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Abstract. Artificial Bee Colony (ABC) is a Swarm Intelligence optimization al-
gorithm well-know for its versatility. The selection of decision variables to up-
date is purely stochastic, incurring in several issues to the local search capabil-
ity of the ABC. To address these issues, a self-adaptive decision variable selec-
tion mechanism is proposed with the goal of balancing the degree of exploration
and exploitation throughout the execution of the algorithm. This selection,
named Adaptive Decision Variable Matrix (ADVM) represents both stochastic
and deterministic parameter selection in a binary matrix and regulates the extent
of how much each selection is employed based on the estimation of the sparsity
of the solutions in the search space. Influence of the proposed approach to per-
formance and robustness of the original algorithm is validated by experimenting
on fifteen highly multimodal benchmark optimization problems. Numerical com-
parison on fifteen highly multimodal benchmark optimization problems is made
against the ABC and their variants and prominent population-based algorithms
(e.g., Particle Swarm Optimization and Differential Evolution). Results show an
improvement of the performance of the algorithms with the ADVM in the most
difficult instances.

1. Introduction
Artificial Bee Colony (ABC) is a swarm intelligence algorithm inspired by the foraging
behavior of swarms of honey bees, initially designed to solve box-constrained optimiza-
tion problems [Karaboga 2005a]. Many modifications to the original ABC were proposed
by a multitude of researchers. Their main focus is changes to the solution update proce-
dure, initialization and randomization of solutions [Aydın et al. 2017]. For every variant,
decision variables are selected to update following a random uniform distribution where
each variable has equal probability of being chosen. Clearly, this allows solutions to con-
duct global search in the search space. However, this selection scheme may cause several
issues to the convergence and robustness of the ABC.

To address these issues, we propose a self-adaptive decision variable selection
procedure named ADVM (Adaptive Decision Variable Matrix), an adaptation of the de-



terministic solution variable scheme developed by Mollinetti et al. [Mollinetti et al. 2018].
ADVM automatically regulates the deterministic and stochastic decision variable selec-
tion to maintain good levels of exploitation of solutions in the early stages and explo-
ration in later stages. Levels of exploration and exploitation are monitored by estimat-
ing the population spread in the search space by calculating the ∆ measure [Morrison
2013], which provides a reliable assessment of solution coverage in the search space. To
validate the proposed approach, the selection mechanism is incorporated into the origi-
nal ABC and several successful variants and evaluated in 15 multimodal unconstrained
benchmarks problems. Results are compared to the original versions of the algorithms,
as well as to some well-established optimization algorithms such as the Particle Swarm
Optimization (PSO) and Differential Evolution (DE). This paper is organized as follows:
Section 2 describes the original ABC while Section 3 explains the idea behind ADVM.
Section 4 reports the experiments, while results are discussed in Section 5. Lastly, Section
6 outlines the conclusion of the paper and some future directions.

2. Artificial Bee Colony
Artificial Bee Colony is a Swarm Intelligence (SI) algorithm developed by Karaboga
[Karaboga 2005a] based on the mathematical model of the foraging and information shar-
ing behavior of honey bees. Initially developed to solve bound-constrained continuous
optimization problems, ABC stands as a prominent SI algorithm due to its efficiency and
versatility [Akay and Karaboga 2015].

The algorithm consists of four main steps: initialization, employed bees step, on-
looker bees step, and scout bees step. In the first step, initial solutions are generated and
specific parameters for the algorithm and problem are set. For the remaining steps, solu-
tions are sampled and improved by local and global search procedures cyclically, until a
stopping criterion is met. Three parameters regulate the algorithm: number of solutions
SN ; the maximum number of iterations MCN ; and solution stagnation threshold Lit. A
brief description of each step is explained as follows. LetX = {x1, x2, . . . , xn}, n = SN ,
be solution of the algorithm and xij, j = 1, . . . , D be the j-th component (decision vari-
able) of the i-th solution.

2.1. Initialization
When no partial information is provided, solution initialization is performed by drawing
values from a uniform distribution (denoted by U(α, β)) ranging between the feasible
bounds of each decision variable max and min.

xnew = ximinj
+ U(0, 1)

(
ximaxj

− ximinj

)
. (1)

where 1 ≤ j ≤ D. For each solution, a counter for unsuccessful updates is initialized.

