proposed in DCEC[Guo et al. 2017b],
this layer-wise pretraining is removed. Its structure is composed by stacked convolutional
layers to extract hierarchical features and flat into a vector, followed by a fully connected
layer with only 10 units called embedded layer, transforming a 2D image into a 10 units
feature space. To train it in a unsupervised way, a fully connected layer and convolutional
transpose layers is used to transform the embedded feature back to the original image. The
parameters of encoder fw(x) = h and decoder gw′(h) = x′ are upgraded by minimizing:

Lr =
1

n

n∑
i=1

‖gw′(fw(x))− x‖22 (4)

with Lr being the Reconstruction Loss, x the original image and n the number of images.

The CAE idea is to have the lowest dimension as possible in the embedded layer, if
embedded layer is large enough, the model may copy the input to output, learning useless
features.

3.2. The Structure of DCEC

The DCEC model is composed by CAE and with a clustering layer connected in the
embedded layer of CAE, as illustrated by The Figure 1. The clustering layer maps each
embedded point zi of input image xi into a soft label. Then the clustering loss Lc is
defined as Kullback-Leibler divergence (KL divergence) between the distribution of soft
labels and the predefined target distribution [Guo et al. 2017b]. CAE is used to learn
embedded features and the clustering loss guides the embedded features to be prone to
forming clusters. The DCEC objective is to minimize:

L = Lr + γLc (5)

where γ > 0 is the degree of distortion in the embedded space. When γ = 1 and Lr ≡ 0
the objective is the same as in DEC.

3.3. Clustering Layer and Clustering Loss

The clustering layer [Guo et al. 2017b] is composed by two parts, a soft assignment and
a KL divergence minimization (lc minimization). In the soft assignment the Student’s



Figura 1. The structure of the Deep Convolutional Embedded Clustering, compo-
sed by CAE and a clustering layer connected to the embedded layer.

t-distribution is used to measure the similarity between zi and µi, with zi the embedded
point and µi a centroid:

qij =
(1 + ‖zi − µj‖2)−1∑
j (1 + ‖zi − µj‖2)−1

(6)

with qij being the probability of zi being a point in the cluster with centroid µj . In DEC
and DCEC the centroids initialization is made by using KM in the embedded layer and
setting the centroids as weights in the cluster layer.

The clustering loss (Lc) is defined as:

Lc = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

(7)

with p, the target distribution, defined as:

pij =
q2ij/

∑
i qij∑

j (q
2
ij/

∑
i qij)

(8)

4. Centroids Initialization in Embedded Space
To achieve an efficient clustering in the cluster layer, it needs a good initialization. In
the orignal DCEC, the K-Means algorithm is used, employing the Euclidean distance for
that purpose. We propose to substitute the initialization algorithm to alternatives that can
results in better initialization, and consequently improve the model results. We propose
to change the distance metric of K-Means and also to evaluate other approaches with the
K-Harmonic Means and the Kernel based K-Harmonic Means algorithms.

4.1. K-Means
K-Means algorithm [Lloyd 1982] is one of the simplest unsupervised learning algorithms
for clustering. It takes a bunch of unlabeled data points and tries to group them into “k”
number of clusters, based on a distance metric. The general steps behind the K-Means
clustering algorithm are:



1 Define the number of clusters (k).
2 Place randomly k central points (centroids) in different locations in the space of

the problem.
3 For each data point, using a distance metric, assign it to the closest centroid.
4 Recalculate k new centroids as barycenters.
5 Repeat the assigning of data points to the new barycenter.
6 Repeat steps 4 and 5 until the barycenters do not move any more.

The algorithm is significantly sensitive to the initial randomly selected cluster
centers. The K-Means aims to minimize the distance of each centroid to the cluster data.
The standart metric used is the Euclidean distance, making the algorithm sensitive to noise
and outliers. The Euclidean distance is calculed by:

DE = ‖z − µ‖ (9)

with z a point in embedded space and µ a centroid in the cluster space.

