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Abstract. Sentiment analysis (SA) is increasing its importance due to the enor-
mous amount of opinionated textual data available today. Most of the researches
have investigated different models, feature representation and hyperparameters
in SA classification tasks. However, few studies were conducted to evaluate the
impact of these features on regression SA tasks. In this paper, we conduct such
assessment on a financial domain data set by investigating different feature rep-
resentations and hyperparameters in two important models – Support Vector
Regression (SVR) and Convolution Neural Networks (CNN). We conclude pre-
senting the most relevant feature representations and hyperparameters and how
they impact outcomes on a regression SA task.

1. Introduction

The rise of the importance of social media and online content (e.g., Social Networks,
Blogs, Online News) in modern society has led to the generation of an enormous
amount of opinionated textual data and consequently increase in the number of sen-
timent analysis (SA) researches [Liu 2012]. Many domains have benefited from this
expansion such as political [Wang et al. 2012], entertainment [Pang and Lee 2004], and
others [Kim 2014, Zhang et al. 2018]. In our work, we will focus on the financial do-
main, which has been able to bring to light some important results and conclusions
not only to its specific domain but also to the overall SA field [Bollen et al. 2011,
Khadjeh Nassirtoussi et al. 2015].

Regarding SA tasks on the financial domain, previous work identified important
issues such as the lack of standardized datasets and the predominance of classification
tasks over regression [Khadjeh Nassirtoussi et al. 2014]. SemEval 2017 Task 5 addressed
these problems and developed a financial domain dataset, composed of sentences from fi-
nancial news headlines, for a SA challenge [Cortis et al. 2017, Davis et al. 2016]. More-
over, the developed dataset was labeled by financial experts, generating a gold standard
sentiment score regression dataset. Nevertheless, because of the limitations of using ex-
perts for labeling data, this dataset is rather small, with a little more than a thousand



instances. On the other hand, most researches [Socher et al. 2013, Hu and Liu 2004,
Yadollahi et al. 2017] are based on SA datasets with many thousands of instances.

There are three major classes of SA approaches [Medhat et al. 2014]: lexicon-
based, machine learning based, and hybrid. The lexicon-based approach uses a sen-
timent lexicon (i.e., dictionary of word with associated prior sentiment knowledge)
as a basis for defining rules that help to decide on the overall sentiment of a doc-
ument [Bollen et al. 2011]. For example, considering SA classification tasks (in this
case movie and product reviews), previous work achieved state-of-the-art results by
creating a manually labeled general language domain (i.e., without highly technical
language) sentiment lexicon called VADER and then using it together with some de-
signer rules [Hutto and Gilbert 2014]. Other works went further and took into ac-
count the issue of the usage of general domain lexicons for domain-specific tasks
[Khadjeh Nassirtoussi et al. 2014, Ruder et al. 2016, Hamilton et al. 2016] and generated
the Loughran-Mcdonald (LM) lexicon, which is domain-specific (i.e., contains highly
technical language) [Loughran and Mcdonald 2011].

In the case of the machine learning based approaches, linguistics features
are extracted and used in statistical methods that can predict the sentiment of doc-
uments. Considering this approach, we define our choices of models, and fea-
ture representation techniques on some tendencies observed in SA systematic re-
views work [Khadjeh Nassirtoussi et al. 2014, Zhang et al. 2018]. First, there is a pre-
dominance of the usage of support vector machine (SVM) models, which mainly
uses the feature representation of bag-of-words (BOW) combined with TF-IDF
[Khadjeh Nassirtoussi et al. 2015]. Second, there is a tendency for the employment of
deep artificial neural network models such as the Convolutional Neural Network (CNN)
[Kim 2014, Zhang and Wallace 2017]. Finally, there is increasing use of word embed-
ding – such as GloVe [Pennington et al. 2014] and word2vec [Mikolov et al. 2013] - for
SA tasks.

The hybrid approach combines the previous approaches by the incorporation of
prior sentiment knowledge from lexicons into the feature representation space of ma-
chine learning models. Some systematic literature reviews identified few works use
the hybrid approach [Medhat et al. 2014, Khadjeh Nassirtoussi et al. 2014]. Recent hy-
brid approach work investigated one technique for incorporating general domain lexi-
con information into a recurrent neural network (RNN) model for domain-specific tasks
[Ruder et al. 2016]. However, to the best of our knowledge, no work systematically com-
pared varied techniques for the incorporation of lexicon approach information. Moreover,
no work thoroughly examined the differences between machine learning and hybrid ap-
proaches, especially for the regression task.