2.2. Employed bees cycle
A randomly chosen decision variable of solution xi is moved in a random step size in the
direction of the distance between xi and another randomly chosen solution xk. For each
solution xi, i = 1, 2, . . . , n, a decision variable j is updated by:

xi
(t+1)′

j = xi
(t)

j + φ(xi
(t)

j − xk
(t)

j ), (2)



where t is the time step; k(6= i) is a randomly chosen index; and φ is a uniformly dis-
tributed real random number between [−1, 1]. After updating the solution by (2), a greedy
selection takes place:

x
(t+1)
j =

{
xi

(t+1)′

j if f(xi
(t+1)′

) ≤ f(xi
(t)

)

xi
(t)

j otherwise
. (3)

If the value of f(xi
(t+1)′

) obtained by modifying decision variable xij with (2) is worse than
the original value f(xi

(t)
), the update step is invalidated and the former decision variable

is kept. In this case, no improvement was observed in that solution, so the number of
unsuccessful iterations associated to this solution is increased by 1; otherwise it is reset
to 0.

2.3. Onlooker bees phase

Instead of choosing every solution to be updated, each solution is selected in probability
pi by means of a weighted roulette and inputted into the same procedure of the employed
bees phase (updated by (2) and (3)). The same solution can be chosen multiple times
during this step, resulting in what Akay and Karaboga [Akay and Karaboga 2017] state as
a positive feedback feature by intensifying local searches in the surroundings of promising
solutions. Probability pi is calculated for each solution as follows:

pi =
F (xi)∑SN
i=1 F (xi)

, (4)

where F (xi) is the objective function value of candidate solution xi, obtained by:

F (xi) =

{
1

1+f(xi)
if f(xi) ≥ 0

|1 + f(xi)| otherwise.
(5)

2.4. Scout bees phase

Solutions that converged to a point and no improvement in the objective function value
of a candidate solution xi (f(x(t+1)) ≥ f(x(t))) is observed for more than Lit iterations
consecutively are discarded to prevent premature convergence to bad local optima. If
a solution is judged to be stagnated, a new candidate solution is sampled using (1). The
value of Lit is commonly defined as (SN ∗D), whereD is the dimension of the problem.
If multiple solutions surpassed Lit number of iterations without improving at the same
iteration, the worst solution always chosen.

3. Proposed Approach
Modifications to the original ABC have been proposed by several authors whose com-
mon purpose is to address problems regarding convergence and lack of information on
the neighborhood adjacent solutions. These changes consists of new update rules in the
employed and onlooker bees steps, new methods for initialization or randomization of
solutions in scout bees phase and inclusion of solution clustering schemes [Aydın et al.



2017]. It has been observed that the variants share a common feature among themselves,
decision variable(s) xj in the employed and onlooker steps are selected with equal prob-
ability following an uniform random distribution. Choosing components of the solution
set in a purely random fashion is seen as an inherent feature of any population-based
optimization method that allows solutions to ”cover more ground” in the search space.
Although an effortless and somehow effective measure, it causes some negative effects to
the overall performance of the algorithm. Some of the most crucial issues are explained
as follows. For the sake of clarity, we refer in accordance to [Locatelli and Schoen 2013]
to a neighborhoodN (·) as the classical definition of an Euclidean ball centered at a point
xk:

N (xk) = {x ∈ Rn :
∥∥x− xk

∥∥ ≤ ε}. (6)

Where ‖·‖ is any norm (e.g., the euclidean norm), and ε is a given positive quantity.
Three main issues associated to stochastic decision variable choice are listed:

• Chosen decision variable does not contribute to improvement of the solution:
Let xw and xz be candidate solutions in X . Let i and j (i 6= j) be indices of xw
and xz, and xwi

≈ xzi , while xwj
>> xzj (or vice-versa). Updates for index i

would likely result in negligible updates f(x′) where f(x) ≤ f(x′), while updates
in j are unknown for a f(x′′) in neighborhood N (x′′). Updates to i-th decision
variable would result in a failed step during the greedy selection (3), contributing
to a premature and needless displacement of the solution at the scout step.

• Decision variables may never be chosen: Let the probability of variable j to
not be chosen per iteration be P (∼ xj) = 1 − 1/D, then for the entire execu-
tion of the algorithm, the probability of j to not be chosen is PMCN(∼ xj) =

(1− 1/D)MCN . Although it is clear that PMCN(∼ xj) converges to 0 as MCN
goes to infinity, letting the algorithm run for a small number of iterations results in
a high probability for j to not be chosen, especially in high dimensional domains.