K-Means and Euclidean distance work well only if the covariance structures of the
clusters are nearly spherical and homogeneous in nature. To mitigate this shortfall in the
K-Means algorithm, the Mahalanobis metric is applied to capture the variance structure
of the clusters. It uses the covariance matrix V , between data and centroids in embedded
space to calculate the distance. The Mahalanobis distance is given by:

DM =
√

(z − µ)V −1(z − µ)T (10)

4.2. K-Harmonic Means
K-Harmonic Means [Zhang et al. 1999] is a center-based clustering algorithm, which uses
the harmonic average as components to its performance function. It overcomes the major
drawback of K-Means, that is highly dependent on the initial identification of elements
that represent the clusters. The algorithm has better results than K-Means in low dimen-
sion as shown by Harmerly and Elkan [Hamerly and Elkan 2002].

K-Harmonic Means algorithm goals to find the optimal clustering for the data set
X , by minimizing the harmonic mean of the distance from each point to all the centers,
dij = ‖zi − µj‖.

Q(C) =
n∑

i=1

k∑k
j=1 1/(dij)

(11)

where k is the number of clusters, n is the number of data, p ≥ 2 is a input parameter and
C is the clusters.

The cluster update can be calculed using the membership uij and the weight wi

functions. The membership function calculates the probability of a point belong to a
cluster. This means that a point influences in the orders centroids instead of only one, like
K-Means.

uij =
1/d2ij∑k
j=1 1/d

2
ij

(12)

The weight function calculates the influence of the point to the centroids. It gives
higher weight to points that are far from each center and lower to the near data. This aims



to spread the clusters to a better representation of data.

wi =

∑k
j=1 1/d

2
ij

(
∑k

j=1 1/dij)
2

(13)

The centroids update is given by:

Cj =

∑n
i=1 uijwixi∑n
i=1 uijwi

(14)

The K-Harmonic Means algorithm can be performed by initializing with random
centroids and following the steps:

1 Update the centroids using (14).
2 Calculate the Q(C) (11).
3 Repeat steps 1 and 2 until Q(C) does not change.
4 Label the data by using argmax(uij).

This implementation has a discontinuity problem when zi = Cj leading to dij →
0, to avoid this problem we use dij = max(dij , ε) with ε a small positive value.

4.3. Kernel based K-Harmonic Means
The K-Harmonic Means can surpass the initialization problem, but also use Euclidean
distance. To create a non-euclidean distance measures, Kernel based K-Harmonic Means
[Li et al. 2007] was proposed using Gaussian Radial Basis Function (RBF) Kernel. The
Gaussian RBF Kernel is given by:

K(x, y) = exp (
−‖x− y‖2

σ2
) (15)

where σ is a parameter for non linear hyperplanes and controls (how far) the influence
of new features on the decision boundary, with low values meaning ′far′ and high values
meaning ′close′. In other words, it controls the shape of the kernel and the suppression to
outliers.

The objective function of Kerner based K-Harmonic Means using Gaussian RBF
is given by:

Q(C) =
n∑

i=1

2k∑k
j=1 (1/(1−K(zi, cj))

(16)

with k is the number of centers.

The membership function uij and weight wi are defined by:

uij =
K(zi, cj)

(1−K(zi, cj))2
∑k

j=1
K(zi,cj)

(1−K(zi,cj))2

(17)

wi =

∑k
j=1

K(zi,cj)

(1−K(zi,cj))2∑k
j=1 (

1
(1−K(zi,cj))

)2
(18)

The algorithm for the Kernel based K-Harmonic Means method is the same of
K-Harmonic Means, replacing the equivalent equations.



5. Experiments

5.1. Datasets

The DCEC method was evaluated on the image datasets MNIST and USPS. For sake of
comparision, we have used the same datasets as evaluated in [Guo et al. 2017b].

The MNIST handwritten digits dataset [Lecun et al. 1998] consists of a training
set of 60000 grayscale images, representing 10 digits (0 to 9), and a test ser of 10000
images. The images are each of 28×28 pixel resolution, representing 784 features. We
have usdes only the training set, which contains 600 observations per digit.

The USPS dataset is [Hull 1994] composed by normalized handwritten digits, au-
tomatically scanned from envelopes by the U.S. Postal Service. The original scanned
digits are binary and of different sizes and orientations. Tje dataset contains 16×16 hand-
written digit images, which are split into 7291 training images and 2007 test images.
Onlys the trainins set was used in the experiments.

5.2. Experiment Setup

The platform of the experiments is a personal computer equipped with an Intel Core i7
(3th generation), with 16 GB of DDR4 memory, and the operating system is Ubuntu Linux
with 64-bit, 2.70 GHz CPU. The model was implemented using Keras and TensorFlow, a
Python library that bolsters easy implementation of DL.