In the present work, we perform a thorough empirical examination of some
of the feature representation, lexicons and machine learning models used both on
the overall sentiment analysis field and on SemEval 2017 Task 5. We compare
the machine learning approach with the hybrid one, using different sizes of the
GloVe word embedding [Pennington et al. 2014], VADER non-specific sentiment lex-
icon [Hutto and Gilbert 2014], financial domain lexicon Loughran-Mcdonald (LM)
[Loughran and Mcdonald 2011], and various hyperparameter values. The machine learn-
ing models used are SVR (i.e., regression adaptation of the SVM) and CNN. Our work



takes inspiration from similar previous work [Zhang and Wallace 2017] to address this
issue of insufficient empirical work to guide practitioners’ decisions.

Our results show evidence that, at least for this data set and lexicon information
incorporation technique, there is no significant advantage in using a domain-specific lex-
icon over a general domain sentiment lexicon. Also, although there is an improvement of
the hybrid approach over the machine learning one, the impact of choices such as word
embeddings dimensions or hyperparameters are much more substantial.

2. Related Work

Previous work conducted an extensive evaluation of the impact of the word embedding
dimension on a movie reviews classification SA task [Melamud et al. 2016]. It used a
logistic regression classifier and the word2vec [Mikolov et al. 2013] word embedding to
conclude that its dimension is an aspect of feature representation with significant impact
on performance. However, machine learning models that achieved state-of-the-art on this
same movie reviews task, such as CNN [Kim 2014], were not considered. In contrast,
some prior empirical work compared the impact of using a CNN with different hyper-
parameters and word embeddings (GloVe and word2vec) for general language domain
classification tasks [Zhang and Wallace 2017]. However, this work missed some impor-
tant feature representation aspects, such as the mentioned word embedding size influence
[Zhang and Wallace 2017]. So, we believe these works left a gap for empirically evalu-
ating the impact of diverse feature representation techniques in a state-of-the-art machine
learning model.

We will address this gap by examining how feature representation aspects – such
as the word embedding dimension size and lexicon information – impact on state-of-the-
art machine learning models (CNN and SVR). Our work also differs from these previous
ones by tackling a regression SA task on the financial domain (The SemEval 2017 Task
5 [Cortis et al. 2017, Davis et al. 2016]). To the best of our knowledge, we are the first to
perform such rigorous sensitivity analysis of state-of-the-art techniques, from multiple SA
approaches (Machine Learning and Hybrid), on a regression domain-specific SA problem.

Regarding sentiment analysis hybrid approach, previous work combined the
GloVe word embeddings with the VADER lexicon [Hutto and Gilbert 2014] infor-
mation into a CNN model [Mansar et al. 2017]. However, this previous work
didn’t experiment with the financial domain Loughran-Mcdonald (LM) lexicon
[Loughran and Mcdonald 2011]. Unlike this previous work, both the general domain and
financial domain lexicons will be here employed.

Concerning the machine learning approach, previous work examined the
impact of various word embedding-based features in SA classification tasks
[Petrolito and Dell’Orletta 2018]. Aspects analyzed included how different embedding
training corpus size, embedding training corpus domains, methods to combine word em-
beddings, among others, impacted classification outcomes. However, this work did not
experiment with SA regression tasks. Furthermore, this research did not explore how dif-
ferent embedding-features interact with each other, i.e., how results may be affected by
varying multiple features simultaneously.



3. Methodology
The chosen data set was from SemEval2017 Task 5, Subtask 2. It contains labeled finan-
cial news headlines for a Sentiment Analysis regression problem. It is composed of 1,142
financial headlines for the train set and 491 for the test set. Each headline is labeled with
sentiments on a continuous scale from -1 (bearish) to +1 (bullish), with 0 being neutral.

The methodology adopted for this paper was divided into two main steps, as fol-
lows.

Data Preparation: we applied a stratified 5-Fold split, to obtain 5 sentiment-balanced
folds for cross-validation. To ensure comparability across models and repro-
ducibility, all models had at their input the same 5 folds, which were obtained
using a fixed seed. Several established NLP data preparation steps were employed:
stop words removal using the NLTK package; punctuation removal; lowercasing;
tokenization using space as separators; and replacement of the companies’ name
with the word ”company”. All implemented models shared the same data cleaning
process.