• Updating a decision variable that deviates the solution from better local op-
tima: candidate solutions may converge towards deceptive points of attraction.
Let xw and xz to be components of a candidate solution x in X . A successful
update of xz or xw to x′z and x′w would lead x to accumulation points x∗ and x′,
respectively. Furthermore, |xz − x′z| ≈ |xw − x′w| and f(x∗) < f(x′). Therefore,
a successful update towards N (x′z) would be beneficial, while an update towards
N (x′w) guides the solution towards a worse accumulation point.

An initial attempt to address these issues was made by Mollinetti et al. [Mollinetti
et al. 2018], who proposed a deterministic solution selection method based on diago-
nals and superdiagonals of rectangular matrices. The authors showed that eliminating
the randomness in the choice of index j in the movement rule boosted the performance
of the ABC in multimodal domains featuring 30 or more decision variables. However,
it has been observed that such improvement was obtained not without a cost: diversity
of solutions in the search space has been compromised because algorithm now com-
pletely emphasizes exploitation over exploration. From this outcome, we hypothesize
that a fully deterministic parameter selection biases the algorithm towards exploitation,
therefore reintroducing a small degree of randomness would recover the global search



capabilities of the algorithm while preserving the improvement in multimodal domains
brought by the deterministic selection.

3.1. A self-adaptive decision variable selection procedure (A-DVM)
We propose an extension of the decision variable selection procedure of Mollinetti et
al. [Mollinetti et al. 2018] named ADVM (Adaptive Decision Variable Matrix) that can
be included in the employed and/or onlooker bees phase. As opposed to a fully determin-
istic selection, we reintroduce an adaptive degree of sthochasticity throughout iterations
by measuring the diversity of the population and using an augmented binary decision
matrix. The goal of the ADVM is to improve the overall performance of the state-of-the-
art of ABC for multimodal and higher dimensional problems, since it can be effectively
incorporated into any ABC variant because it does not interfere with any modification.

The selection of a decision variable for each solution in the onlooker or employed
step can be represented as a binary matrix Pr where each column is a solution of the
solution setX arranged into aD×nmatrix. Entries with 1 represent the chosen j variables
of each solution to be updated by the movement rule. The deterministic selection rule of
Mollinetti et al. [Mollinetti et al. 2018] constructs a binary matrix Pd where the 1’s are in
the main diagonal and superdiagonals offset by the dimension of the problem.

Pr =


0 0 0 . . . 1 0 . . . 0
0 0 1 . . . 0 0 . . . 0
1 0 0 . . . 0 1 . . . 0
...

...
... . . . ...

... . . . 1
0 1 0 . . . 0 0 . . . 0

 , Pd =


1 0 0 . . . 0 1 . . . 1
0 1 0 . . . 0 0 . . . 1
0 0 1 . . . 0 0 . . . 1
...

...
... . . . ...

... . . . ...
0 0 0 . . . 1 0 . . . 1

 .

The main idea behind the ADVM consists of employing random variable selection
to a portion of the population while selecting the remaining variables using the determinis-
tic scheme. ADVM constructs a binary matrix Pam by replacing a portion of the columns
of Pr with α columns from Pd. This operation is represented by the ⊕ operator:

Pam = Pr ⊕ αPd =


0 0 0 . . . 0 0 . . . 0
0 1 0 . . . 0 0 . . . 0
1 0 1 . . . 0 1 . . . 0
...

...
... . . . 0

... . . . 0
0 0 0 . . . 1 0 . . . 1

 .

The degree of how much Pd is favored over Pr is represented by the coefficient
α that is iteratively adjusted to balance the degree of exploitation and exploration while
maintaining a healthy population diversity. Computation of α is given by:

α = (1−∆)K1 + ∆K2, (7)

where ∆ ∈ [0, 1] is the measure of dispersion of the population at the current iteration
and scaling parameters K1 and K2 are set to 0.3 and 0.7 in accordance to McGinley et
al. [Mc Ginley et al. 2011]. Values of α close to 1 signify high population diversity and



activate exploitation by the deterministic selection. On the other hand, values close to 0
boost exploration by random values. Since solutions in most population-based algorithms
tend to concentrate around accumulation points on later stages [Locatelli and Schoen
2013], the parameter α is penalized in each iteration according to an exponential decay
function as follows,

α = αe−λ(t−t
′). (8)

In (8), λ is a decay coefficient, set to 0.01 to indicate slow decay. The amount t′ is defined
for fully stochastic solution selection to be performed in t′ iterations. The rationale behind
t′ is that an initial random global search is necessary so that solution diversity during that
amount of iterations is achieved. t′ is given by:

t′ = min

(
SN ∗ d
λtMCN

, λtMCN

)
, (9)

where λt is chosen to be 0.1.