Comparing models. The purpose of this work is to compare different distance
metrics used in the clustering method with DCEC. The distance metrics evaluated in the
clustering layer were: Euclidean distance, Mahalanobis distance, K-Harmonic Means
and RBF based K-Harmonic Means. In the original DCEC using Euclidean distance as
metric, each time, the algorithm run 20 different random seed to get different set of initial
centroids and it select the initial values which end up with the best clustering performance.
Our implementation for DCEC with Mahalanobis distance, K-Harmonic Means and RBF
based K-Harmonic Means run a single random values initialization.

Parameters settings. For the experiments with DCEC, we have used de original
parameters used in [Guo et al. 2017b]. The encoder network structure is conv5

32→ conv5
64

→ conv3
128 → FCk, where convn

f denotes a convolutional layer with f filters, kernel size
of n × n, number of cluster is k and stride length 2 as default. The decoder is a mirror
of encoder. The CAE is pretrained end-to-end for 200 epochs using Adam with default
parameters. The convergence threshold is set to δ= 0.1% and the update intervals T = 140.
The implementation is based on Python and Keras. In RBF based K-Harmonic Means,
the σ= was set to 1.

Evaluation measures. The four clustering models were evaluated by clustering
accuracy (ACC), Normalized Mutual Information (NMI) and Adjusted Rank Index (ARI),
which are common used in unsupervised learning task.

For each model we ran 10 training experiments and measured the indexes above.
We then averaged the results of the 10 experiments. The standart deviation (s.d.) was
computed for accuracy. We also constructed a 95% confidence interval (CI) around ac-
curacy and investigated how accurate the estimates are. The values were expressed as
p-values.



5.3. Results
In Tables 1 and 2 we compare the results of the clustering models for each dataset, res-
pectively, MNIST and USPS.

Tabela 1. MNIST dataset evaluation

Distance metric ACC ± s.d. CI NMI ARI
K-Means (euclidean) 0.9012 ± 0.0382 0.0237 0.8590 0.8887
K-Means (Mahalanobis) 0.8805 ± 0.0535 0.0331 0.8514 0.9002
K-Harmonic Means 0.9051 ± 0.0703 0.0459 0.8765 0.9064
RBF K-Harmonic Means 0.6752 ± 0.0606 0.0376 0.6394 0.7802

Tabela 2. USPS dataset evaluation

Distance metric ACC ± s.d. CI NMI ARI
K-Means (euclidean) 0.7938 ± 0.0095 0.0059 0.7523 0.8320
K-Means (Mahalanobis) 0.7978 ± 0.0730 0.0452 0.7582 0.8243
K-Harmonic Means 0.7755 ± 0.0106 0.0066 0.7321 0.8144
RBF K-Harmonic Means 0.6600 ± 0.0665 0.0412 0.5921 0.7295

For MNIST dataset, DCEC with K-Harmonic Means outperformed all approaches
in all performance measures. For USPS dataset, DCEC with Mahalanobis distance over-
came both the original DCEC with Euclidean distance and the other approaches based
on spherical shape in terms of accuracy, NMI and ARI. For all experiments, p-value re-
lated to CI is less than the significance level (0.05), which indicates that our results are
statistically significant.

It is important to note that the centroids initialization of the winning aproaches
was performed only once, obtaining better results than the original DCEC that worked
with the best of 20 initializations.

By incorporating spatial information and non-linear transformation, RBF Kernel
K-Harmonic Means within DCEC degraded clustering performance, contrary to expecta-
tions.

6. Conclusions
In this paper we have compared different traditional clustering algorithms as centroids
initialization methods for deep convolutional embedded clustering, tailored for image
clustering in large datasets. We have shown that our results (Mahalanobos distance and
K-Harmonic Means) are compatible to previously proposed original DCEC network wuth
Euclidean distance. However, DCEC with RBF based K-Harmonic Means was worse than
all the approaches evaluated.

There are several interesting ways for improvements. A possible way is trying
bigger and deeper architectures for convolutional networks. Another promising way is
to try incorporating Swarm Clustering Algorithms at the clustering layer connected to
embedded layer of autoencoder in DCEC, replacing the K-Means algorithm, in order to
optimize the feature learning and clustering.
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