Model implementation: we implemented a total of 1.944 CNNs and 1.512 SVRs. This
number of models was obtained by combining all the different possible feature
representation and hyperparameters displayed in Table 1. The chosen feature
representation and hyperparameters were selected considering the state-of-the-
art SA tasks [Zhang and Wallace 2017] and the winning architectures of the Se-
mEval task related to the data set used [Cortis et al. 2017, Davis et al. 2016]. We
used the ”Wikipedia 2014 + Gigaword 5” pre-trained GloVe word embedding
[Pennington et al. 2014]. When using lexical dictionaries, each word available
in the dictionary was represented by an n-dimensional vector: 7-dimensional for
the Loughran-McDonald dictionary and 4-dimensional for VADER. To represent
the sentiment of each sentence as a single vector, we average the sentiment vector
of each word. The CNN architecture was composed of 2 Convolutional Layers
followed by a single Dense Layer. When using dictionaries, GloVe and Dictio-
nary vectors were concatenated before the Dense Layer, as shown in Figure 1.
In CNNs, we use MSE as the loss function, the ”Adam” optimizer, the ReLU
activation function in the hidden layers, and the tanh function in the output layer.

Headline
Input Layer Embedding 1D Con-

volution
1D Con-
volution

1D
Global
Max-
Pooling

Dictionary
Input
Layer

Concate-
nate

DropoutDenseDropoutOutput
Layer

Figure 1. CNN architecture used in our experiments: 2 convolutional layers fol-
lowed by single dense layer.

The SVR was implemented using the scikit-learn Machine Learning Library,



Table 1. Feature Representation and Hyperparameters evaluated on the different
models

SVR
Input: TF-IDF and 50, 100, 200 and 300-dimensional GloVe word embeddings
Headline Representation: Sum and Mean of GloVe word embeddings
Dictionary: None, VADER and Loughran-McDonald (LM)
Kernel Type: rbf, sigmoid, poly
C (error penalty param): 0.01, 0.1, 1, 5, 10, 20, 50
Epsilon: 0.001, 0.01, 0.1
CNN
Input: 50, 100, 200 and 300-dimensional GloVe word embeddings
Dictionary: None, VADER and Loughran-McDonald (LM)
Batch size: 32, 64
Number of Filters: 128, 256, 384
Size of Filters: 2, 3, 4
Number of Neurons Dense Layer: 50, 100, 150
Dropout Rate: 0.3, 0.4, 0.5

whereas for the CNN we used Keras Deep Learning Library. All models were imple-
mented in a server with the following technical specifications:

• CPU: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz;
• GPU: GeForce GTX 1080 Ti;
• Memory: 4 x 16 GB DDR4 2133MHz.

4. Results and Discussion
In this section, we present and discuss the results obtained in our experiments. We will
start presenting the effect of feature representation, followed by a discussion about hy-
perparameters. We close by discussing how the interaction of feature representation and
hyperparameters impacts performance.

4.1. Effect of Feature Representation

In order to identify the global overall impact of feature representation across different
models and setups, we condensed the different variations of the feature representation
by taking the mean of the MSEs values over all experiments, grouping all the values
according to the word embedding dimension size and dictionary utilized (e.g., first blue
dot on the left side of the graphics of Figure 2 is the mean of the MSEs of all models using
only a 50-dimensional GloVe embedding without dictionaries). Each line in the graphics
represents a model setup configuration and each dot mark is a result of that configuration
for that embedding size. The results are shown in Figure 2.

CNN results in Figure 2 show a clear trend of improvement of MSE mean values
as the word embedding dimension is increased, with the biggest improvements happening
from size 50 to 100 (roughly 7.5%) and from 100 to 200 (around 6.0%). The superiority
of bigger word embeddings was observed not only by averaging the MSE along all hy-
perparameters, as in Figure 2: when ranking all CNN results by ascending MSE, the 4
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Figure 2. CNN mean MSE results varying word embedding dimension.

best results are CNNs with 300-dimensional word embeddings. Out of the 30 best over-
all results, only 6 are CNNs with 200-dimensional Word Vectors, the remaining being of
300 dimensions. Although the improvement from a word embedding dimension size of
200 to 300 is smaller (2%), it seems there could still be margin to improvement on larger
embedding size, which may be explored in future work. This trend is in line with what
other work found regarding the impact of word embedding dimension in CNNs trained
for classification SA tasks [Melamud et al. 2016].

We observe a similar pattern of growing performance with an increasing embed-
ding dimension on SVR results (Figure 3). Furthermore, the gap in performance observed
between different embedding dimensions is still larger than that observed on the CNN:
the use of 300-dimensional embedding almost halved the average MSE result observed
on 50-dimensional ones.
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Figure 3. SVR mean MSE results varying embedding dimension.