Estimation of the population diversity ∆ is given by the computation of ∆1 and
∆2, detailed in the following section. The steps of the ADVM are outlined in Algorithm
1.

Algorithm 1: Steps of the ADVM
1 if t > t′ then
2 ∆1 ← 0.75− S1

3 ∆2 ← 1− S2

4 ∆← ∆1 + ∆2

5 α← ∆ ∗ (K2 −K1) +K1

6 α← α ∗ e−λ(t−t′) // penalize α by (8)
β ← 1− α

7 else
8 α← 0
9 β ← 1

10 Pr ← BuildRandomMatrix(β)
11 Pd ← BuildDeterministicMatrix(α)
12 P ← αPd ⊕ Pr
13 X ′ ←UpdateSolutions(P )

3.2. Measuring Population Dispersion

Measuring population dispersion is helpful for population-based algorithms to estimate
how much the solutions are far from each other when solving highly multimodal prob-
lems. Significant contributions related to this subject are present in [Ursem 2002, Bäck
and Hoffmeister 1991] who introduced the measure SPD, the degree of variation in a
population by measuring the distance from each solution regarding as the population cen-
troid. Moreover, McGinley et al. [Mc Ginley et al. 2011] created the concept of individual
contribution to the calculation of SPD, which results in a new measure called HPD.



Diversity metrics like SPD and HPD may accurately and inexpensively identify
disparities between population members. However, they do not take into account the dis-
tribution of the population throughout the search space. Many population distributions
may have the same amount in their diversity metrics but different search-space coverage.
Such a thing can be misleading when translating from the search-space to the solution
landscape of functions. Therefore, a more robust indication for search-space coverage is
desired. For the above purpose, the dispersion measure ∆ designed by Morrisson [Morri-
son 2013] is employed:

∆ = ∆1 + ∆2 =
1.75− S

1.75
, (10)

where ∆1, ∆2 and S are given as, respectively ∆1 = 0.75 − S1, ∆2 = 1 − S2 and
S = S1 + S2. The values of S1 and S2 are obtained by measuring the moment of inertia
of the solution centroid in relation to each solution. Moment of inertia is a term used in
engineering problems to denote the relationship between torque and angular acceleration
[Morrison 2013]:

I = mr2. (11)

For P solutions, the centroid ci and the moment of inertia Ic of centroid ci is:

ci =

∑P
j=1 xij

P
, (12) Ic =

P∑
j=1

(xij − ci)2. (13)

The first measure S1 involves a quantitative assessment of the solutions around the distri-
bution centroid. If the distribution were uniform, S1 is computed as follows:

S1 = max
i

[∣∣IUo − Ici + Pc2i
∣∣]

P
, (14)

where the inertia of a uniform distribution is:

IUo
=

P∑
j=1

(
j

P + 1

)2

. (15)

The measure ∆2 indicates how much the calculation of ∆1 is misleading when
the distribution is not uniform in the search-space, since ∆1 only verifies non-uniformity
along the principal diagonal of the search space. Therefore, S2 is measured as follows:

S2 = max


∣∣∣∑P χc+ −

⌈(∏
j(1−cj)∏

j ρj

)
P
⌉∣∣∣

P
,

∣∣∣∑P χc− −
⌈(∏

j(cj)∏
j ρj

)
P
⌉∣∣∣

P

 . (16)

where c− = {xj ∈ X|xij ≤ ci}, c+ = {xj ∈ X|xij ≥ ci}, and χ is the characteristic
function that returns either 0 or 1 depending on whether a solution belongs to c− or c+



Table 1. Benchmark functions and its definitions.

Name Dim Range Opt. Name Dim Range Opt.

Bukin06 10 [-10, 0] 0.0 Rosenbrock 30 [-30, 30] 0.0
Cola 17 [-4, 4] 11.7464 Schwefel06 30 [-500,500] 0.0
CrossLegTable 2 [-10,10] -1.0 SineEnvelope 20 [-500, 500] 0.0
CrownedCross 2 [-10,10] 0.0001 Trefethen 2 [-10,10] -3.0
Damavandi 2 [0,14] 0.0 Whitley 2 [-10.24, 10.24] 0.0
DeVilliersGlasser02 5 [1, 60] 0.0 XinSheYang03 20 [-500, 500] 0.0
Griewank 30 [-100, 100] 0.0 Zimmerman 2 [0, 100] 0.0
Rastrigin 30 [-5.12, 5.12] 0.0 – – – –

4. Experiment
To verify whether the proposed approach exert any influence to the overall performance of
the ABC, we experiment on 15 instances of benchmark functions designed to validate the
capability of metaheuristics to handle multimodality and ruggedness. The instances are
ranked in the top 30 hardest continuous optimization functions in the Global Optimization
Benchmarks suite [Gavana 2019]. Each algorithm was executed 30 times with the same
seed. The number of dimensions, range, and global optimum of each instance is listed in
Table 1.

The ADVM was incorporated in the onlooker and employed bees phase of the
following versions of the ABC: the original ABC from Karaboga [Karaboga 2005b]
(ABC+ADVM), two versions of the global best guided ABC (gbestABC) from Zhu et al.
[Zhu and Kwong 2010] (GBESTABC+ADVM, GBESTABC2+ADVM). These three al-
gorithms are compared to their original counterparts (ABC, GBESTABC, GBESTABC2)
and the modified ABC for multidimensional functions (MABC) from Akay and Karaboga
[Akay and Karaboga 2012], as well as against well-established population-based algo-
rithms, such as the Particle Swarm Optimization from Kennedy and Eberhart [Kennedy
and Eberhart 1995], Evolutionary Particle Swarm Optimization by Miranda and Fon-
seca [Miranda and Fonseca 2002] and Differential Evolution (DE) [Storn and Price 1997].

The Stopping criteria for each algorithm is set as 105 function evaluations (FE’s)
or if the difference between of the best value found so far and the global optimum f(x∗)
value is less than 10−8. Shared among all algorithms, population size is fixed at 30. For
PSO, the inertia factor (w1) is set to 0.6 and both cognitive and social parameters (w2, w3)
as 1.8. For Differential Evolution (DE) [Storn and Price 1997] with best1bin strategy, F
value was 0.5 and CR 0.9. For each version of the ABC: limit is set to SN ∗ D. For
MABC, MR, SF and m are 0.4, 1, and 2.5% of maximum FE’s, respectively. Lastly,
selection parameters λ and λt of the ADVM are set to 0.001 and 0.1 respectively.

5. Results
Table 2 show the results obtained from the experiment. The statistics used for comparison
are the mean, standard deviation, median, and best-worst results obtained by 30 distinct
runs with different random seeds. Statistical significance between pairs is verified by the
Mann-Whitney U test for non-parametric data, with confidence interval α set to 0.95.
For better legibility, precision of decimals are set to 5 digits and values lower than 10−6

are rounded to 0. Furthermore, p-values for individual comparisons of the U test are not



supplemented for the sake of brevity. Therefore, if the performance of any algorithm for a
particular instance is statistically significant, it means that its p-value in the U test is less
than 0.05 in the pairwise comparison against all other algorithms.

Firstly, the results show that the inclusion of the ADVM in the Cola and Rosen-
brock instances resulted in a strictly worse performance than the original ABC, whose
results was shown to be significantly better than all others. The poor performance of the
ADVM can be attributed to the nature of the problem instances which rewards solution
exploration. Additionally, we can state this case is a classical affirmation of the no-free-
lunch theorem of Wolpert [Wolpert and Macready 1997]. Inferior results of the ADVM
are also seen at the Bukin06 and Schewefel 06 instances. Causes of such behavior can be
due to intensification of the local search mechanism that forced solutions to stay far from
the sparse ridges of the surface of the functions.

Strong evidence of robustness of the ADVM for multimodal and deceptive sur-
faces was found in the Damavandi and DeVilliersGlasser02 instances, labeled as the first
and second hardest function in the benchmark suite. Both functions feature large basins
of attraction for bad local optima that is directly proportional to the dimensionality of
the problem. A possible cause to the success of the ADVM in these instances can be
attributed to the balance between solution exploration and exploitation that allowed the
solutions to escape from the basins.

For the rest of the instances, no statistic significance that corroborated that the
inclusion of the ADVM improved or worsened the performance of the original algorithm
was found. However, statistical significance indicating that the ADVM was better than
the PSO, EPSO and DE was found in the Rastrigin and Zimmerman instances.