Concerning the use of sentiment dictionaries, even though their use led consis-
tently to better results than using only word embeddings, regardless of dimension sizes,
the benefits of using dictionaries are marginal. We also observe that the benefits of us-
ing the dictionaries decrease as the embedding dimension sizes increase. Besides, it is
important to notice that there seems to be no advantage in using a domain-specific dictio-



nary, as it is hypothesized in [Khadjeh Nassirtoussi et al. 2014]. The marginal benefit of
dictionaries can be observed both on CNN and on SVR results.

Another important aspect to be taken into account, specifically for SVRs, since
this model needs a fixed-size input, is how to combine the individual word embeddings
to represent the whole sentence. As showed in Figure 3, we found strong evidence that
this is a choice with a relevant impact on performance. Two of the most common ways
to represent sentences from individual word embedding vectors is by taking the sum of
the vectors or by taking their mean. Our experiments showed that taking the mean of
the individual vectors resulted in generally superior outcomes. Nevertheless, we observe
that this result is strongly dependent on the embedding dimension used: the difference
between the two approaches decreases with increasing embedding dimension and com-
pletely disappears when using 300-dimensional embedding. The superiority of the mean
representation is opposite to what other researchers found in their classification SA studies
[Petrolito and Dell’Orletta 2018].

It is interesting to notice, however, that the aforementioned studies did not com-
pare the sum and mean representations along with different embedding sizes, but only at
a fixed dimension. This may be a major limitation, since, as we have shown, the gap be-
tween both approaches is strongly dependent on this factor. This finding suggests that the
best word embedding aggregation method should be found considering the entire relevant
hyperparameter and feature representation space, not only some arbitrary subset.

4.2. Effect of Hyperparameters
In this section, we present the impact of hyperparameters in model performance without
taking into account its interactions with feature representation. We start by showing CNN
results, followed by SVR.

4.2.1. Convolutional Neural Networks

As presented in Section 3, the combination of all hyperparameters and feature represen-
tation resulted in 1.944 different CNN models trained. In the following paragraphs, we
exhibit the results of different hyperparameters configurations in CNNs.

Figure 4 shows the result of varying the number of filters along with the numbers
of 128, 256 and 384. The results indicate a clear trend of better results as the number of
filters increases.

Figure 5 displays the result obtained by varying the filter size in the CNN along
with the values of 2, 3 and 4. In this scenario, smaller filter sizes brought better results.

Two different values of batch sizes were tested: 32 and 64. This hyperparameter
had a significant impact on the outcomes, the smaller batch size leading to 8.5% superior
results, on average.

As with other hyperparameters, the dropout rate was also varied and the chosen
values were 0.3, 0.4 and 0.5. In contrast to the results of other hyperparameters, vary-
ing the dropout rate along the aforementioned range did not affect the result as much.
The difference between the mean MSE of the best and worst dropout rate (0.4 and 0.5,
respectively) was of only 1.2%.
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Figure 4. CNN MSE mean results of varying number of filters.
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Figure 5. CNN MSE mean results of varying embedding size and filter size.

The number of neurons on the dense layers also proved to be a hyperparameter
with irrelevant impact on the outcome of our experiments. Increasing this number yielded
only immaterial superior results, on the order of 0.3%.

4.2.2. Support Vector Regressor (SVR)

In respect to the hyperparameters tested, the Kernel was the one with a greater impact on
SVR results, the RBF Kernel leading to better average outcomes. The C penalty parameter
was the second most important parameter in determining SVR performance.

We found no clear pattern that could lead to general conclusions or guidelines
regarding do SVR hyperparameters, being grid search the best option to explore the hy-
perparameter space.

4.3. Interaction between Hyperparameters and Feature Representation

Besides studying the impact of varying individual hyperparameters and feature represen-
tation separately in CNN performance, we found useful investigating how the interaction
of different hyperparameters and feature representation would affect results.



Figure 5 exhibit the impact of embedding dimension and filter size in CNNs out-
comes. Here again, as expected, the bigger embedding dimension yielded better results.
At least two other conclusions can be drawn from the results obtained. First, Figure 5
indicates that the embedding dimension has a greater impact in CNN performance when
compared to filter size, since there is no overlap between the outcomes of different embed-
ding sizes: the best result with 50 dimensions, for example, is still worse than the worst
outcomes in any of the other greater dimensions. Another interesting pattern observed
is the diminishing importance of filter size as the embedding dimension gets greater.
Whereas the impact of the filter size is significant in the 50-dimensional embedding, this
difference flattens out as the embedding dimension increases, getting irrelevant at the
300-dimensional embedding.