6. Conclusion
In this paper, ADVM, self-adaptive decision variable selection method was proposed. The
selection takes place in the employed and or onlooker bees phase and can be integrated to
any variant of the ABC. ADVM attempts to balance exploration and exploitation through-
out the execution of the algorithm by constructing an augmented binary matrix that rep-
resents the choice of components of the solution set to be updated. The binary matrix
is obtained by a composition of portions of a binary matrix that follows the proposal
of [Mollinetti et al. 2018] with another binary matrix with random 1 entries for each
column. The number of columns to be used from the deterministic matrix is determined
by an adaptive parameter that is calculated each iteration by estimating the ∆ value, a
measure of the sparsity of solutions in the search space.

Potential benefits of the ADVM to overall performance of the ABC and variants
in multimodal domains were investigated by integrating the ADVM to the ABC and some
of its variants and comparing against the original versions in several instances. Results
indicate that the ADVM enhances the ABC capabilities of adapting itself to highly mul-
timodal function landscapes. However, the elimination of the full global search of the
stochastic selection resulted in solutions not converging towards accumulation points that
are located in extreme points or ridges in the few instances where it performed poorly.
Integration with ABC variants with smart restart procedures in the scout bees phase may
ameliorate this issue.

Future works include in-depth sensitivity analysis and integration of the selection



Table 2. Results of the experiment for all problem instances

Problem Algorithm Mean Median Std. Dev Best Worst Problem Algorithm Mean Median Std. Dev Best Worst Problem Algorithm Mean Median Std. Dev Best Worst

Bukin06 DE 0.97893 0.91922 0.52393 0.33 2.60682 DeVilliersGlasser02 DE 352.642 64.37420 767.121 0.39534 3182.44 SineEnvelope DE 0.47414 0.47354 0.09202 0.3289 0.69363
PSO 0.03759 0.04883 0.01611 0.00431 0.05000 PSO 7108.73 9377.49 4258.06 0.00000 10647.4 PSO 7.09257 7.26654 0.57119 6.09679 7.86571
EPSO 0.00901 0.00715 0.00690 0.00057 0.02419 EPSO 799.059 6.52004 2538.22 0.00000 10467.8 EPSO 4.74872 4.8902 0.89428 3.04664 6.09835
ABC 0.06535 0.05000 0.03345 0.01909 0.15020 ABC 5.71168 3.20875 6.02096 0.34329 21.70150 ABC 0.25965 0.22372 0.07091 0.18175 0.39453
MABC 0.05800 0.05000 0.046600 0.01611 0.21930 MABC 4.12467 2.74194 4.63619 0.24565 15.8204 MABC 3.01514 3.09304 0.30318 2.47955 3.57755
GBESTABC 0.18781 0.18014 0.07922 0.05044 0.34700 GBESTABC 8.13107 4.71285 11.61610 0.84988 53.06630 GBESTABC 0.25933 0.23034 0.06796 0.16192 0.38841
GBESTABC2 0.35783 0.33525 0.17333 0.12420 0.63954 GBESTABC2 5.56375 4.42650 4.64582 0.65744 21.59900 GBESTABC2 0.30696 0.30139 0.07077 0.19638 0.43203
ABC+ADVM 0.05949 0.04990 0.04087 0.00340 0.15985 ABC+ADVM 2.53581 1.93048 2.00250 0.05803 7.09280 ABC+ADVM 0.30694 0.29637 0.09403 0.19931 0.56087
GBESTABC+ADVM 0.17330 0.13761 0.08993 0.04872 0.33291 GBESTABC+ADVM 6.89254 4.77318 5.30292 1.06621 23.2227 GBESTABC+ADVM 0.26499 0.25378 0.05339 0.18960 0.37096
GBESTABC2+ADVM 0.32394 0.34000 0.17225 0.09892 0.69858 GBESTABC2+ADVM 8.36485 7.13058 8.01541 0.40725 32.1687 GBESTABC2+ADVM 0.29561 0.29025 0.05581 0.19367 0.39693

Cola DE 12.44390 12.39020 0.502836 11.77570 13.82660 Griewank DE 0.00000 0.00000 0.00000 0.00000 0.00000 Trefethen DE -3.29379 -3.30687 0.04156 -3.30687 -3.14408
PSO 16.13410 15.30270 2.44014 12.9697 22.06270 PSO 1.34282 1.30004 0.17168 1.10178 1.80049 PSO -3.08315 -3.17611 0.21692 -3.30687 -2.64262
EPSO 13.42210 13.60100 1.06166 11.7481 15.48070 EPSO 0.00910 0.00000 0.01379 0.00000 0.04426 EPSO -3.27985 -3.30687 0.06253 -3.30687 -3.06263
ABC 12.05440 11.95500 0.22993 11.75370 12.54730 ABC 0.00000 0.00000 0.00000 0.00000 0.00000 ABC -3.30687 -3.30687 0.00000 -3.30687 -3.30687
MABC 12.83970 12.84790 0.443416 12.11390 13.61120 MABC 0.00000 0.00000 0.00000 0.00000 0.00000 MABC -3.30687 -3.30687 0.00000 -3.30687 -3.30687
GBESTABC 12.22790 12.15260 0.30889 11.79990 13.08850 GBESTABC 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC -3.30687 -3.30687 0.00000 -3.30687 -3.30687
GBESTABC2 12.23520 12.25250 0.28235 11.80430 12.76960 GBESTABC2 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC2 -3.30687 -3.30687 0.00000 -3.30687 -3.30687
ABC+ADVM 12.15250 12.08500 0.232509 11.84320 12.65390 ABC+ADVM 0.00041 0.00000 0.00186 0.00000 0.00834 ABC+ADVM -3.30687 -3.30687 0.00000 -3.30687 -3.30687
GBESTABC+ADVM 12.28230 12.18300 0.32599 11.81830 13.12510 GBESTABC+ADVM 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC+ADVM -3.30682 -3.30687 0.00022 -3.30687 -3.30588
GBESTABC2+ADVM 12.23630 12.21250 0.29413 11.82890 12.96570 GBESTABC2+ADVM 0.00000 0.00000 0.00000 0.00000 1.43E-05 GBESTABC2+ADVM -3.30687 -3.30687 0.00000 -3.30687 -3.30687

CrossLegTable DE -0.26326 -0.08477 0.37832 -1.00000 -0.00611 Rastrigin DE 0.54722 0.49748 0.60175 0.00000 1.98992 XinSheYang03 DE 0.00000 0.00000 0.00000 0.00000 0.00000
PSO -0.09723 -0.08283 0.21626 -1.00000 -0.00255 PSO 125.84700 126.20500 21.16520 88.1972 160.206 PSO 0.00000 0.00000 0.00000 0.00000 0.00000
EPSO -0.17534 -0.08477 0.28203 -1.00000 -0.07959 EPSO 45.76950 51.25510 23.05110 6.96471 99.49550 EPSO 0.00000 0.00000 0.00000 0.00000 0.00000
ABC -0.13062 -0.08493 0.20463 -1.00000 -0.08477 ABC 0.00000 0.00000 0.00000 0.00000 0.00000 ABC 0.00000 0.00000 0.00000 0.00000 0.00000
MABC -0.10630 -0.08477 0.09595 -0.51398 -0.08477 MABC 74.55290 75.18170 8.78129 50.39630 87.9141 MABC 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC -0.12994 -0.08477 0.20479 -1.00000 -0.07981 GBESTABC 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC2 -0.08448 -0.08477 0.00071 -0.08477 -0.08283 GBESTABC2 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC2 0.00000 0.00000 0.00000 0.00000 0.00000
ABC+ADVM -0.13061 -0.08493 0.20463 -1.00000 -0.08477 ABC+ADVM 0.00000 0.00000 0.00000 0.00000 0.00000 ABC+ADVM 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC+ADVM -0.12355 -0.08477 0.20728 -1.00000 -0.00656 GBESTABC+ADVM 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC2+ADVM 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC2+ADVM -0.13044 -0.08477 0.20467 -1.00000 -0.08283 GBESTABC2+ADVM 0.00000 0.00000 0.00000 0.00000 0.00000 GBESTABC+ADVM 0.00000 0.00000 0.00000 0.00000 0.00000