4.4. Comparison between best models
Table 2 shows the best result achieved by each of the Machine Learning models and fea-
ture representation when using their best-performing hyperparameters. The best overall
performance was obtained by Model 6, a CNN with GloVe and the VADER Dictionary.

CNN achieved better outcomes than any SVR on 5-Fold average MSE results.
SVR, on the other hand, was 10 to 20 times faster to train. Concerning feature representa-
tion, using word embedding performed better than using TF-IDF for SVRs, besides being
also faster to train.

When comparing SVR and CNN best results, we see that their leading archi-
tectures’ performance differs from 4.9%. This small difference could be at least par-
tially attributed to the relatively small data set. Since CNNs are data-hungry techniques
[Bilen and Vedaldi 2016], their advantage to more traditional Machine Learning tech-
niques could fade away in such a data scarcity scenario.

Table 2. 5-Fold MSE, Test MSE and Mean Training Time for implemented models.

Model 5-Fold MSE Test
MSE

Mean Training
Time (s)

Model 1: SVR with TF-IDF 0.095 0.1077 0.7531
Model 2: SVR with GloVe 0.0882 0.1019 0.1365
Model 3: SVR with GloVe and Vader 0.0883 0.1006 0.1118
Model 4: SVR with GloVe and LMD 0.0895 0.1013 0.1363
Model 5: CNN with GloVe 0.0862 0.0942 2.49
Model 6: CNN with GloVe and Vader 0.0853 0.0949 2.907
Model 7: CNN with GloVe and LMD 0.0855 0.0968 2.493

5. Conclusions and Future Work
To the best of our knowledge, our paper was the first one to systematically study and
analyze hyperparameter sensitivity and feature representation in a SA regression problem.
We could not find, after a thorough review of the literature, other researchers that proposed
an evaluation of regression SA considering different models, preprocessing techniques
and dictionaries.

We summarize our main findings and conclusions below:



Larger word embedding dimensions consistently led to better model performance.
This finding was consistent regardless of the Machine Learning model used and
the different hyperparameter options. [Melamud et al. 2016] came to similar con-
clusions in SA classification tasks.

Models that need a fixed-size input should use the mean of individual word vectors.
When using word embedding together with classical Machine Learning models,
such as SVR, which need a fixed-size input, one should consider the mean of the
individual word vectors as the first choice of feature representation. Representing
sentences as the mean of the individual word embeddings led to superior results
in a great variety of hyperparameter choices, though its advantage diminished on
larger embedding dimensions.

Lexical dictionaries bring an only slight increase in performance The use of lexical
dictionaries resulted in better model performance in all techniques, although the
extra gain was generally small compared to other aspects, especially those related
to the word embeddings.

The best CNN models led to only slightly better results compared to the best SVR
model. This is probably due to the relatively small data set combined with the fact
that CNNs are data-hungry techniques [Bilen and Vedaldi 2016]. Therefore, when
dealing with relatively small data sets, considering the time-consuming effort of
adjusting all relevant hyperparameters in a CNN, one should consider using a clas-
sic Machine Learning model such as SVR. This is especially true in real scenarios,
where training time and time for financial forecasting can be scarce.

Our contribution to the state-of-the-art expands the knowledge of sentiment anal-
ysis by complementing its pre-existing classification research with an unprecedented sys-
tematic regression investigation on the SA task. Furthermore, our study proved the im-
portance of doing such research exploring all the relevant hyperparameter space, not only
within some arbitrary subspace, at the risk of taking local phenomena as general truths.

For future work, we intend to broaden our efforts by advancing in several different
aspects. First, we want to confirm whether the conclusions here drawn are resilient and
also hold on other data sets. Second, we would like to expand both the set of varied
hyperparameters and the range in which they are varied in this study. Moreover, we would
like to try sentiment-aware word embeddings and to find what aspects, if any, contrasts to
the results found in the literature for SA classification tasks.
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arship program of Programa de Bolsas Itaú (PBI), linked to the Centro de Ciência de
Dados (C2D) of Escola Politecnica da USP. We also would like to thank CNPq (Proc.
No. 425860 / 2016-7 and N. 307027 / 2017-1) for the support.

References
Bilen, H. and Vedaldi, A. (2016). Weakly supervised deep detection networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Bollen, J., Mao, H., and Zeng, X. (2011). Twitter mood predicts the stock market. Journal
of Computational Science, 2(1):1–8.



Cortis, K., Freitas, A., Daudert, T., Huerlimann, M., Zarrouk, M., Handschuh, S., and
Davis, B. (2017). SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Fi-
nancial Microblogs and News. In Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 519–535, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Davis, B., Cortis, K., Vasiliu, L., Koumpis, A., Mcdermott, R., and Handschuh, S. (2016).
Social Sentiment Indices Powered by X-Scores. In ALLDATA 2016, The Second Inter-
national Conference on Big Data, Small Data, Linked Data and Open Data, Lisbon,
Portugal.

Hamilton, W. L., Clark, K., Leskovec, J., and Jurafsky, D. (2016). Inducing domain-
specific sentiment lexicons from unlabeled corpora. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing, pages 595–605, Austin,
Texas. Association for Computational Linguistics.

Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’04, pages 168–177, New York, NY, USA. ACM.

Hutto, C. J. and Gilbert, E. (2014). VADER : A Parsimonious Rule-based Model for
Sentiment Analysis of Social Media Text. In Eighth international AAAI conference on
weblogs and social media, pages 216–225.

Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., and Ngo, D. C. L. (2014). Text
mining for market prediction: A systematic review. Expert Systems with Applications,
41(16):7653–7670.

Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., and Ngo, D. C. L. (2015). Text
mining of news-headlines for FOREX market prediction: A Multi-layer Dimension
Reduction Algorithm with semantics and sentiment. Expert Systems with Applications,
42(1):306–324.

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751.

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human
Language Technologies, 5(1):1–167.

Loughran, T. and Mcdonald, B. (2011). When Is a Liability Not a Liability ? Textual
Analysis , Dictionaries , and 10-Ks. Journal of Finance, 66(1):35–65.

Mansar, Y., Gatti, L., Ferradans, S., Guerini, M., Staiano, J., Solutions, F. F., and Kessler,
F. B. (2017). Fortia-FBK at SemEval-2017 task 5: Bullish or bearish? inferring senti-
ment towards brands from financial news headlines. In Proceedings of the 11th Inter-
national Workshop on Semantic Evaluation (SemEval-2017), pages 1–6.

Medhat, W., Hassan, A., and Korashy, H. (2014). Sentiment analysis algorithms and
applications: A survey. Ain Shams Engineering Journal, 5(4):1093–1113.

Melamud, O., McClosky, D., Patwardhan, S., and Bansal, M. (2016). The role of context
types and dimensionality in learning word embeddings. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Lin-



guistics: Human Language Technologies, pages 1030–1040, San Diego, California.
Association for Computational Linguistics.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed rep-
resentations of words and phrases and their compositionality. In Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’13, pages 3111–3119, USA. Curran Associates Inc.

Pang, B. and Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using Sub-
jectivity Summarization Based on Minimum Cuts. In Proceedings of the 42Nd Annual
Meeting on Association for Computational Linguistics, ACL ’04, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Pennington, J., Socher, R., and Manning, C. D. (2014). GloVe : Global Vectors for
Word Representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543.

Petrolito, R. and Dell’Orletta, F. (2018). Word embeddings in sentiment analysis. In
CLiC-it.

Ruder, S., Ghaffari, P., and Breslin, J. G. (2016). A hierarchical model of reviews for
aspect-based sentiment analysis. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 999–1005, Austin, Texas. Associa-
tion for Computational Linguistics.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C.
(2013). Recursive deep models for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1631–1642, Seattle, Washington, USA. Association for Com-
putational Linguistics.

Wang, H., Can, D., Kazemzadeh, A., Bar, F., and Narayanan, S. (2012). A system for
real-time twitter sentiment analysis of 2012 U.S. presidential election cycle. In Pro-
ceedings of the ACL 2012 System Demonstrations, pages 115–120, Jeju Island, Korea.
Association for Computational Linguistics.

Yadollahi, A., Shahraki, A. G., and Zaiane, O. R. (2017). Current state of text sentiment
analysis from opinion to emotion mining. ACM Comput. Surv., 50(2):25:1–25:33.

Zhang, L., Wang, S., and Liu, B. (2018). Deep Learning for Sentiment Analysis : A
Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
8(4):1–25.

Zhang, Y. and Wallace, B. C. (2017). A Sensitivity Analysis of (and Practitioners’ Guide
to) Convolutional Neural Networks for Sentence Classification. In Proceedings of the
The 8th International Joint Conference on Natural Language Processing, pages 253–
263.