CrownedCross DE 0.00173 0.00117 0.00347 0.00010 0.01635 Rosenbrock DE 32.86880 25.58250 24.11440 7.49392 86.07950 Whitley DE 0.01388 1.20E-05 0.01925 0.00000 0.03945
PSO 0.01609 0.00120 0.01884 0.00010 0.03909 PSO 163741 122694 107137 31992.8 449777 PSO 0.03286 0.03945 0.04100 0.00000 0.15783
EPSO 0.00108 0.00117 0.00033 0.00010 0.00125 EPSO 8.20397 8.59076 2.84563 3.16795 13.15980 EPSO 0.00591 0.00000 0.01445 0.00000 0.03945
ABC 0.00117 0.00010 0.00000 0.00117 0.00117 ABC 0.91220 0.15323 1.44928 0.01712 4.69119 ABC 3.02263e-05 0.00000 0.00011 0.00000 0.00050
MABC 0.00113 0.00010 0.0002 0.00027 0.00117 MABC 44.68880 27.22880 29.94650 23.93810 112.734 MABC 0.00203 0.00000 0.00881 0.00000 0.03945
GBESTABC 0.00108 0.00010 0.00033 0.00010 0.00120 GBESTABC 1.70578 1.09851 1.85263 0.08547 6.11791 GBESTABC 0.00757 1.37E-05 0.01276 0.00000 0.03945
GBESTABC2 0.00118 0.00010 1.13E-05 0.00117 0.00120 GBESTABC2 3.18224 2.5852 2.93224 0.35930 13.16040 GBESTABC2 0.00236 0.00015 0.00852 0.00000 0.03845
ABC+ADVM 0.00105 0.00010 0.00032 0.00010 0.00117 ABC+ADVM 2.55989 1.04791 4.37552 0.02863 19.18300 ABC+ADVM 0.00064 0.00000 0.00226 0.00000 0.01009
GBESTABC+ADVM 0.00113 0.00010 0.00024 0.00010 0.00125 GBESTABC+ADVM 3.46204 1.48614 4.40623 0.04360 13.87970 GBESTABC+ADVM 0.00618 0.00000 0.01435 0.00000 0.03945
GBESTABC2+ADVM 0.00118 0.00010 0.00000 0.00117 0.00120 GBESTABC2+ADVM 4.55452 3.8697 3.73467 0.11879 14.8367 GBESTABC2+ADVM 0.00062 0.00022 0.00095 0.00000 0.00379

Damavandi DE 2.00000 2.00000 0.00000 2.00000 2.00000 Schwefel06 DE 0.00000 0.00000 0.00000 0.00000 0.00000 Zimmerman DE 0.38522 0.69869 0.35633 0.00000 0.70133
PSO 2.00000 2.00000 0.00000 2.00000 2.00000 PSO 0.00000 0.00000 0.00000 0.00000 0.00000 PSO 715.1750 1300 663.34500 0.00000 1300
EPSO 1.90000 2.00000 0.44721 0.00000 2.00000 EPSO 0.00000 0.00000 0.00000 0.00000 0.00000 EPSO 0.17464 0.00000 0.31035 0.00000 0.69858
ABC 2.00000 2.00000 0.00000 2.00000 2.00000 ABC 0.17159 0.10386 0.17989 0.00056 0.59950 ABC 0.00037 0.00000 0.00126 0.00000 0.00569
MABC 2.00000 2.00000 0.00000 2.00000 2.00000 MABC 0.00000 0.00000 0.00000 0.00000 0.00000 MABC 0.00000 0.00000 0.00000 0.00000 0.00000
GBESTABC 1.76059 2.00000 0.60220 0.00611 2.00000 GBESTABC 0.13196 0.11892 0.08783 0.01193 0.28331 GBESTABC 0.10626 0.00053 0.25554 0.00000 0.69923
GBESTABC2 1.82772 2.00000 0.53654 0.02502 2.00000 GBESTABC2 0.13886 0.12197 0.10182 0.01223 0.42978 GBESTABC2 0.07062 0.00050 0.21487 5.96E-05 0.69904
ABC+ADVM 1.80056 2.00000 0.61387 0.00258 2.00000 ABC+ADVM 0.11728 0.04898 0.17793 0.00272 0.72679 ABC+ADVM 0.00041 3.27E-05 0.00097 0.00000 0.00325
GBESTABC+ADVM 1.81787 2.00000 0.56099 0.11335 2.00000 GBESTABC+ADVM 0.09749 0.10197 0.04416 0.02492 0.16431 GBESTABC+ADVM 0.10543 0.00035 0.25582 0.00000 0.69921
GBESTABC2+ADVM 1.74073 2.00000 0.63782 0.00028 2.00000 GBESTABC2+ADVM 0.14695 0.09799 0.12129 0.02657 0.46299 GBESTABC2+ADVM 0.03531 0.00020 0.15612 1.40E-05 0.69862



mechanism to the state-of-the-art ABC used for optimization competitions and testing
on large scale problems, mechanical design and power systems to further investigate the
performance of the selection. Another research direction includes applying the proposed
method for weight tuning of shallow networks [Gatto and dos Santos 2017, Gatto et al.
2017]. Such networks may benefit from the proposed optimization mechanism since it
tackles small sample size problems featuring rough fitness landscapes.
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